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Abstract: In recent years, there is an emerging direction that leverages information theory

to solve many challenging problems in scientific data analysis and visualization. In this

article, we review the key concepts in information theory, discuss how the principles of

information theory can be useful for visualization, and provide specific examples to draw

connections between data communication and data visualization in terms of how information

can be measured quantitatively. As the amount of digital data available to us increases at an

astounding speed, the goal of this article is to introduce the interested readers to this new

direction of data analysis research, and to inspire them to identify new applications and seek

solutions using information theory.
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1. Introduction

The field of visualization is concerned with the creation of images from data to enhance the user’s

ability to reason and understand properties related to the underlying problem. Over the past twenty

years, visualization has become a standard means to perform data analysis for a variety of data intensive

applications. Numerical simulations for fluid flow modeling, high resolution biomedical imaging, and

analysis of genome and protein sequences are some examples that can benefit from effective visual
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data analysis. For these applications, visualization as a fast maturing discipline offers many standard

techniques such as isosurfaces, direct volume rendering, and particle tracing to analyze scalar and vector

data defined in the spatial domain. For non-spatial data which is more common for business applications,

methods such as parallel coordinates, treemaps, and node-link diagrams are widely used.

Currently, the visual analysis process is mostly operated by the user through trial and error in an

ad hocmanner. Important parameters for visualization algorithms, such as transfer functions, values of

isocontours, levels of detail, and camera positions and directions, often need to be frequently updated

and refined before satisfactory visualization results are obtained. As the size of data continues to grow,

however, it becomes increasingly difficult to generate useful visualization using thisad hocapproach.

Even after many visualizations have been produced, it may be still difficult to determine whether the

data have been completely analyzed, or if some important features are left undiscovered. One major

cause of the difficulties in visual analysis of large datasets is the lack of quantitative metrics to measure

the visualization quality relative to the amount of information contained in the data. As the size of data

grows even larger, these problems will become even worse since the user’s ability to move and process

the data will be severely limited. Without a systematic and quantitative way to guide the user through

the visual analysis process, visualization could soon lose its value to be a viable approach for large-scale

scientific data analysis.

In recent years, there is an emerging trend where the principles of information theory are used to

solve the aforementioned problems. Introduced by Shannon and Wiener in the late 1940s, information

theory was originally used to study the fundamental limit of reliably transmitting messages through

a noisy communication channel. To date, information theory has made a profound impact on many

fields including electrical engineering, computer science, mathematics, physics, philosophy, art, and

economics [1]. Purchaseet al. [2] discussed the role of information theory in the context of information

visualization. In this article, we interpret information theory principles in the context of scientific

visualization. For data analysis and visualization, one may naturally wonder whether information theory

can be applied to improve our understanding of the data and furthermore, to assist us to extract hidden

salient data features. To better help interested visualization researchers and practitioners answer the

questions, we present the key concepts of information theory that are related to the problem of data

analysis and visualization. We draw connections between data communication and data visualization,

and explain how information theory can be used to quantify the amount of information in scientific

datasets and to measure the quality of visualization. We present several representative problems in

visualization research and illuminate them with successful applications of information theory. As the

amount of data available to us increases at an astounding speed, the goal of this article is to introduce

the interested readers to this new direction of research, and to inspire them to identify a broader range of

applications and seek solutions using information theory.

Recently, Chen and Jänicke [3] presented an information-theoretic framework for visualization. Their

work concentrates on the theoretical aspect of information theory and its relation to data communication.

They also interpret different stages of the visualization pipeline using the taxonomy of information

theory. Our article complements their work by taking a retrospective look at related work and presenting

our view of how information theory principles can be applied to scientific visualization.
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2. Visualization and Information Channel

Figure 1 illustrates the analogy between data communication and datavisualization. In data

communication, one attempts to transmit a messageX through anoisy communication channelto the

destination, the receiver. Due to the noisy nature of the channel, information loss could be inevitable,

resulting in a different version of the message, which we denote asX ′. One familiar example of data

communication is transmitting voice over the telephone line. Such a channel often fails to exactly

reproduce the original voice signal. Noise, periods of silence, and other forms of signal corruption often

degrade the quality. One obvious goal of data communication is therefore to understand the uncertainty

of the symbols embedded in a message so that the message can be encoded properly to reduce the

possibility of being contaminated in the noisy channel.

Figure 1. The analogy between message transmission and data visualization. Here we only

sketch a simple model in one stage transmission. In reality, either message transmission or

data visualization consists of multiple stages. Refer to the work by Chen and Jänicke [3] for

more detailed illustration.
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Similarly, the visualization process can be treated as an information channel,i.e., a visual

communication channelthat attempts to communicate the information in the source data to the

destination, the viewer. In a typical visualization pipeline, the data need to be transformed by a sequence

of steps such as denoising, filtering, visual mapping, and projection. Each of the transformation steps

in the visualization pipeline can be thought of as an encoding process where the goal is to preserve the

maximum amount of information from the input and generate the output for the next stage of the pipeline.

When information loss is inevitable, such as in the case of projecting 3D data to 2D images, special care

is needed so that appropriate parameters are chosen to preserve as much information as possible. Only

in doing so, are we able to faithfully reveal the information embedded in the data through visualization.

3. Concepts of Information Theory

3.1. Entropy

Information theory provides a theoretical foundation to quantify the information content, or the

uncertainty, of a random variable represented as a distribution. Formally, letX be a discrete random
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variable with alphabetX and probability mass functionp(x), x ∈ X . The Shannonentropyof X is

defined as

H(X) = −
∑

x∈X

p(x) log p(x). (1)

wherep(x) ∈ [0.0, 1.0],
∑

x∈X p(x) = 1.0, and− log p(x) represents the information associated with a

single occurrence ofx. The unit of information is called abit. Normally, the logarithm is taken in base

2 or e. For continuity, zero probability does not contribute to the entropy,i.e.,0 log 0 = 0. As a measure

of the average uncertainty inX, the entropy is always nonnegative, and indicates the number of bits

on average required to describe the random variable. The higher the entropy, the more information the

variable contains. An important property of the entropy is thatH(X) is a concave function and reaches

its maximum oflog |X | if and only if p(x) is equal for allx, i.e., when the probability distribution is

uniform. As we shall see in Section4, the notion of “equal probability, maximum entropy” is at the

heart of probability function design in many of the visualization examples we will review. The key of

applying the concept of entropy to visualization problems lies in how to properly specify the random

variableX and define the probability functionp(x). In most cases, these probability functions can be

defined heuristically to meet the need of individual applications.

To apply the Shannon entropy, we can model a scientific dataset as a discrete random variable where

each data point in the domain carries a value as the outcome. The probability mass functionp(x) of the

random variableX can be estimated using histogram. That is, we can use the normalized frequency of

each histogram bin as the probabilityp(x). In a simple example, given a 3D volume dataset, we can

model the entire dataset as a discrete random variableX where each voxel carries a scalar value. The

entropyH(X) indicates how much information the dataset contains. If the distribution in the histogram

is uniform across all bins, then it is difficult to predict the value of a voxel. Thus the entropy of the

dataset is high. On the contrary, if the histogram distribution is highly skewed into a few bins, then it is

easy to guess the value of a voxel. Thus the entropy of the dataset is low.

In Figure2, we show an example 2D hurricane dataset and its derived entropy fields. For Figure2(b)

and (c), a constant-size 2D local window centered at each pixel is used to compute the entropy in the

pixel’s neighborhood. We discretize the velocity magnitude or direction into a certain number of bins

and compute a 1D histogram for each local window accordingly. The derivation of entropy follows

Equation (1). As we can see in (b) and (c), around the center of the hurricane, the entropy is high in

both evaluations. Unlike the velocity magnitude, the velocity direction also varies greatly around local

regions on the right side of the hurricane’s center (as we can see that those regions have high entropies as

well). We can also trace streamlines from the 2D flow field and evaluate the entropy associated with each

control point along the streamlines. For Figure2(d), a constant-size 1D local window centered at each

control point along each streamline is used to evaluate the entropy at the control point. We create a 2D

histogram in this case for each local window with one dimension for velocity magnitude and the other

dimension for velocity direction. We can see that the streamlines close to the hurricane’s center have

high entropies, mainly due to the changes of velocity direction (as evident by the circular flow pattern).

Intuitively, the entropy images highlight which regions in the data are important or interesting in terms

of exhibiting more variation or change in their local neighborhood compared with other regions.
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Figure 2. (a) a 2D hurricane field of velocity magnitude. (b) the entropy field derived from

velocity magnitude. (c) the entropy field derived from velocity direction. (d) uniformly

placed streamlines with color coded entropy derived from velocity direction and magnitude.

The entropy value increases from blue to green to red in (b), (c), and (d).

(a) (b) (c) (d)

Wanget al. [4] demonstrated that in practice, the evaluation of data entropy can be more flexible.

For instance, depending on the need, we can partition a large volume dataset into individual blocks and

evaluate the entropy on a per-block basis. We can also consider more than just a single scalar field when

building a histogram. This means that the histogram can be multidimensional, including not only the

raw data, but also other derived quantities such as local features (e.g., gradient magnitude or direction)

and/or domain-specific derivatives. Furthermore, each bin in such a multidimensional histogram can

carry a weight indicating its relative importance in the entropy calculation. This is the place where

domain knowledge about the data or visualization-specific quantities can be leveraged. For example,

in volume visualization, the user needs to specify a transfer function so that scalar data values can be

mapped to optical quantities such as colors and opacities. The opacity value can be used to set the weight

for its corresponding histogram bin. A bin with a higher opacity value is likely to have more contribution

to the resulting image per voxel, and therefore, should be assigned with a higher weight.

3.2. Joint Entropy and Relative Entropy

The concept of entropy can be extended to two or more variables. For instance, thejoint entropyfor

a pair of random variables(X,Y ) with a joint distribution ofp(x, y) is defined as

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y). (2)

Note thatH(X,Y ) is always at least equal to the entropies ofX andY alone, as adding a new variable

can never reduce the available uncertainty,i.e.,

H(X,Y ) ≥ H(X), H(X,Y ) ≥ H(Y ). (3)

Furthermore, two variablesX andY , considered together, can never have more entropy than the sum of

the entropy in each of them

H(X,Y ) ≤ H(X) + H(Y ). (4)
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To measure the distance between two distributions, we can usethe Kullback-Leibler divergence, or

relative entropy. Given two random variablesP andQ, the Kullback-Leibler divergence between them

is defined as

DKL(P ||Q) =
∑

x∈X

p(x) log
p(x)

q(x)
, (5)

wherep(x) andq(x) are the probability mass functions ofP andQ, respectively. Typically,P represents

the true distribution of data or observations andQ represents a model or approximation ofP . DKL(P ||Q)

is used to describe the deficiency of using one distributionq to represent the true distributionp, which

is useful for comparing two related distributions, e.g., two different resolutions of the same dataset. For

instance, Wang and Ma [5] utilized the Kullback-Leibler divergence to quantify the difference between

wavelet coefficient distributions of the original and distorted data. The Kullback-Leibler divergence is

always nonnegative and equals zero if and only ifP = Q.

There are some issues with the Kullback-Leibler divergence measure that make it less than ideal. First,

it is not a true metric,i.e.,DKL(P ||Q) 6= DKL(Q||P ). Second, ifq(x) = 0 andp(x) 6= 0 for anyx, then

DKL(P ||Q) is undefined. Third, the Kullback-Leibler divergence does not offer any nice upper bounds.

To overcome these problems, we may consider the symmetricJensen-Shannon divergencemeasure [6]

DJS(P ||Q) = DJS(Q||P ) =
1

2

(

DKL(P ||M) + DKL(Q||M)
)

, whereM =
P + Q

2
. (6)

The Jensen-Shannon divergence can be expressed in terms of entropy,i.e.,

DJS(P ||Q) = H
(1

2
P +

1

2
Q

)

− 1

2

(

H(P ) + H(Q)
)

. (7)

In general, the Jensen-Shannon divergence has the following form

DJS(λ1, λ2, . . . , λn; P1, P2, . . . , Pn) = H
(

n
∑

i=1

λiPi

)

−
n

∑

i=1

λiH(Pi), (8)

whereλi ∈ [0.0, 1.0] and
∑n

i=1 λi = 1.0. Bordoloi and Shen [7] utilized the Jensen-Shannon divergence

to evaluate the similarity of two viewpoints, The similarity values were used to generate a view space

partitioning and select representative views.

3.3. Mutual Information and Conditional Entropy

We can measure how much information of a random variableX is conveyed by another random

variableY using the concept ofmutual information. Mutual information can be treated as a special

case of relative entropy: it is the relative entropy between the joint distributionp(x, y) and the product

distributionp(x)p(y), i.e.,

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (9)

Mutual information measures the amount of information thatX andY share. It is the reduction in the

uncertainty of one random variable due to the knowledge of the other [1]. For example, ifX and Y are
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independent,i.e.,p(x, y) = p(x)p(y), then knowingX does not give any information aboutY and vice

versa. Therefore,I(X; Y ) = 0. At the other extreme, ifX andY are identical, then all information

conveyed byX is shared withY : knowing X determines the value ofY and vice versa. As a result,

I(X; Y ) is the same as the uncertainty contained inX (or Y ) alone, namely the entropy ofX (or Y ).

I(X; Y ) is bounded above by the smaller oflog |X | andlog |Y|. J̈anickeet al.[8] used the normalized

mutual information,i.e., I(X;Y )√
H(X)H(Y )

, to compute the distance between two power spectra transformed

from climate data. Bruckner and M̈oller [9] used another version of normalized mutual information,i.e.,
2I(X;Y )

H(X)+H(Y )
, to evaluate the similarity between two isosurfaces.

Mutual information is related to the concept ofconditional entropy,H(X|Y ), which models the

remaining entropy of variableX given that variableY is known. Written in equation,

H(X|Y ) =
∑

y∈Y

p(y)H(X|Y = y) = −
∑

y∈Y

∑

x∈X

p(x, y) log p(x|y), (10)

whereH(X|Y = y) is the entropy of the variableX conditional on the variableY taking a certain

valuey. H(X|Y ) is the result of averagingH(X|Y = y) over all possible valuesy thatY may take.

In other words, variablesX andY combined containH(X,Y ) bits of information. If we know the

value ofY , we have gainedH(Y ) bits of information, and the uncertainty remaining isH(X|Y ) bits.

H(X|Y ) = 0 if and only if the value ofX is completely determined by the value ofY . Conversely,

H(X|Y ) = H(X) if and only if X andY are independent random variables.

3.4. Relationships among Information Theory Concepts

Mutual information, entropy, joint entropy, and conditional entropy have the following relationships

I(X; Y ) = H(X) + H(Y ) − H(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X). (11)

In practice, we can treatX andY as two relevant random variables, such as two scalar volumes drawn

from different timesteps of the same dataset. Mutual informationI(X; Y ) indicates the amount of

informationX andY share in common, conditional entropyH(X|Y ) tells how much information about

X is still unknown after observingY , and joint entropyH(X,Y ) indicates the total information the two

volumes have.

Another important property for entropy is thechain rule [1], which states that the entropy of a

collection of random variables is the sum of the conditional entropies. LetX1, X2, . . . , Xn be drawn

according top(x1), p(x2), . . . , p(xn) respectively, then

H(X1, X2, . . . , Xn) =
N

∑

i=1

H(Xi|Xi−1, . . . , X1). (12)

Assuming a Markov sequence model for the random variables,i.e., any variableXi is dependent on

variableXi−1, but independent of other variables, we have

H(X1, X2, . . . , Xn) = H(X1) + H(X2|X1) + . . . + H(Xn|Xn−1, . . . , X1)

= H(X1) + H(X2|X1) + . . . + H(Xn|Xn−1). (13)
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The chain rule in conjunction with the Markov sequence model described above was utilized by Bordoloi

and Shen [7] to define a viewpoint goodness measure for time-varying volume data and by Wanget al.[4]

to select representative timesteps from time-varying data.

Figure3 summarizes the relationships among the various measures in information theory between

two random variablesX andY . It also highlights the goal of data visualization on the right. Assuming

the input dataset is denoted as a random variableX, we can model the visualization as another random

variableY , the output from thevisual communication channel. To produce insightful visualization, the

amount of mutual informationI(X; Y ) needs to be as high as possible (or equivalently, the conditional

entropyH(X|Y ) should be as low as possible). WhenH(X|Y ) reaches zero, the visualization fully

conveys the information contained in the dataset. By optimization, we mean adjusting visualization

parameters, such as the view or transfer function, so that the mutual informationI(X; Y ) between the

input dataX and the output visualizationY can be maximized.

Figure 3. Left: Relationships among different entropy measures between two random

variablesX and Y . Right: The goal of data visualization is to maximize the mutual

informationI(X; Y ) between the input dataX and the output visualizationY .
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4. Applications of Information Theory in Scientific Visualization

4.1. View Selection for Volumetric Data

The goal of view selection is to automatically suggest interesting or optimal viewpoints that maximize

the amount of information received in the 2D projection of a given 3D dataset. Good viewpoints reveal

essential information about the underlying data. Therefore, presenting them sooner to the viewers can

improve both the speed and efficiency of data understanding. For example, in Figure4, we show three

representative views of a cube with different amounts of information revealed. Clearly, the rightmost

one corresponds to the best view which reveals the maximum amount of information about the data by

displaying the object in the least uncertain way. View selection has its practical value in large-scale

data visualization when interactive rendering cannot be achieved. Bordoloi and Shen [7] introduced a

solution for view selection for direct volume rendering. They treated the entire volume dataset as a

random variable and defined thevisual probabilityfor a voxelj as follows

pj =
1

σ
· vj(V )

Wj

, whereσ =
N

∑

j=1

vj(V )

Wj

, (14)

wherevj(V ) is thevisibility of voxelj at the viewV , Wj is thenoteworthinessof voxelj which indicates

the significance of its value, andN is the total number of voxels in the volume. The summation is taken
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over all voxels in the data. The division byσ is required to make all probabilities add up to unity. The

noteworthiness is defined as

Wj = αjIj = −αj log fj, (15)

whereαj is the opacity of voxelj looked up from the transfer function,Ij is the information carried by

voxel j, which can be derived from the frequency of its histogram binfj. − log fj represents the amount

of information associated with voxelj.

Figure 4. Three representative views of a cube showing the increasing amount of

information revealed about the object.

The intuition of their visual probability design can be explained as follows. In volume rendering,

different voxels contribute differently to the final rendered image. The user assigns high opacity to

voxels that are deemed more important. A voxel that is more important, or noteworthy, should be more

visible in the rendering. Conversely, a voxel that is less noteworthy should be less visible. Consequently,

the ratio between visibility and noteworthiness should be somewhat even for all voxels to maximize

the view entropy. In other words, a good viewpoint should strive for a good balance among the visual

probabilities of all voxels in the volume so that the information received by the viewer is maximized.

Takahashiet al. [10] considered surface rendering for volumetric data and presented aviewpoint

entropymeasure for isosurfaces. In this scenario, each isosurface was treated as a random variable.

Given an isosurfaceIi, they defined the probability function of a face of the isosurface as

pij =
Aij

S
, (16)

whereAij is thevisiblearea of thej-th face ofIi on the screen andS is the total area of the 2D screen.

Note that they also included the background areaAi0 so that the summation of allAij equalsS. The

viewpoint entropy of the isosurface thus follows Equation (1). The intuition in their probability function

design is that a good viewpoint should allow each face of the surface to be equally visible. In this case,

the maximum amount of information about the surface can be received. The entropy of the entire volume

takes the average of viewpoint entropies of the extracted isosurfaces. Each contributing isosurface may

carry a weight indicating its importance on average. Such a weight can be derived from the opacity

transfer function (i.e., higher opacity, higher weight). They also extended the same idea to define the

viewpoint entropy for interval volumes.

Ji and Shen [11] took an image-space approach for view selection. Unlike [7], they treated the

rendered image rather than the volume data as the random variable. They considered three aspects

of the rendered image, namely,opacity, color, andcurvature, to evaluate the information content of
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the image associated with a given viewpoint. A good view should maximize the projection size and

maintain an even distribution of opacity values. It should also maximize the area of the salient colors

while maintaining an even distribution of these colors in the image. Finally, it should allow the viewer

to view the surface curvatures more easily. Based on thisstaticview selection method, they proposed a

solution to selectdynamicviews for time-varying volume data visualization. Their goal was to maximize

the information perceived from the time-varying dataset under the constraints of smooth view change and

near-constant speed.

4.2. Streamline Seeding and Selection

The concept of entropy can be applied to detect salient regions and generate streamlines for flow

visualization. In this case, the direction of flow in a vector field can be considered as a random

variable, and the distribution of vector directions indicates the amount of information in the vector

field. Xu et al. [12] computed the entropy for every point in the vector field by considering its local

neighborhood. They discretized vector directions into a finite number of bins to construct the histogram.

In the resulting entropy field, high entropy regions correspond to a larger degree of variation in the

vector directions. These regions are usually near the critical points or other important flow features such

as separation lines. Streamline seeds can be placed accordingly to enhance these important features.

After a set of streamlines are placed near high entropy regions, to evaluate how well these streamlines

represent the underlying flow field, they proposed to reconstruct an intermediate flow field and use the

conditional entropy as the measure. In their computation ofH(X|Y ), X is the original field andY is the

reconstructed field. The rationale behind it is that ifH(X|Y ) is low, then most of the information in the

original field has been revealed by the reconstructed field; otherwise, more streamlines need to be seeded.

The principle for selecting new seed locations is that the higher the conditional entropy around a spatial

point, the more likely the point to be selected as the next seed. A probability distribution function (PDF)

can be constructed to record the expected probability of dropping a seed for each point in the domain.

They distributed the seeds according to the probability distribution function using importance sampling.

Another direction of applying information theory to flow visualization is to place the focus on traced

streamlines instead of seed placement. We can apply the entropy measure to evaluate the information

content of each individual streamline by treating each line as a random variable. The goal is to prioritize

the set of 3D streamlines according to their entropies for selective rendering so that a less cluttered

visualization is presented. Furuya and Itoh [13] defined the probability functionp(i) as follows

p(i) =
Di

L
, (17)

whereDi is the length of thei-th streamline segment’s projection on the 2D screen, andL is the total

length of the streamline in the 3D space. The intuition is to favor streamlines that have a nearly equal

projected length for all segments. This idea was later adopted by Marchesinet al. [14] in their definition

of the linear and angular entropies for streamlines.
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4.3. Transfer Function for Multimodal Data

Haidacheret al. [15] proposed an information-based transfer function specification for multimodal

data visualization. Multimodal visualization complicates the transfer function design because multiple

values at every data point need to be considered. The challenge for multimodal visualization is how

to fuse multiple parameters in the high-dimensional transfer function space to enable easy and intuitive

transfer function design in the 2D screen space. In this work, the authors considered the joint occurrence

of multiple features from one or multiple variables by utilizing the concept ofpoint-wise mutual

information(PMI). The PMI of a pair of outcomesf1 andf2 from two random variables describes the

discrepancy between the probability of their coincidence given their joint distributionp(f1, f2) versus

the probability of their coincidence given only their individual distributionsp(f1) andp(f2), assuming

independence. That is,

PMI(f1, f2) = log
p(f1, f2)

p(f1)p(f2)
. (18)

It is clear thatPMI(f1, f2) = 0 whenp(f1, f2) = p(f1)p(f2). This corresponds to the case that the

two values are statistically independent from each other. If the pair of values occurs more frequently as

one would expect, thenPMI(f1, f2) > 0. Conversely, if the pair of values occurs less frequently as

expected, thenPMI(f1, f2) < 0. The authors leveraged this information as one additional dimension

to specify the transfer function where high opacity is assigned to regions with low PMI. Thus, statistical

features that only occur in a single variable can be separated from those that are present in both.

4.4. Selection of Representative Isosurfaces

Isosurface rendering is one of the most popular techniques to visualize volumetric datasets. Similar to

isocontours in 2D, isosurfaces in 3D reveal important object and/or material boundaries. The key issue

is how to select salient isovalues such that the surfaces extracted are informative and representative.

Conventional solutions made use of histograms to depict the frequency of isovalues and derived

quantities (such as gradient magnitude) to suggest interesting isovalues in the plots. Bruckner and

Möller [9] proposed to evaluate the similarity between isosurfaces using mutual information. They

produced anisosurface similarity mapto guide representative isovalue selection. Instead of explicit

extraction of each individual isosurface for similarity evaluation, they opted to represent individual

isosurface implicitly using a distance transform. Therefore, in their mutual informationI(X; Y )

computation,X andY are actually the distances from any point in the volume to a pair of isosurfaces

Lp andLq, respectively. The minimum distance of a point to the surface was used. The intuition is

that two isosurfaces are similar if their distance distributions are similar and vice versa. To select

representative isovalues, they presented an algorithm that automatically detects coherent structures

(i.e., distinct squares) from the isosurface similarity map and selects the most representative isovalues.

4.5. LOD Selection for Multiresolution Volume Visualization

Building a multiresolution data hierarchy from a large-scale dataset allows us to visualize the data

at different scales and balance image quality and computation speed. To construct such a hierarchy, a
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given volume dataset is first partitioned into blocks following either the bottom-up or top-down strategy.

A level-of-detail (LOD) in the hierarchy consists of a sequence of data blocks at various resolutions.

The key to multiresolution volume visualization is to select appropriate LODs that highlight important

features in the data for rendering. The goal is to maximize the amount of information contained in the

image under a certain constraint about the computation cost.

Wang and Shen [16] proposed to quantitatively evaluate theLOD qualityusing the concept of entropy.

They analyzed the LOD quality by investigating the quality of each individual block as well as the

relationships among them. Different blocks may have differentdistortionswith respect to the original

data. They may convey different optical contents when the color and opacity transfer function is applied.

Furthermore, the sequence of data blocks in the LOD are rendered to the screen. Different blocks have

different contributionsto the final image depending on their projections and occlusion relationships.

Therefore, the probability of a multiresolution data block was defined as

pi =
Ci · Di

S
, whereS =

M
∑

i=1

Ci · Di, (19)

whereCi andDi are the contribution and distortion of blocki respectively,M is the total number of

blocks in the data hierarchy. The entropy of a LOD then follows the definition in Equation (1). The

multiplication of contribution and distortion in Equation (19) should be somewhat even for all blocks in

order to maximize the LOD entropy. This means that if a data block has high contribution, we should

reduce its distortion by replacing it with its descendant blocks. Conversely, if neighboring data blocks

have low contribution, we should increase their distortion by replacing them with their ancestor blocks.

Note that for any LOD, it is impossible for all the data blocks in the hierarchy to have the equal

probability. This is because a LOD constitutes acut in the data hierarchy and thus not all of the data

blocks can be selected. Any block which is not included in the LOD receives zero probability and does

not contribute to the entropy. Ideally, since a higher entropy indicates a better LOD quality, the best

LOD (with the highest information content) could be achieved when we select all the leaf nodes in

the data hierarchy. However, this requires rendering the volume data at the original resolution, and

defeats the purpose of multiresolution rendering. In practice, a meaningful goal is to find the best

LOD under some constraint, such as a certain block budget, which is usually much smaller thanM .

Accordingly, the quality of a LOD could be improved by splitting data blocks with large distortion

and high contribution, and joining those blocks with small distortion and low contribution. The split

operation aims at increasing the entropy with a more balanced probability distribution. The join operation

is to offset the increase in block number and keep it under the budget.

4.6. Time-varying and Multivariate Data Analysis

Time-varying and multivariate data analysis and visualization has received increasing attention in

recent years. Identifying important regions in the data enables effective data reduction, viewing,

and understanding, which provides a scalable solution to handle large-scale data. Jänickeet al. [17]

introduced an approach to detect importance regions for multifield data by extending the concept of

local statistical complexity(LSC) from finite state cellular automata to discretized multifields. They
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defined past and future light-cones (i.e., influence regions) for all grid points, which are used to estimate

conditional distributions and calculate the LSC. Specifically, the LSC at a grid pointp was defined as

C(p) ≡ I[ε(l−(p)); l−(p)], whereε(l−) = {λ|P (l+|λ) = P (l+|l−)}, (20)

wherel−(p) andl+(p) are the configurations of the field in the past and future cones respectively,ε is

theminimum sufficient statisticwhich maps past configurations to their equivalence classes (i.e., classes

with the same conditional distributionP (l+|l−)), ε(l−(p)) are thecausal statesof the system which

predict the same possible futures with the same possibilities. Intuitively, mutual informationI[ε(l−); l−]

indicates the minimum amount of information of a past light-cone needed to determine its causal state.

Thus, the LSC tells how complex it is around the past configuration centered at pointp. The higher the

C(p), the more complex the local region aroundp.

Wanget al.[4] presented a block-wise technique to analyze the important aspect of time-varying data.

They partitioned the volume data at each timestep into spatial blocks and investigated the importance of

each individual data block by examining the amount of relative information between them. Such a

block-wise approach is more suitable than a voxel-wise approach when the size of data becomes too

large to be handled efficiently. Specifically, they considered the importance of a data block from two

perspectives. First, a data block itself contains a different amount of information. For example, a data

block evenly covering a wide range of values contains more information than another block with uniform

values everywhere. Second, a data block conveys a different amount of information with respect to other

blocks in the time sequence. For instance, a data block conveys more information if it has less common

information with other blocks at different timesteps. Therefore, intuitively, a data block is important if it

contains more information by itself and its information is more unique with respect to other blocks. By

defining theimportanceas the amount of data change over time, they employed the conditional entropy

to measure the importance of data blocks quantitatively. The importance value of each block varies over

time, indicating its temporal behavior. Clustering all these importance curves for the volume allows

classification of data blocks and importance-driven visualization of time-varying datasets.

4.7. Information Channel between Objects and Viewpoints

Compared to previously described visualization examples, the work by Violaet al. [18] on

importance-driven focus of attention is unique in the sense that they built an information channel in

terms ofvisibility between objects and viewpoints. Previously Sbertet al.[19] showed that for polygonal

data, the viewpoint entropy [20] is very sensitive to the discretization of the objects. Viola et al. built

the information channel between two random variables (the input,i.e., viewpoints, and the output,i.e.,

objects) by computing a probability matrix which determines the output distribution given the input.

They defined a new measure, called theviewpoint mutual information(VMI), which is better than

the viewpoint entropy due to its robustness to deal with any type of discretization or resolution of the

volumetric dataset.

The mutual information between a set of viewpointsV and a set of objectsO is defined as

I(V ; O) =
∑

v

p(v)
∑

o

p(o|v) log
p(o|v)

p(o)
=

1

|V |
∑

v

I(v; O), (21)
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where

I(v; O) =
∑

o

p(o|v) log
p(o|v)

p(o)
. (22)

In Equation(21), p(v) = 1/|V |, i.e., each viewpoint has an equal probability.p(o|v) is the normalized

visibility of object o from viewpointv and
∑

o p(o|v) = 1.0. p(o) is the average visibility of objecto

obtained from the set of viewpointsV , i.e.,

p(o) =
∑

v

p(v)p(o|v) =
1

|V |
∑

v

p(o|v). (23)

I(v; O) is the VMI, which indicates the degree of dependence or correlation between the datasetO and

viewpointv. We sketch two examples to illustrate the intuition of this VMI measure. In the left image of

Figure5, the viewpointv1 and the set of objectsO are highly coupled,i.e., the average visibility ofo1 and

o2 is low due to the occlusion ofo2 by o1. This implies thatI(v1; O) has a high value which corresponds

to a low quality viewpoint. In the right image of Figure5, the viewpointv2 and the set of objectsO

are more independent,i.e., the two objectso1 ando2 are equally visible fromv2 without occluding each

other. This implies thatI(v2; O) has a low value which corresponds to a high quality viewpoint. The

bestviewpoint is achieved whenI(v; O) is minimized.

Figure 5. Illustration of the viewpoint mutual information. Left: a low quality viewpoint

indicating a highly dependent view between the viewpointv1 and the set of objectsO =

{o1, o2}. Right: a high quality viewpoint indicating a more independent view between the

viewpointv2 and the set of objectsO.

o1
o2

v1

v2

o1
o2

Leveraging Bayes’ theorem,i.e.,p(v)p(o|v) = p(o)p(v|o), Ruiz et al. [21] reversed the information

channel proposed by Violaet al. [18].

I(O; V ) = I(V ; O) =
∑

v

p(v)
∑

o

p(o|v) log
p(o|v)

p(o)

=
∑

o

p(o)
∑

v

p(v|o) log
p(v|o)
p(v)

=
∑

o

p(o)I(o; V ), (24)

where

I(o; V ) =
∑

v

p(v|o) log
p(v|o)
p(v)

. (25)

In their context,o represents each individual voxel in the volume. Therefore, they definedI(o; V ) as

the voxel mutual information, which was utilized in various visualization applications such as volume

illustration and viewpoint selection.
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5. Information Theory in Imaging and Graphics

Prior to its utilization in data visualization, information theory has found a wide variety of applications

in imaging and graphics. These applications were believed to inspire many of the visualization examples

we discuss in Section4. In this section, we review related work in imaging and graphics. The review is

by no means exhaustive. Rather, it provides a bird’s-eye view on some of the selective topics.

Information theory has been applied to solve many tasks in imaging such as image enhancement,

registration, and segmentation. For example, Chenget al. [22] proposed to perform image enhancement

by transforming an image into a fuzzy domain with maximumfuzzy entropy. Their method selects

the fuzzy region according to the nature of the input image and determines the membership function

automatically for image enhancement. Mutual information has been widely used in medical image

registration since the early 1990s [23,24]. Registration is assumed to correspond to maximizing mutual

information between the reference and target images. It has also been shown that maximizing the

mutual information gives an effective solution in terms of both accuracy and robustness for registering

multimodal [25] and multiresolution [26] images. For image segmentation, Kimet al. [27] presented

an information-theoretic approach that maximizes the mutual information between the region labels and

the image pixel intensities, subject to a constraint on the total length of the region boundaries. Wang

and Vemuri [28] proposed to use the square root of theJ-divergence(i.e.,symmetrized Kullback-Leibler

divergence) between two Gaussian distributions corresponding to the diffusion tensor images (DTIs)

being compared. This dissimilarity measure leads to a novel closed form expression for the distance,

which is incorporated into a region-based active contour model for DTI segmentation.

In computer graphics, information theory has been utilized to effectively solve a number of problems

including scene complexity analysis, pixel supersampling, viewpoint selection, light source placement,

ambient occlusion, mesh simplification, and image aesthetics measure. We refer interested readers to the

book written by Sbertet al. [29] for an excellent overview of basic concepts of information theory and

their applications in computer graphics. Feixaset al. [30] presented an information-theoretic approach

for the analysis of scene visibility and radiosity complexity. Using continuous and discrete mutual

information, their measures indicate the degree of correlation or dependence between all the points or

patches of a scene. Such a measure is useful for analyzing the difficulty of performing illumination

computations using Monte Carlo radiosity algorithms. Rigauet al. [31] proposed new contrast measures

to guide pixel supersampling in stochastic raytracing which take into account bothpixel color entropy

andpixel geometry entropy. This solution leads to a better representation (i.e., with more supersampling)

of critical areas such as shadow contours and edges in the scene.

Solutions to viewpoint selection have been proposed for the problem of modeling a 3D object from

range data [32] and from images [33], for object recognition [34], and also for cinematography [35]. In

computer graphics, V́azquezet al.[20,36] introduced theviewpoint entropyas a measure to automatically

compute good viewing positions for polygonal scenes. The viewpoint entropy for any given view is

derived from the projected areas of the faces of the geometric models in the scene. The motivation is to

achieve a balance between the number of faces visible and the size of projection areas. They also used the

viewpoint entropy together with a greedy algorithm to choose the minimal set of views that captures the

maximum amount of information about the scene. Along the same spirit, visualization researchers later
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on came up with similar entropy measures for isosurface rendering [10], volume rendering images [11],

and streamline visualization [13,14]. Gumhold [37] presented an entropy-based solution for placing light

sources for given camera parameters in a scene. The goal was to maximize the information added to the

image through illumination. The solution includes a fast global optimization process and an extension

to multiple light sources.

Recently, Gonźalezet al. [38] presented a new ambient occlusion technique that builds a channel

between various viewpoints and an object’s polygons using mutual information. Their viewpoint-based

ambient occlusion maps have multiple application possibilities including viewpoint selection, viewpoint

importance, and relighting for nonphotorealistic rendering. Castelló et al. [39] proposed to use

viewpoint mutual informationfor polygonal mesh simplification. Their algorithm applies the best

half-edge collapse as a decimation criterion and uses the variation in mutual information to measure

the errors introduced by collapsing edges. Feixaset al. [40] presented a global framework to deal

with viewpoint selection and mesh saliency using a communication channel between viewpoints and

polygons. Rigauet al. [41] studied informational aesthetics for paintings from an information-theoretic

perspective. They defined a set of ratios based on information theory andKolmogorov complexityto

quantify the aesthetic experience. They also investigated macroaesthetic and microaesthetic descriptions

through image composition. This was achieved through an adaptive algorithm that partitions the

image using a binary space partitioning (BSP) structure driven by the maximum information gain at

each partition.

6. Outlook for Future Research

A significant difference between data visualization and data communication is that visualization

transforms raw data into another representation, the visual images. Therefore, the fundamental challenge

for scientific visualization is to design an appropriate transfer function that maps data values to colors

and opacities that can preserve the saliency of the data. From the information theory point of view,

a good set of transfer functions is the one that can convey the most amount of information or insight

into the data. Although there exist several guidelines in transfer function design for medical datasets,

there is a lack of more generic criteria for visualizing scientific datasets. In general, a transfer function

may consist of multiple dimensions and thus the parameter search space becomes immense. This

makes transfer function specification a very difficult issue since there are essentially no constraints. An

information-aware solution or user interface could be very helpful for either automatic or semiautomatic

transfer function specification. Feedback on what information in the data has been explored and what

remains to be explored can provide criteria as to when the visualization process can be stopped. The

initial work by Haidacheret al. [15] was encouraging, yet we need further research to establish a

complete framework for information-aware transfer function design.

Scientific applications are now producing extreme-scale data on a regular basis. Although the amount

of data produced doubles every year, the amount of information pertinent to scientific discovery does not

necessarily scale proportionally. This suggests an information-aware solution for data simplification

or reduction. Similar to the ideas of information theory based streamline seeding [12] and mesh

simplification [39], a promising solution is to simplify the volume data throughpartitioning or clustering

and in the meanwhile, preserving the feature information as much as possible. That is, the data is
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reduced while we achieveminimal loss of mutual information with respect to the features. This idea

can be extended to time-varying multivariate datasets where multivariate temporal features should be

considered. Another unsolved issue for multivariate data is to derive the connection or influence among

multiple variables. Understanding this would help us solve important questions such as: which variables

dominate other variables; how their causal relationships vary over time; and could we select important

or representative variables from a large number of input variables?

While information theory based methods have demonstrated a great potential in scientific

visualization, they do have their own limitations. For example, information theory considers the dataset

as a collection of distributions, which may not be suitable to extract specificspatial structuresembedded

in the underlying features. Even though datasets with the same histogram certainly have the same

entropy, the distributions of their data values in space could be totally different. In addition, when

using histogram, the result can be sensitive to the level of discretization,i.e., the number of bins. This

problem can be remedied by using various probability density estimation techniques [42,43]. Another

limitation of information theory is that although it works well withfrequency probability(in terms

of frequencies of occurrence of events, or by relative proportions in populations or collectives), its

application withBayesian probability(in terms of degree of rational belief) is not clear. Bayesian

probability is more difficult to apply practically since human observers’ input needs to be incorporated.

Frequency probability allows us to access the information content of a dataset, but Bayesian probability

allows scientists to update their belief when the new evidence is presented or the new result is generated.

We believe that further research is necessary in order to develop a more robust information-theoretic

framework that incorporates Bayesian probability as well.
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