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Abstract—Striking a careful balance among coverage, occlusion and complexity is a resounding theme in the visual understanding of

large and complex three-dimensional flow fields. In this paper, we present a novel deformation framework for focus+context streamline

visualization that reduces occlusion and clutter around the focal regions while compacting the context region in a full view. Unlike existing

techniques that vary streamline densities, we advocate a different approach that manipulates streamline positions. This is achieved by

partitioning the flow field’s volume space into blocks and deforming the blocks to guide streamline repositioning. We formulate block

expansion and block smoothing into energy terms and solve for a deformed grid that minimizes the objective function under the volume

boundary and edge flipping constraints. Leveraging a GPU linear system solver, we demonstrate interactive focus+context visualization

with 3D flow field data of various characteristics. Compared to the fisheye focus+context technique, our method can magnify multiple

streamlines of focus in different regions simultaneously while minimizing the distortion through optimized deformation. Both automatic

and manual feature specifications are provided for flexible focus selection and effective visualization.

Keywords—Flow visualization, focus+context visualization, optimized deformation.
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1 INTRODUCTION

For large and complex 3D flow fields, the presence of po-

tentially dense particle traces or field-lines easily leads to

visual occlusion and clutter in rendering. This issue poses

a fundamental challenge to generating informative images

for effective understanding. Simply filtering streamlines for

feature highlighting reduces occlusion and clutter. However,

maintaining a good balance of densities among different flow

regions could be tricky as many streamlines may pass regions

with various degrees of importance. Showing only portions

of streamlines may solve the problem, but the continuity of

streamlines is broken. Rather than varying streamline densities

through seed placement or streamline selection, we seek a

different approach that manipulates streamline positions. The

benefit of doing so is that since the content of streamlines

remains unchanged, the viewer’s attention will be readily di-

rected to the deformed streamlines for purposeful observation.

In this paper, we present a novel focus+context (F+C) solution

for effective clutter reduction and visual exploration. F+C

visualization stems from the need to show both overview

(context) and detail information (focus) simultaneously within

a limited display area. It has long been used in visualization

to show details of selected features together with the context

in a full view.

Instead of deforming each individual streamline directly, we

advocate a grid-based space deformation scheme to maintain
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the coherency among deformed streamlines. By applying a

coarse grid over the domain, we partition the domain into

blocks and derive each individual block’s importance. We

then formulate block expansion and block smoothing into

energy terms and search for a deformed grid that minimizes

the objective energy function. With the fixed volume space,

important blocks are magnified while unimportant ones are

shrunk. The deformed grid guides streamline repositioning.

As a result, streamline segments passing important blocks

will enjoy larger space and thus get less cluttered while

other streamline segments passing unimportant blocks will

occupy less space and thus get more compact, achieving

F+C visualization. At first glance, this idea of streamline

deformation seems to go against the principle of maintaining

the accuracy of streamlines. Nevertheless, leveraging the GPU

we are able to perform the deformation and recovery process

in real time. The user can therefore intuitively understand

how the deformation or recovery progresses without losing

the reference to the original representation.

2 RELATED WORK

Examples of F+C visualization include the fisheye view [6],

[14], [7] for text, image and graph visualization, and the

magnification lens [10], [18] and conformal magnifier [22]

for image and volume visualization. Unlike fisheye view or

magnification lens, our method leverages an optimized defor-

mation to minimize the global distortion, which can magnify

multiple streamlines in different focus regions simultaneously.

In flow visualization, Fuhrmann and Gröller [5] presented

magic lenses and magic boxes to examine the region of interest

with greater detail by showing denser streamlines. This tech-

nique was later extended to magic volumes of varying focal

regions such as cubes, prisms and spheres [13]. Laramee et al.
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[11] leveraged feature-based techniques [4] to extract interest-

ing flow regions, such as stagnant flow, reverse-longitudinal

flow and regions of high pressure gradient, as the focus. They

achieved F+C rendering through interactive thresholding that

reduces flow complexity and resulting visualization. Correa et

al. [3] introduced physical and optical operators to intuitively

visualize the internal 3D flow through illustrative deformation.

By cutting along flow traces, they allowed a clear observa-

tion of the internal 3D flow through optical transformation

and elastic deformation. To explore blood flow in cerebral

aneurysms, Gasteiger et al. [8] proposed an interactive 2D

widget for flexible visual filtering and visualization of the

F+C pairs (i.e., relevant hemodynamic attributes). Their widget

supports local probing and conveys changes over time for

the lens region. van der Zwan et al. [17] modeled several

visualizations of a data set as abstractions which represent

the information on different levels of details. Given the user-

selected level of focus, F+C visualization is achieved by

manipulating the transparency of each abstraction. All these

methods, however, do not shrink the context of the flow field

while magnifying a specific focal region in order to best utilize

the available volume space. In contrast, we devise a continuous

deformation solution based on an energy optimization model

to achieve F+C streamline visualization.

Closely related to our work are the F+C techniques pre-

sented by Wang et al. [19], [20] for surface models and

volumetric data. In [19], they presented a F+C technique for

surface models that magnifies a region of interest for closer

examination while deforming other regions without perceiv-

able distortion. In [20], a similar technique was presented for

volumetric data for feature-preserving data reduction and F+C

visualization. To the best of our knowledge, the full benefits of

such a deformation framework have not been demonstrated for

interaction and visualization of flow fields. Several challenges

exist when applying this grid-based deformation framework to

flow fields. Unlike surface models and volumetric data where

the visualization is 2D or 3D continuous, streamlines are only

1D entities and therefore, their F+C effect may not be readily

perceivable yet the distortion could be much easier to spot.

Furthermore, we need to carefully design our solution in order

to maintain key physical properties for streamlines during

the deformation process. Finally, to make this deformation

framework truly useful, we should incorporate the unique

features of flow field and streamlines for both automatic and

manual focus identification and F+C visualization.

3 OUR DEFORMATION FRAMEWORK

The basic idea of our F+C flow visualization is to partition

the flow field’s volume space into blocks and deform the

blocks to guide streamline repositioning. Given a vector field,

we uniformly partition it into a grid space, G = {V,E,B},

where V is the set of all vertices V = {vT
0 ,vT

1 , . . . ,vT
n }, and E

and B are the sets of all edges and all blocks, respectively.

During the deformation, we compute a new set of vertex

positions V′ = {v′T0 ,v′T1 , . . . ,v′Tn }, with the intention that the

deformed blocks under focus will grow while others blocks

will shrink. Clearly, some distortion will be introduced in

this deformation process. By minimizing the energy function

described in Section 3.3, we aim to spread the unresolved

distortion to the blocks according to their importance values,

so that interesting blocks of focus can maintain their shapes

while less interesting blocks and empty blocks can absorb

more distortion and even be squeezed excessively into a

plane. Our deformation framework consists of four key steps:

block importance evaluation, manual feature specification,

grid space deformation and streamline repositioning. The

user can choose automatic block importance evaluation and/or

manual feature specification for F+C visualization. Note that

although the outputs of some steps depend on how the stream-

lines are placed or selected, our deformation framework can

work with any streamline placement and selection algorithm.

In our experiment, we apply random seed placement and

streamline selection algorithm described in Tao et al. [16].

In the following, we describe each step in detail, followed

by a description of evaluating the errors introduced in the

deformation process.

3.1 Block Importance Evaluation

We propose two different ways to define the importance of

a block. One is to automatically derive block importance

based on flow information, such as the flow entropy [2],

[21]. The other way is to manually decide block importance

by incorporating user input (refer to Section 3.2). Once we

derive the importance values of all blocks, we normalize

them to [0,1] and use them as the weighting factors for

individual block expansion (refer to Section 3.3). We note that

our deformation framework does not depend on any specific

approach for importance evaluation. Thus, other importance

evaluation techniques could also be applied.

Automatic Importance Computation. For the automatic

importance evaluation, we measure the importance of a block

using its entropy. Let X be a discrete random variable with

alphabet X and probability mass function p(x), x ∈ X . The

entropy of X is defined as

H(X) = − ∑
x∈X

p(x) log p(x), (1)

where p(x) ∈ [0.0,1.0], ∑x∈X p(x) = 1.0. In our case, the

outcome of the random variable X is decided by both the

directions and magnitudes of vectors, as described by Tao et al.

[16]. Intuitively, by considering these two factors, the blocks

that contain simple flow patterns will have small entropy

values, since the vectors in those blocks are similar; while

the blocks that contain complicated flow patterns will have

large entropy values, since the vectors in these blocks might

vary in both direction and magnitude.

We give two methods to calculate the entropy of a block.

The first method is to compute the entropy of a block over the

vectors at all points sampled along the streamlines passing

through the block. This method considers only the current

streamline pool, and will give a high entropy value for blocks

that are intersected by the generated streamlines and zero for

blocks that do not contain any streamline. The drawback is that

the entropy field will need to be recomputed if the streamline

pool changes, e.g., adding more streamlines or removing some

existing streamlines. Furthermore, due to the discontinuity
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Fig. 1. Automatic multi-F+C visualization on a 2D flow field and the corresponding block importance grid. (a) is the original
streamline visualization. (b) is the naı̈ve deformation that only considers individual block expansion. (c) is the deformation with
adding neighboring block smoothing. (d) is the deformation with considering both neighboring block smoothing and flow-aware
adjustment.

between the streamlines, the derived entropy field might lose

some continuity, e.g., the entropy of neighboring blocks might

vary greatly.

The second method is to compute the entropy for each

voxel by considering a local window centered at the voxel

(we use a 9×9×9 window). For each window, we compute

the entropy based on the vectors’ direction and magnitude.

We then average all voxels’ entropy values in a block to

compute the block’s importance value. Figure 1 (a) shows an

example of the resulting block importance grid for a 2D flow

field. This method produces a stable entropy field, which is

independent of the generated streamlines. However, with this

method, the resulting F+C visualization cannot fully utilize

the empty regions, i.e., the regions that contain no streamline

segments, which can be deformed into any shape without

being noticed. Thus, we add an additional step to calculate

the number of streamlines in each block, and set the entropy

value of a block to zero if it is empty.

In our experiment with 3D flow fields, we apply the first

method, since it is more closely related to the streamlines that

are visualized. On the contrary, the entire volume of vector

data itself is not directly visible to the user. This implies that

the features can only be observed if they are captured by the

streamlines. Thus, by applying the first method, we consider

those regions that contain interesting patterns and are well

captured by the streamlines to be more important. The flow

patterns that are more complicated and difficult to predict are

considered to be more interesting. Note that the importances

of blocks also depend on the tasks of users. In some scenarios,

the users might prefer to enlarge a region even if there are only

v1
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(a) (b)

Fig. 2. (a) flow-aware adjustment. (b) flow-aware smoothing.

a few streamlines passing through it. We enable this through

manual feature specification (refer to Section 3.2).

Flow-Aware Adjustment. We introduce flow-aware adjust-

ment to smooth the importance values between neighboring

blocks that share a large number of streamlines. We notice

that preserving the shape of featured blocks does not guarantee

the shape of deformed streamlines in the blocks, since each

streamline may cross multiple blocks of varying importance

values. The distortion will be obvious when a less important

block is surrounded by the important ones, as shown in Figure

1 (c). We solve this problem by considering the importance

value as some energy term: when the flow moves from an

important block to a less important one, it will also carry

the energy along with it. In other words, neighboring blocks

sharing more streamlines in common should have more similar

importance values, as illustrated in Figure 2 (a). This can be

formulated as minimizing the following term

Dd = ∑
bi

∑
b j∈B(bi)

wi j

(

I′i − I′j
)2

+∑
bi

β
(

I′i − Ii

)2
, (2)

where B(bi) is the set of neighboring blocks of block bi,

wi j = ni j/nmax is a normalized weight, ni j is the number of
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(a) (b)

Fig. 3. Manual focus selection and F+C visualization. (a) and
(b) are the results with two different user-specified centers of
focus, respectively.

streamlines shared by blocks bi and b j, nmax is the maximum

number of streamlines shared by two neighboring blocks, β
is a user-specified weight, Ii is the importance value of bi

before the adjustment, and I′i and I′j are the importance values

of bi and b j after the adjustment, respectively. This is similar

to filtering the importance values along the streamlines. Note

that the adjusted field will be closer to the original one if β
is larger, and the effect of this flow-aware adjustment will be

weaker. The adjusted field will be almost unchanged when

β = 1.0. Since Equation 2 is a quadratic function, the method

of least squares can be used to solve for the importance values.

3.2 Manual Feature Specification

Besides computing block importance automatically, we can

also evaluate it based on the focal region specified by the user.

In this paper, we present two different options: block focus and

streamline focus.

Block Focus. For this option, the user simply clicks on

the visualization result to specify a block as the center of

focus. Figure 3 shows such an example with the same 2D

flow field shown in Figure 1 (a) as the input. For a 3D flow

field, the visualization result is a 2D projection, so we still

need to estimate the depth value to pinpoint the focal point.

A straightforward solution is to follow the first hit on the

streamlines displayed in the projection, but the focal region

selected in this way may miss internal flow features. A better

solution which we will use is to identify the most prominent

feature along the direction of projection. For instance, Lee et

al. [12] presented the concept of maximal entropy projection

(MEP). For each pixel on the screen, a ray is cast into the

entropy volume and the z-value is given by that of the voxel

with the maximal entropy. In this way, we will select the most

important block along the ray specified by the user. We can

use this manual feature selection to modulate the automatic

importance evaluation and modify the automatic focus result.

We can also use the manual focus independently, starting

from uniform importance values for all blocks and modulating

those values according to some predefined templates. We

design two templates for exploring small or occluded flow

features: spherical block focus and hourglass block focus.

Examples are shown in Figure 4. The spherical block focus

assigns the largest importance value to the specified block, and

the importance values gradually decrease for blocks further

away from the focus. This template is suitable for magnifying

small features, since the center region, which contains the

features, will grow as other regions shrink. This template,

however, could be ineffective when the features are hidden by

other streamlines due to occlusion, since the blocks located

at the outer rings or layers could be denser than those at the

center. The hourglass block focus is designed to solve this

problem. Instead of magnifying the feature region, we enlarge

the blocks along the user-specified ray except the feature

region. It assigns larger importance values for the blocks that

are closer to the ray and gradually decreases the values for

those further away. Furthermore, it assigns smaller importance

values for the blocks whose depth are close to the depth of the

specified block. In this way, the blocks with large importance

values form the shape of an hourglass, whose axis is along

the ray and whose center is the block of focus. By magnifying

the blocks that occlude the block of focus, we are now able to

see through and observe the flow features that are previously

occluded.

Streamline Focus and Animation. Another useful way

of manual focus specification is to allow the user to select

a streamline of interest through first hit. We then perform

F+C visualization on the entire streamline by assigning larger

importance values for the blocks that the streamline goes

through and smaller values for other blocks. An animation of

F+C visualization can also be generated by moving the focal

point along a streamline from end to end. To produce smoother

animation, we insert additional frames, in which the grid

vertices are linearly interpolated from the grid vertices of the

two neighboring frames and the streamlines are repositioned

according to the intermediate grids. In cases where there are no

desired streamlines going through the regions to be explored,

a user-drawn path could be used instead for an effective

exploration of interesting regions.

3.3 Grid Space Deformation

The grid space deformation should serve the following pur-

poses: the blocks in focus regions should be magnified while

pushing the context regions to be shrunk; the streamlines in

focus regions should keep their shape unchanged while the

distortion for other streamlines should be minimized; and

the relative position among streamlines should not change

dramatically. To perform grid space deformation, we consider

individual block expansion, neighboring block smoothing, and

flow-aware smoothing, inspired by Wang et al. [20]. Individual

block expansion allows each block to resize independently

based on a global scaling factor and its weighting factor.
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Fig. 4. The grids before and after the deformation using block focus. (a) and (b) show original and deformed grids for the spherical
block focus, where the focus is at the center of the volume with the largest importance value. (c) and (d) show original and deformed
grids for the hourglass block focus, where the focus is highlighted with the blue circle in the first row and the deformed shape is
enhanced by the red dashed lines for clearer exposition.

Neighboring block smoothing preserves the continuity of

neighboring blocks while flow-aware smoothing preserves the

shape of the streamlines. We add edge flipping constraints

to avoid neighboring block intersection and volume boundary

constraints to retain the size and shape of the bounding

space. We formulate these considerations into energy terms

and search for a deformed grid that minimizes the objective

function under the edge flipping and volume boundary con-

straints. To achieve this, we transform the objective function

into a linear system and solve for the unknown vertex positions

in a least-squares sense.

Individual Block Expansion. We introduce this energy

term to preserve the cube shape of the blocks. Given a block

bi, ideally, its deformed version b′
i can be obtained by applying

scaling, rotation and translation to the original block, i.e.,

b′
k = sbk

Rbk
bk +tbk

. Note that by multiplying the rotation term

Rbk
, we allow the block to rotate in order to better utilize

the space and incur less distortion. Denoting the set of edges

of block bk as E(bk), we express the energy term of block

deformation as

D f (bk) = ∑
ei j∈E(bk)

wbk
‖e′i j − sbk

Rbk
ei j‖

2, (3)

where wbk
is the normalized importance value of block bk,

ei j = vi − v j and e′i j = v′i − v′j are the edges before and after

the deformation, respectively. The translation tbk
is canceled

out due to the simple fact

e′i j = v′i−v′j = sbk
Rbk

vi +tbk
−(sbk

Rbk
v j +tbk

)= sbk
Rbk

(vi−v j).
(4)

Initially, we set sbk
to a user-defined scaling factor s f and

Rbk
to an identity matrix for all blocks to solve for a new set

of vertex positions V′. Then, for each block, we compute sbk

and Rbk
from the deformed vertices, and apply the updated

sbk
and Rbk

to solve for another set of vertex positions.

This procedure is repeated for several iterations, until the

system converges or a certain number of iterations is reached.

Although we assign the same scaling factor s f for all the

blocks, only the blocks with larger importance values can get

the chance to be enlarged, since they will receive larger penalty

(i.e., increase D f (bk)) for not approaching the target scaling

factor. In contrast, those less important or trivial blocks, with

very small or even zero importance values, can be squeezed

substantially without receiving much penalty.

Neighboring Block Smoothing. We introduce this smooth-

ing term in order to reduce the size difference between neigh-

boring blocks. Since the importance values of neighboring

blocks may vary dramatically, only considering individual

block expansion deforms neighboring blocks to have very dif-

ferent sizes, which easily makes neighboring blocks intersect

each other. As shown in Figure 1 (b), such a naı̈ve deformation

distorts streamlines that span across multiple blocks and lead

to pronounced artifacts along block boundaries. To avoid this,

we preserve the Laplacian coordinates [15] of the deformed

vertices v′i by minimize the following energy term

Dℓ = ∑
vi∈V

‖L(v′i)− svi
Rvi

L(vi)‖
2, where

L(vi) =
1

|V (vi)|
∑

v j∈V (vi)

(vi −v j),

svi
=

1

|B(vi)|
∑

bk∈B(vi)

sbk
, and Rvi

=
1

|B(vi)|
∑

bk∈B(vi)

Rbk
. (5)

In Equation 5, svi
and Rvi

are the scaling factor and rotation

matrix for the Laplacian coordinates of vertex vi, respectively,

V (vi) and B(vi) are the sets of neighboring vertices and blocks

of vi respectively, and |V (vi)| and |B(vi)| are the numbers

of neighboring vertices and blocks of vi respectively. Since

the Laplacian coordinates are zero vectors for all the inner

vertices, we can actually simplify Equation 5 to

Dℓ = ∑
vi∈V

‖L(v′i)‖
2, (6)

and only add these constraints to the inner vertices. To

simplify the calculation for the boundary vertices, we apply

a similar approach that only considers the inner vertices on

each boundary face. For each vertex, the Laplacian coordinates

are computed from the four neighboring vertices that are

also located on the boundary face. In this way, the Laplacian

coordinates are still zero vectors and therefore we do not need

to apply the scaling and rotation.

Flow-Aware Smoothing. Flow-aware smoothing serves a

similar purpose as flow-aware adjustment in the block im-
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Fig. 5. F+C visualization of the car flow data set with automatic importance evaluation. (a) shows the original streamlines and the
grid. (b) and (c) show the deformed streamlines and grids with two different sets of parameter setting. (d) shows a zoom-in result
around the features with the original streamlines in the first row and the deformed ones in the second row.

portance evaluation step. By introducing this term into the

deformation process, we are able to reduce the difference

between the transformations of two neighboring blocks that

share a large number of streamlines. In the left side of Figure

2 (b), we illustrate an example of severe streamline distortion,

where straight streamlines are deformed into polylines due to

the different orientations of the two neighboring blocks b1 and

b2. To reduce this kind of distortion, we drag v1 shared by b1

and b2 back to the center of the two adjacent vertices v′2 and

v′3, as shown in the right side of Figure 2 (b). The flow-aware

smoothing can be achieved by minimizing the energy term

Ds(bi,b j) = ∑
vi∈V (bi)∩V (b j)

wi j‖v′j +v′k −2v′i‖
2, (7)

where V (bi)∩V (b j) is the set of vertices shared by blocks bi

and b j, wi j is defined in the same way as in Equation 2, and

v′j and v′k are the two neighboring vertices adjacent to v′i.

Edge Flipping Constraints. Edge flipping can only be

found for edges that belong to less important blocks. However,

such a happening is still not desirable, since it might lead to

the change of relative positions of blocks that are incident to

the flipped edge. We detect edge flipping by computing the

angle formed by the deformed edge and the original one. If

the angle is larger than 90◦, we consider the edge as flipped.

Note that a flipped edge indicates that it has a negative scaling

factor. Therefore, we enforce the flipped edge to be aligned

with its original direction, but with a very small scaling factor.

This can be achieved by adding the following energy term

Dei j
= α‖e′i j −δei j‖

2, (8)

where ei j is a flipped edge, α is a large constant to enforce

the constraints, and δ is a small constant to preserve the block

from being shrunk to zero size or even being negatively scaled.

In this paper, we set α = 50.0 and δ = 0.1 for all data sets we

experimented with. Since the flipped edge will be short after

being flipped back, we ignore the rotation matrix for efficiency.

Volume Boundary Constraints. In order to retain the

size and shape of the volume bounding space, we add the

boundary constraints to ensure that the vertices in the grid are

always placed within the boundary throughout the deformation

process. Written in equation,







v′i,x = vi,x if vi,x is on the yz boundary plane,

v′i,y = vi,y if vi,y is on the xz boundary plane,

v′i,z = vi,z if vi,z is on the xy boundary plane.
(9)

Solving Linear System. The energy function that we would

like to minimize is

D = ∑
bk∈B

D f (bk)+wℓDℓ +ws ∑
bi,b j∈B

Ds(bi,b j)+ ∑
ei j∈E∗

Dei j
,

(10)

where bi and b j are neighboring blocks, E∗ is the set of flipped

edges, and wℓ and ws are parameters to adjust the weights of

the two smoothing terms. Each term in this energy function

is converted to a row in the linear system AV′ = b(V), where

A represents the coefficients of unknown vertex positions V′,

and b(V) are the vectors in the right-hand side of simultaneous

equations. Note that the boundary constraints are set when

configuring the solver, which do not affect the construction of

coefficient matrix A. Each dimension of the vertex coordinates

can be solved independently in multiple passes. In each pass,

we solve the linear system to obtain a new set of vertex

positions V′, and update the scaling factor sbk
and rotation

matrix Rbk
for each block to better estimate the desired

transformation. We use the method described by Horn [9]

to calculate the scaling factors and rotation matrices. From

the corresponding coordinates of the vertices of one block

before and after the deformation, a 4×4 matrix for that block

can be constructed. Then, the rotation matrix is represented

by a unit quaternion, which is the eigenvector associated

with the most positive eigenvalue of this matrix. To achieve

interactive deformation, we leverage a GPU implementation
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Fig. 6. F+C visualization results with automatic importance evaluation. First row: the crayfish data set. Second row: the two swirls
data set. (a) is the original visualization result. (b) is the naı̈ve deformation that only considers individual block expansion. (c) is
the deformation with adding neighboring block smoothing, flow-aware adjustment and flow-aware smoothing. (d) shows deformed
streamlines with block errors mapped to colors along the points on each streamline.

of the concurrent number cruncher (CNC) sparse solver [1] to

solve the linear system. By increasing or decreasing the global

scaling factor s f , the user is able to observe the deformation

or recovery process in a progressive manner for intuitive

understanding.

3.4 Streamline Repositioning and Error Evaluation

After grid deformation, we reposition the streamlines by

computing each point along the line as a linear combination

of its corresponding eight block vertices in the deformed grid.

To measure block distortion, we transform each original block

to have the same size and orientation as the deformed one and

compare their difference

Derr(bk) = ∑
ei j∈E(bk)

wbk
‖e′i j − sbk

Rbk
ei j‖

2

s2
bk

. (11)

Note that Equation 11 is the block deformation term (Equation

3) divided by the square of the scale, which normalizes

the error for blocks with different sizes. We measure the

distortion whenever we update the scaling factor and stop

the magnification when increasing the scaling factor does not

further magnify the flow features of interest.

Evaluating the distortion also serves two other important

purposes. First, it provides a quantitative tool for us to compare

our approach to others. Second, it informs the users how well

the original flow patterns are preserved. Since the distortion

are inevitable in the deformation process, it will be helpful to

inform the users where the distortion exists and how severe the

distortion each block suffers, so that they will not be misled

by some abnormal patterns created. We visualize the distortion

with two methods. One method is to map error values to

streamline colors, as shown in the second row of Figure 6 (d).

With this method, error values can be better revealed while

the information (e.g., velocity magnitude) about the flow field

shown by the original color map is lost. The other method is

to draw green semitransparent tubes over the streamlines with

higher opacity values indicating larger distortion. With this

method, the error values only provide a rough idea about which

regions suffer larger distortion. In the first row of Figure 6 (d),

we can observe that the grids with larger distortion are mostly

located around the volume boundary. We suggest to use the

first method when analyzing the distortion from deformation,

and to use the second method when investigating the flow field

itself with the distortion as an additional visual hint.

4 RESULTS AND DISCUSSION

4.1 Performance and Parameter Settings

Table 1 shows the data sets we experimented with and the

timing results for the block importance evaluation, flow-aware

adjustment, block deformation and streamline repositioning

steps. The timing was collected on a PC with an Intel Core

i7-960 CPU running at 3.2GHz, 24GB main memory, and an

nVidia GeForce GTX 580 graphics card with 1.5 GB graphics

memory. As expected, the deformation time was proportional

to the grid dimension, since a grid with larger resolution

would have more vertex positions to solve which means the

linear system has more variables and equations. Since our

framework is designed to visualize the entire flow field in

a F+C manner, the grid resolution is not supposed to grow

significantly even with larger data sets. Nevertheless, the time

cost for streamline repositioning appeared to be similar. Al-

though the total number of streamline points for the supernova

data set is much larger than the others, the repositioning

time was only slightly longer. Our implementation utilized

the CUDA OpenGL interoperability so that the repositioning

was performed in parallel on the GPU and there was no

need to transfer the rendering data between main memory and

graphics memory. For block importance evaluation and flow-

aware adjustment, although they took a longer time for the

supernova data set, there was no clear pattern in timing among

the grid resolution, number of streamlines, and total number

of points on streamlines at the scales of other data sets we

explored. The timing was dominated by the deformation time.
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(a) (b) (c) (d) (e)

Fig. 7. F+C visualization results with automatic importance evaluation for different scaling factors s f and grid resolutions. (a) is
the original visualization result of the supernova data set. (b), (c), (d) and (e) are deformation results produced with s f and grid
resolution as 5.0 and 20× 20× 20, 10.0 and 20× 20× 20, 5.0 and 30× 30× 30, and 10.0 and 30× 30× 30, respectively. The second
row shows the corresponding grid, block distortions mapped to streamline colors, and deformed grids.

TABLE 1

The flow data sets and their timing results. We run ten iterations for the deformation step. All the timing results are calculated by

averaging the results gathered from 100 runs. The evaluation time is for block importance evaluation and the adjustment time is for

flow-aware adjustment.

grid evaluation adjustment deformation avg. # pts. repositioning
data set dimension dimension time time time # lines per line time

five critical points 51×51×51 10×10×10 0.772 ms 8.996 ms 0.238 sec 140 58.8 0.165 ms
tornado 64×64×64 12×12×12 1.267 ms 12.089 ms 0.317 sec 60 365.4 0.179 ms
two swirls 64×64×64 12×12×12 1.465 ms 11.568 ms 0.303 sec 100 236.7 0.185 ms
electro 64×64×64 12×12×12 1.077 ms 8.351 ms 0.290 sec 200 52.6 0.162 ms
car flow 368×234×60 36×23×5 2.107 ms 11.845 ms 0.493 sec 140 198.7 0.180 ms
crayfish 322×162×119 21×10×7 1.736 ms 8.826 ms 0.284 sec 100 248.8 0.167 ms
computer room 417×345×60 27×22×3 2.578 ms 9.645 ms 0.288 sec 200 182.7 0.174 ms
hurricane 500×500×100 24×24×4 2.712 ms 11.820 ms 0.362 sec 140 346.7 0.177 ms
supernova 864×864×864 20×20×20 9.521 ms 23.763 ms 0.908 sec 200 692.4 0.243 ms

Except for the large supernova data set, the overall time to

update the F+C visualization results was less than 0.5 second,

which makes our deformation approach interactive.

The parameters used include a user-defined scaling factor

s f , a user-specified weight β in the flow-aware adjustment

(Equation 2), and the two weighting factors wℓ and ws for

smoothing the energy terms (Equation 10). In our experiments,

we usually used a fixed scaling factor s f = 5.0 and set β = 0.1,

wℓ = 2.5, ws = 3.0. The scaling factor could be a bit larger than

the actual scaling that can be achieved, since the blocks would

stop growing up to a certain degree. Normally, we found that

β = 0.1 was appropriate for most cases, and β = 0.04 for a

few cases where neighboring blocks sharing many streamlines

are of different sizes. For the Laplacian smoothing, we might

increase wℓ to 3.0, if obvious size change between neighboring

blocks can be found. We might decrease wℓ to 2.0 to obtain a

larger scaling when the change in size was already smooth. For

the flow-aware smoothing, ws = 3.0 was good for most cases.

However, if many streamlines were distorted to polylines, we

would increase ws to 6.0. All visualization results we present

in this section were generated with these parameter settings.

4.2 Focus+Context Visualization Results

Automatic Importance Evaluation. Figure 5 and Figure 6

show the F+C visualization results with automatic impor-

tance evaluation. Figure 5 clearly shows the effect of F+C

visualization which allows us to observe internal streamline

features along the car which were previously occluded by

the surrounding straight streamlines. In Figure 5 (d), we

remove some context streamlines that occlude the features

from the original streamline display, and compare the resulting

streamlines with the deformed ones in the two zoom-in images.

Although the deformed streamlines are stretched in the vertical

direction for a clearer view, the spatial relationships among

streamlines of focus and the shapes of streamlines are well

preserved in the F+C deformation. As shown in Figure 6

(b), without adding any smoothing term, the regions that are

evaluated as the more important ones occupy most of the

space, while less important ones are squeezed into thin layers

which creates serious distortion. By adding neighboring block

smoothing, flow-aware adjustment and flow-aware smoothing
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(a) (b) (c)

Fig. 8. F+C visualization results that reveal hidden features for the five critical points (top) and electro (bottom) data sets. The user-
specified regions are highlighted in the green circle, together with the enlarged images to the right side of each visualization result.
(a) shows the original streamlines. (b) shows the deformed streamlines with the spherical block focus. (c) shows the deformed
streamlines with the hourglass block focus.

terms, we can observe from Figure 6 (c), that important regions

are still well magnified and the volumes are almost filled with

streamlines everywhere. Meanwhile, perceptually, those less

important streamlines suffer from less distortion. Error results

shown in Figure 6 (d) also demonstrate that important regions

almost keep their original shapes and less important ones are

not seriously distorted either. Although the measured block

distortion seems to be large for the two swirls data set, the

swirl patterns are still clear in the deformation result. This is

due to the fact that the distortion mainly comes from block

stretching, which only slightly changes the perceived shape of

the streamlines.

In Figure 7, we compare the F+C results with different

grid resolutions and scaling factors using the supernova data

set. Compared with using 30× 30× 30 grid resolution, the

important region at the center is expanded to a larger degree

using 20×20×20 grid resolution. This is true for both cases

under different scaling factors: 5.0 and 10.0. Even though less

important blocks would shrink by only applying the individual

block expansion term, the other smoothing terms still maintain

the shape of those blocks to some degree. With a higher grid

resolution, the number of less important blocks surrounding

the important region becomes larger, which increases the

resistance and prevents important blocks from growing further.

Meanwhile, using a scaling factor of 10.0 does not further

magnify the important region, which is also due to the fact

that the smoothing terms stop less important blocks from

being further squeezed. From deformed grids and evaluated

error results shown in the figure, we can observe that using a

scaling factor of 10.0 shrink the blocks around the boundary of

the important regions, leading to larger distortion. Therefore,

in practice, we need to carefully select the appropriate grid

resolution and scaling factor instead of simply aiming for

larger grid resolutions and higher scaling factors.

Spherical Block Focus. In Figure 9, we show the F+C

visualization results with the user-specified spherical block

focus. For the two swirls data set, the focus is at the center of

the upper swirl. Before the deformation, the two swirls occupy

similar space in the volume. By applying the spherical block

focus on the upper swirl, the focal region grows, pushing the

lower swirl and the two ends of the upper one to the boundary.

From the error image, we can observe that the focal region

does not suffer much distortion, as the distortion is mainly

distributed to the squeezed regions. The five critical points data

set also shows a similar result, where the focus is the spiral

located at the upper right conner. After the deformation, that

spiral is magnified and shifted closer to the center, while the

other regions shrink and absorb most of the distortion.

Hourglass Block Focus. Figure 8 demonstrates the effec-

tiveness of our hourglass block focus. For the five critical

points data set, the source located at the center of the volume is

occluded by some less interesting streamlines with a similar

pattern, as shown in Figure 8 (a). After the spherical block

focus is applied, the source still cannot be observed clearly

as shown in Figure 8 (b), although the source itself has been

magnified. This is because the density of streamlines in the

front does not change significantly. The hourglass block focus

is used to specify the same source as the focus. In Figure 8

(c), the source becomes clearly visible since the streamlines at

the outer ring are much sparser. A similar result can be found

for the electro data set as the streamlines occluding the source

become sparser with the hourglass block focus.

Streamline Focus. In Figure 10, we show the streamline

focus results. Unlike the block focus, the streamline focus
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(a) (b)

Fig. 9. F+C visualization results with the user-specified spher-
ical block focus for (a) two swirls and (b) five critical points data
sets, respectively. The focus is highlighted in the green circle.
First row: the original streamlines. Second row: the deformed
streamlines. Third row: the deformed streamlines with block
errors mapped to colors along the points on each streamline.

treats all the blocks into two different categories: the blocks

that the focal streamline does and does not pass through,

respectively. Blocks in the same category are assigned the

same importance value, so that the transformation for the

blocks that contain the focal streamline will be similar and

the distortion will be distributed to the rest of blocks more

evenly. From the visualization results for both data sets, we can

see that the shape of the focal streamline is almost the same

as the original one after the deformation, while no obvious

change can be observed for other surrounding areas. This

implies that the streamlines in the context are more stable and

the relationships between the focal streamline and the rest of

streamlines are easier to interpret.

Streamline Animation. In Figure 11, we show selected

snapshots of streamline animation results where the focal point

moves along a user-specified streamline or a user-drawn path.

As shown in Figure 11 (a), the animation helps the user

explore the regions that a streamline passes through. This is

different from our previous approach that magnifies the entire

Fig. 10. F+C visualization results with the user-specified
streamline focus for the crayfish (top) and computer room (bot-
tom) data sets, where the focal streamline is highlighted in black
and surrounded by green semitransparent tubes.

(a) (b)

Fig. 11. Snapshots of F+C animation results. (a) shows a user-
specified streamline for the hurricane data set and (b) shows
a user-drawn path for the computer room data set. The focal
streamline/path is highlighted in black and the current focal point
is marked with a red cube.

streamline simultaneously. Since the space in the volume is

limited, enlarging multiple regions could either decrease the

scaling factor that can be achieved or result in more serious

distortion. Using the animation to move the focal point will

be more efficient to magnify the regions consecutively. As
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TABLE 2

Block distortion evaluated using Equation 11. The blocks are

grouped by the distances (in voxels) from their center to the

focus.
dist. to spherical focus fisheye focus
focus # blocks avg. max avg. max

tornado

< 10 27 1.641 2.665 13.572 15.987
< 20 251 17.145 37.969 88.950 843.750
< 40 1283 49.445 505.412 66.443 843.750
all 1728 49.434 505.412 49.333 843.750

electro

< 10 27 2.332 4.219 18.382 43.927
< 20 230 19.749 55.511 95.026 844.575
< 40 1283 42.603 191.895 64.261 844.575
all 1728 40.833 434.848 42.841 844.575

such, we should select those long streamlines that pass through

different regions over short ones. Figure 11 (b) shows another

example where we explore F+C animation using the user-

drawn path.

4.3 Comparison with Fisheye View

For comparison, we implemented the fisheye view F+C tech-

nique presented by Sarkar and Brown [14]. For each vertex

within the user-specified focal region with radius r f ocus, we

transform the vertex based on the polar coordinate system

originated at the center of focus. This maps a vertex with

the original coordinates (rori,θ ,γ) to the fisheye coordinates

(r f eye,θ ,γ), where r f eye is given by

r f eye = r f ocus

(d +1) rori
r f ocus

d
rori

r f ocus
+1

= r f ocus

d +1

d +
r f ocus

rori

. (12)

Here, d is a constant distortion factor and a larger value of d

results in a higher degree of magnification. In this paper, we

set d = 3.0.

In Table 2 and Figure 12, we show quantitative and qual-

itative results comparing block distortions for our spherical

grid focus and the fisheye focus. For the tornado data set,

the focus is set at the center of the volume. We can observe

from Figure 12 that the focal region has much less distortion

using our method. For the surrounding regions, although both

methods lead to some distortion, our method does not gather

the distortion around the boundary of the focus. The measured

errors shown in Table 2 are consistent with the error image

results. The radius of focal region for our spherical block focus

is 20 voxels, and that of the fisheye focus is 35 voxels in order

to achieve a similar scaling effect. The overall errors are close

for both methods, but our method has much smaller average

and maximum errors near the focus. For our spherical block

focus, the errors are mainly distributed to the blocks that are

at least 20 voxels away. This is not the case for the fisheye

focus. The blocks located outside of the focal region will not

deform at all. All the errors are accumulated within the focal

region, especially for the blocks around the boundary of the

focal region, which results in the undesired ringing artifact.

5 EVALUATION

5.1 Empirical Expert Evaluation

To evaluate our deformation framework, we collaborate with

a domain expert in fluid mechanics (Professor Seung Hyun

Kim) whose research focuses on the modeling of multiscale

and multiphysics problems in relation to energy science and

technology. After learning the framework and using our pro-

gram multiple times with various data sets, he provided the

following feedback. In general, the use of deformation for F+C

visualization in flow field exploration is novel and effective.

Having multiple methods developed for users to select the

focus is a significant advantage. This allows users to determine

the best method in their respective cases or even apply multiple

methods in a certain order to achieve more desired results. In

terms of distortion, both the spherical focus and streamline

focus provide better F+C visualization effects than the fisheye

view. When the interesting region is at the corner, focusing

on a streamline in that region might be more effective than

the spherical focus, since the spherical region might go out

of bound and lead to inevitable distortion on the boundary. In

many cases, he found it very useful to explore the data sets

with multiple focus selection methods. For example, the users

could first use the streamline focus to enlarge the regions that

a streamline goes through. Based on the deformation result,

the users might be able to find some small features in those

regions and apply the spherical focus to further enlarge the

small features. It is also beneficial to use the hourglass focus

on the features that are hidden in the central region of volume,

e.g., the source around the center in the five critical points data

set. That is, the users can use the hourglass focus to push away

the streamlines that occlude the interesting features, and then

apply the streamline focus or spherical focus to further explore

that region of interest.

With the GPU implementation, our program is fairly inter-

active which allows the users to fine tune the parameters to

achieve satisfactory deformation results on the fly. According

to the suggestions of the expert, we also modified our initial

single view interface to support multiple views, which benefits

parameter tuning by eliminating the need to switching between

different views back and forth. We allow the users to freely

select any three items for simultaneous display. Our experi-

ence shows that visualizing the deformed streamlines, original

streamlines and deformed grid simultaneously is particularly

useful. The connection among these three views is helpful for

the users to determine the actual scaling obtained in focused

regions and fine tune the distortions accordingly. Even if

some distortions are inevitable, they could be easily identified

under multiple views and with error indications (introduced

in Section 3.4). In addition, as the users get familiar with

each parameter, they can predict the changes due to parameter

tuning accordingly.

Since one of the main current areas of interest of the

expert is the modeling of turbulent combustion, he further

commented that the application of this deformation framework

to flame visualization could be valuable for investigation. The

combustion reactions can be confined into a relatively thin

region and be substantially influenced by a flow field, strain
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(a) (b) (c) (d)

Fig. 12. Mapping block errors to streamline colors for the tornado and electro data sets. (a) and (c) are with our spherical block
focus. (b) and (d) are with the fisheye focus.

or vorticity. Using our deformation framework to emphasize

the species concentrations or temperature in the region of high

strain rate or vorticity would provide very useful information.

The current deformation framework could also be extended to

be of further use in two aspects. First, in addition to the vector

field, the deformed blocks could also guide the deformation

of scalar fields for a mix rendering to provide more context

information or apply to F+C visualization of time-varying

data sets. Second, a diverse choice for automatic evaluation

could be applied to enlarge the regions with any other desired

properties, e.g., high vorticity.

5.2 User Study

We also recruited five unpaid researchers for a user study:

two postdoctoral scholars, one PhD student, and two master

students. All of them are researchers majoring in mechanical

engineering with at least one year of research experience in

fluid dynamics. The user study was conducted in a lab using

the same PC. The PC has a 27-inch monitor with 1920×1080

resolution, where the visualization result occupied an area of

1200× 800. The users were first introduced to the concepts

of automatic importance evaluation, spherical block focus,

hourglass block focus, streamline focus, and error indication.

Then they were given the crayfish data set for free exploration

to get familiar with the system. They could perform the tasks

whenever they felt comfortable. Each study took about two

hours to two and a half hours to complete. Although each

task could be performed in a few minutes, the users frequently

returned to the interface for further verification when writing

their comments, which occupied most of the time.

We designed six tasks (T1 to T6). T1 and T2 asked the

user to select a deformation method and the viewing direction

to best observe the source for the five critical points data

set and the flow pattern at the center for the supernova data

set, respectively. T3 and T4 asked the user to evaluate the

distortion given a deformation result using the crayfish and

two swirls data sets, respectively. T5 and T6 asked the user to

select a deformation method and reproduce the deformation

result given an image of deformation result using the car flow

and computer room data sets, respectively. The users were

informed that the tasks were not timed and their comments

were of crucial importance.

Six criteria (C1 to C6) were given as guidelines for users to

evaluate the deformation framework: C1 effectiveness of mag-

nifying features; C2 effectiveness of reducing the occlusion

over a feature; C3 ease of noticing the distortion; C4 ease of

understanding the relationship between deformed and original

streamlines; C5 ease of estimating the original pattern from

the deformed one; and C6 ease of reproducing a deformed

visualization result. We asked the users to comment on the

effectiveness of the proposed F+C techniques for T1, T2, T5

and T6, the distortion evaluation for T3 and T4, and the ease

of reproducing a deformation result for T5 and T6. Finally, a

set of open questions were also presented which ask the users

to provide general impression of the methods for each of the

criteria. The deformation result for T3 and T4 can be found

in Figure 6 (d). The images presented to the users for T5 and

T6 are the bottom right image in Figure 10 and Figure 5 (c),

respectively.

In terms of C1, the feedback was very positive. Yet the

selection of methods varied due to the different foci between

disciplines or personal preference. The only exception was T6,

where the deformation result to be reproduced was apparently

generated using streamline focus. Other than that, each user

selected the deformation method to complete the tasks in

a consistent way. User 1 used a combination of automatic

importance evaluation and spherical block focus for T1, T2,

and T5. He commented that “automatic importance evalua-

tion and spherical block focus combined could provide more

magnifying features compared to using any single choice”. He

would finally select spherical block focus to produce the result,

since “spherical block focus does it better because the feature

is within a local area”. User 2 also preferred a combination of

multiple methods. He applied automatic importance evaluation

and then hourglass block focus for T1, because of “secluding

the source that is obscured by other streamlines”. For T2

and T5, he used automatic importance evaluation to gain an

overview and spherical block focus to magnify a specific

region. The other three users would like to apply a single

method to perform the task, User 3 preferred hourglass block

focus and User 4 and User 5 mostly used spherical block

focus. User 5 also used streamline focus for T2, which asked

the users to observe the pattern of the supernova data set. The

central region was complex and difficult to understand even if

it was magnified. He said that the streamline focus “allowed
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to better understand the features”, since most streamlines

shared a similar pattern and the analysis should start from

understanding one of them.

Although the selections differed among the users, their

comments on each method were similar. All of them rated

spherical block focus to be the most effective one to magnify

features, followed by automatic importance evaluation and

streamline focus. They indicated that “automatic importance

evaluation method could find the region of importance”, but

spherical block focus was better, since “user interaction is

involved” and “in most fluid flow problems, we are interested

in a region in space”. Spherical block focus was favored over

streamline focus mostly because streamline focus only had

“limited ability to magnify the adjacent fluid flow”. But a user

also mentioned that this might be discipline dependent, since

“if the particle tracing is the concern, maybe the streamline

focus could do a better job”. Hourglass block focus was

considered to be the least effective one, since it did not

magnify a feature.

In terms of C2, most users selected spherical block focus

or hourglass block focus. Although spherical block focus was

not designed to reduce the occlusion, users found that when

the influence region was large enough, the outer layer could

still get sparser. This would definitely sacrifice the quality

of context streamlines, but a user stated that he “chose to

focus more in the point” rather than “worry much about

the distortion on the boundary”. In our observation, the

users usually used automatic importance evaluation to gain

an overall impression of the field, and applied spherical or

hourglass block focus for further analysis, since the interaction

allow them to specify a region for detail observation.

The error estimation corresponds to our criteria C3, C4,

and C5. All users agreed that with error indication, it was

easy to notice the distortion. A user even mentioned that he

could notice the distortion by just moving the scale slider,

and “the error indication helped me to quantify”. The ease of

understanding the relationship between deformed and original

streamlines depended on the complexity of the deformation.

For the deformation result using the two swirls data set, a user

stated that “if the deformed style is a regular shape, it is easy

to relate to the original streamlines, even when the fluid flow

is complex”. Most users believed it was easy to understand

this relationship by moving the scale slider and observing the

deformation process, even for relatively complex deformation.

But a user also mentioned that the absence of error indication

with a small scale value (close to 1.0) “makes tracking all the

distorted streamlines impossible”, although he admitted that

“it is able and relative easy to track just one streamline”. Once

the relationship between deformed and original streamlines

was built, the estimation of original shape of streamlines would

not be an issue. Only one user mentioned that “it is able to

make relatively rough estimations, but not into details”. This

is acceptable since the distorted streamlines are mostly in the

context.

In terms of C6, all users stated it was easy to produce

a similar result with comments such as “it is not difficult

to reproduce the results, since the feature of each function

is clear and easily recognized”. The selection of parameters

seemed not to be a problem. A user mentioned that “it may

take some time to select the correct cell, and select the correct

parameters, but it can be done within a short time”. Two users

also commented that it might be more difficult to reproduce a

result generated with hourglass block focus. This was probably

because hourglass block focus is view-dependent and has more

parameters to adjust.

6 LIMITATIONS AND FUTURE WORK

Our F+C deformation framework has several limitations. First,

although we introduce the flow-aware adjustment and smooth-

ing terms to consider the flow pattern, the framework is still

based on minimizing block distortion. In some cases, large

block distortion might not lead to serious streamline distortion,

e.g., when a block containing many straight streamlines is

stretched. Our framework could be further improved, if we

could define some streamline-based distortion measure. In this

way, the minimization should not only preserve the shape

of each streamline, but also maintain the perceptual patterns

of the flow field. Second, another limitation of our work is

parameter setting. In our current implementation, although the

default parameter values could work well for most cases, the

users still need to adjust those values carefully to achieve the

best visualization results for some data sets. Although the

user study shows that the users feel that the adjustment of

parameters is easy, automatic parameter value selection is still

a direction that is worth exploring. Third, our work aims at

effectively visualizing the streamlines with moderate density

in a limited screen space, where the F+C visualization is

achieved by repositioning the streamlines. Its ability to reduce

the occlusions of extremely dense streamlines is limited. To

handle those cases, other properties of visualization, e.g.,

transparency, should be incorporated. Fourth, our current error

evaluation only produces a scalar value for each block to

indicate the distortion. To decide in which directions the

distortion is maximal or minimal, we need to compute a tensor

field from the deformation field and the resulting eigenvalues

describe the amount of the principal distortions.

7 CONCLUDING REMARKS

We have presented a deformation framework for F+C stream-

line visualization that reduces occlusion and clutter around the

focal regions for detailed examination while compacting the

context region in a full view. Existing solutions for 3D flow

visualization resolve the fundamental challenge of occlusion

and clutter through displaying a less number of streamlines as

the representatives or seeking illustrative rendering solutions

using color and opacity modification. We take a very different

strategy and achieve this goal through streamline repositioning.

Besides automatically selecting focal regions according to

derived flow information, we allow the user to manually

specify a focal region by clicking a point or a streamline

of interest. F+C animation can be achieved by allowing the

focal point to follow a user-selected streamline or a user-drawn

path from end to end. Such explorations enhance our ability

to interact with streamlines for effective visual understanding,

making our approach attractive to use in practice.
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