
Bayesian Inference for Finite-State Transducers∗

David Chiang1 Jonathan Graehl1 Kevin Knight1 Adam Pauls2 Sujith Ravi1

1Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292

2Computer Science Division
University of California at Berkeley

Soda Hall
Berkeley, CA 94720

Abstract

We describe a Bayesian inference algorithm
that can be used to train any cascade of
weighted finite-state transducers on end-to-
end data. We also investigate the problem
of automatically selecting from among mul-
tiple training runs. Our experiments on four
different tasks demonstrate the genericity of
this framework, and, where applicable, large
improvements in performance over EM. We
also show, for unsupervised part-of-speech
tagging, that automatic run selection gives a
large improvement over previous Bayesian ap-
proaches.

1 Introduction

In this paper, we investigate Bayesian infer-
ence for weighted finite-state transducers (WFSTs).
Many natural language models can be captured
by weighted finite-state transducers (Pereira et al.,
1994; Sproat et al., 1996; Knight and Al-Onaizan,
1998; Clark, 2002; Kolak et al., 2003; Mathias and
Byrne, 2006), which offer several benefits:

• WFSTs provide a uniform knowledge represen-
tation.
• Complex problems can be broken down into a

cascade of simple WFSTs.
• Input- and output-epsilon transitions allow

compact designs.
• Generic algorithms exist for doing inferences

with WFSTs. These include best-path de-
coding, k-best path extraction, composition,
∗The authors are listed in alphabetical order. Please direct

correspondence to Sujith Ravi (sravi@isi.edu). This work
was supported by NSF grant IIS-0904684 and DARPA contract
HR0011-06-C0022.

intersection, minimization, determinization,
forward-backward training, forward-backward
pruning, stochastic generation, and projection.
• Software toolkits implement these generic al-

gorithms, allowing designers to concentrate on
novel models rather than problem-specific in-
ference code. This leads to faster scientific ex-
perimentation with fewer bugs.

Weighted tree transducers play the same role for
problems that involve the creation and transforma-
tion of tree structures (Knight and Graehl, 2005). Of
course, many problems do not fit either the finite-
state string or tree transducer framework, but in this
paper, we concentrate on those that do.

Bayesian inference schemes have become popu-
lar recently in natural language processing for their
ability to manage uncertainty about model param-
eters and to allow designers to incorporate prior
knowledge flexibly. Task-accuracy results have gen-
erally been favorable. However, it can be time-
consuming to apply Bayesian inference methods to
each new problem. Designers typically build cus-
tom, problem-specific sampling operators for ex-
ploring the derivation space. They may factor their
programs to get some code re-use from one problem
to the next, but highly generic tools for string and
tree processing are not available.

In this paper, we marry the world of finite-state
machines with the world of Bayesian inference, and
we test our methods across a range of natural lan-
guage problems. Our contributions are:

• We describe a Bayesian inference algorithm
that can be used to train any cascade of WFSTs
on end-to-end data.
• We propose a method for automatic run selec-

tion, i.e., how to automatically select among
multiple training runs in order to achieve the
best possible task accuracy.

The natural language applications we consider
in this paper are: (1) unsupervised part-of-speech
(POS) tagging (Merialdo, 1994; Goldwater and
Griffiths, 2007), (2) letter substitution decipher-
ment (Peleg and Rosenfeld, 1979; Knight et al.,
2006; Ravi and Knight, 2008), (3) segmentation of
space-free English (Goldwater et al., 2009), and (4)
Japanese/English phoneme alignment (Knight and
Graehl, 1998; Ravi and Knight, 2009a). Figure 1
shows how each of these problems can be repre-
sented as a cascade of finite-state acceptors (FSAs)
and finite-state transducers (FSTs).

2 Generic EM Training

We first describe forward-backward EM training for
a single FST M. Given a string pair (v,w) from our
training data, we transform v into an FST Mv that
just maps v to itself, and likewise transform w into
an FST Mw. Then we compose Mv with M, and com-
pose the result with Mw. This composition follows
Pereira and Riley (1996), treating epsilon input and
output transitions correctly, especially with regards
to their weighted interleaving. This yields a deriva-
tion lattice D, each of whose paths transforms v into
w.1 Each transition in D corresponds to some tran-
sition in the FST M. We run the forward-backward
algorithm over D to collect fractional counts for the
transitions in M. After we sum fractional counts for
all examples, we normalize with respect to com-
peting transitions in M, assign new probabilities to
M, and iterate. Transitions in M compete with each
other if they leave the same state with the same input
symbol, which may be empty (ε).

In order to train an FSA on observed string data,
we convert the FSA into an FST by adding an input-
epsilon to every transition. We then convert each
training string v into the string pair (ε, v). After run-
ning the above FST training algorithm, we can re-
move all input-ε from the trained machine.

It is straightforward to modify generic training to
support the following controls:

1Throughout this paper, we do not assume that lattices are
acyclic; the algorithms described work on general graphs.

B:E

a:A b:B A:D
A:C

=
a:

 :D

 :E b:

a: :C

Figure 2: Composition of two FSTs maintaining separate
transitions.

Maximum iterations and early stopping. We spec-
ify a maximum number of iterations, and we halt
early if the ratio of log P(data) from one iteration
to the next exceeds a threshold (such as 0.99999).
Initial point. Any probabilities supplied on the pre-
trained FST are interpreted as a starting point for
EM’s search. If no probabilities are supplied, EM
begins with uniform probabilities.
Random restarts. We can request n random restarts,
each from a different, randomly-selected initial
point.
Locking and tying. Transitions on the pre-trained
FST can be marked as locked, in which case EM
will not modify their supplied probabilities. Groups
of transitions can be tied together so that their frac-
tional counts are pooled, and when normalization
occurs, they all receive the same probability.
Derivation lattice caching. If memory is available,
training can cache the derivation lattices computed
in the first EM iteration for all training pairs. Subse-
quent iterations then run much faster. In our experi-
ments, we observe an average 10-fold speedup with
caching.

Next we turn to training a cascade of FSTs on
end-to-end data. The algorithm takes as input: (1) a
sequence of FSTs, and (2) pairs of training strings
(v,w), such that v is accepted by the first FST in
the cascade, and w is produced by the last FST. The
algorithm outputs the same sequence of FSTs, but
with trained probabilities.

To accomplish this, we first compose the supplied
FSTs, taking care to keep the transitions from differ-
ent machines separate. Figure 2 illustrates this with a
small example. It may thus happen that a single tran-
sition in an input FST is represented multiple times
in the composed device, in which case their prob-

ABCD:a

REY:r

!:c

1. Unsupervised part-of-speech tagging with constrained dictionary

POS Tag

sequence

Observed

word

sequence

2. Decipherment of letter-substitution cipher

English

letter

sequence

Observed

enciphered

text

3. Re-Spacing of English text written without spaces

Word

sequence

Observed

letter

sequence

w/o spaces

4. Alignment of Japanese/English phoneme sequences

English

phoneme

sequence

Japanese

katakana

phoneme

sequence

26 x 26 table

letter bigram model,

learned separately

constrained tag!word

substitution model tag bigram model

unigram model over

words and non-words deterministic spell-out

mapping from each English

phoneme to each Japanese

phoneme sequence of length 1 to 3

NN

JJ

JJ

JJ

NN

VB
!

!

!

NN:fish

IN:at

VB:fish

SYM:a
DT:a

a

b

b

b

a

c !

!

!
a:A

a:B

a:C

b:A
b:B

b:C

A AR

ARE
AREY

AREYO

!:!

AREY:a

!:b

!:d

!:r
!:e
!:y

AE:!
!:S

!:S

!:U

Figure 1: Finite-state cascades for five natural language problems.

abilities are tied together. Next, we run FST train-
ing on the end-to-end data. This involves creating
derivation lattices and running forward-backward on
them. After FST training, we de-compose the trained
device back into a cascade of trained machines.

When the cascade’s first machine is an FSA,
rather than an FST, then the entire cascade is viewed
as a generator of strings rather than a transformer of
strings. Such a cascade is trained on observed strings
rather than string pairs. By again treating the first
FSA as an FST with empty input, we can train using
the FST-cascade training algorithm described in the
previous paragraph.

Once we have our trained cascade, we can apply it
to new data, obtaining (for example) the k-best out-
put strings for an input string.

3 Generic Bayesian Training

Bayesian learning is a wide-ranging field. We focus
on training using Gibbs sampling (Geman and Ge-
man, 1984), because it has been popularly applied
in the natural language literature, e.g., (Finkel et al.,
2005; DeNero et al., 2008; Blunsom et al., 2009).

Our overall plan is to give a generic algorithm
for Bayesian training that is a “drop-in replacement”
for EM training. That is, we input an FST cas-
cade and data and output the same FST cascade
with trained weights. This is an approximation to a
purely Bayesian setup (where one would always in-
tegrate over all possible weightings), but one which
makes it easy to deploy FSTs to efficiently decode
new data. Likewise, we do not yet support non-
parametric approaches—to create a drop-in replace-
ment for EM, we require that all parameters be spec-
ified in the initial FST cascade. We return to this is-
sue in Section 5.

3.1 Particular Case

We start with a well-known application of Bayesian
inference, unsupervised POS tagging (Goldwater
and Griffiths, 2007). Raw training text is provided,
and each potential corpus tagging corresponds to a
hidden derivation of that data. Derivations are cre-
ated and probabilistically scored as follows:

1. i← 1

2. Choose tag t1 according to P0(t1)

3. Choose word w1 according to P0(w1 | t1)

4. i← i + 1

5. Choose tag ti according to

αP0(ti | ti−1) + ci−1
1 (ti−1, ti)

α + ci−1
1 (ti−1)

(1)

6. Choose word wi according to

βP0(wi | ti) + ci−1
1 (ti,wi)

β + ci−1
1 (ti)

(2)

7. With probability Pquit, quit; else go to 4.

This defines the probability of any given derivation.
The base distribution P0 represents prior knowl-
edge about the distribution of tags and words, given
the relevant conditioning context. The ci−1

1 are the
counts of events occurring before word i in the
derivation (the “cache”).

When α and β are large, tags and words are essen-
tially generated according to P0. When α and β are
small, tags and words are generated with reference
to previous decisions inside the cache.

We use Gibbs sampling to estimate the distribu-
tion of tags given words. The key to efficient sam-
pling is to define a sampling operator that makes
some small change to the overall corpus derivation.
With such an operator, we derive an incremental
formula for re-scoring the probability of an entire
new derivation based on the probability of the old
derivation. Exchangeability makes this efficient—
we pretend like the area around the small change oc-
curs at the end of the corpus, so that both old and
new derivations share the same cache. Goldwater
and Griffiths (2007) choose the re-sampling operator
“change the tag of a single word,” and they derive
the corresponding incremental scoring formula for
unsupervised tagging. For other problems, design-
ers develop different sampling operators and derive
different incremental scoring formulas.

3.2 Generic Case
In order to develop a generic algorithm, we need
to abstract away from these problem-specific de-
sign choices. In general, hidden derivations corre-
spond to paths through derivation lattices, so we first

Figure 3: Changing a decision in the derivation lattice.
All paths generate the observed data. The bold path rep-
resents the current sample, and the dotted path represents
a sidetrack in which one decision is changed.

compute derivation lattices for our observed training
data through our cascade of FSTs. A random path
through these lattices constitutes the initial sample,
and we calculate its derivation probability directly.

One way to think about a generic small change
operator is to consider a single transition in the cur-
rent sample. This transition will generally compete
with other transitions. One possible small change is
to “sidetrack” the derivation to a competing deriva-
tion. Figure 3 shows how this works. If the sidetrack
path quickly re-joins the old derivation path, then an
incremental score can be computed. However, side-
tracking raises knotty questions. First, what is the
proper path continuation after the sidetracking tran-
sition is selected? Should the path attempt to re-join
the old derivation as soon as possible, and if so, how
is this efficiently done? Then, how can we compute
new derivation scores for all possible sidetracks, so
that we can choose a new sample by an appropriate
weighted coin flip? Finally, would such a sampler be
reversible? In order to satisfy theoretical conditions
for Gibbs sampling, if we move from sample A to
sample B, we must be able to immediately get back
to sample A.

We take a different tack here, moving from point-
wise sampling to blocked sampling. Gao and John-
son (2008) employed blocked sampling for POS tag-
ging, and the approach works nicely for arbitrary
derivation lattices. We again start with a random
derivation for each example in the corpus. We then
choose a training example and exchange its entire
derivation lattice to the end of the corpus. We cre-
ate a weighted version of this lattice, called the pro-
posal lattice, such that we can approximately sample
whole paths by stochastic generation. The probabil-
ities are based on the event counts from the rest of
the sample (the cache), and on the base distribution,

and are computed in this way:

P(r | q) =
αP0(r | q) + c(q, r)

α + c(q)
(3)

where q and r are states of the derivation lattice, and
the c(·) are counts collected from the corpus minus
the entire training example being resampled. This is
an approximation because we are ignoring the fact
that P(r | q) in general depends on choices made
earlier in the lattice. The approximation can be cor-
rected using the Metropolis-Hastings algorithm, in
which the sample drawn from the proposal lattice is
accepted only with a certain probability α; but Gao
and Johnson (2008) report that α > 0.99, so we skip
this step.

3.3 Choosing the best derivations

After the sampling run has finished, we can choose
the best derivations using two different methods.
First, if we want to find the MAP derivations of the
training strings, then following Goldwater and Grif-
fiths (2007), we can use annealing: raise the proba-
bilities in the sampling distribution to the 1

T power,
where T is a temperature parameter, decrease T to-
wards zero, and take a single sample.

But in practice one often wants to predict the
MAP derivation for a new string w′ not contained
in the training data. To approximate the distribution
of derivations of w′ given the training data, we aver-
age the transition counts from all the samples (after
burn-in) and plug the averaged counts into (3) to ob-
tain a single proposal lattice.2 The predicted deriva-
tion is the Viterbi path through this lattice. Call this
method averaging. An advantage of this approach is
that the trainer, taking a cascade of FSAs as input,
outputs a weighted version of the same cascade, and
this trained cascade can be used on unseen examples
without having to rerun training.

3.4 Implementation

That concludes the generic Bayesian training algo-
rithm, to which we add the following controls:

2A better approximation might have been to build a proposal
lattice for each sample (after burn-in), and then construct a sin-
gle FSA that computes the average of the probability distribu-
tions computed by all the proposal lattices. But this FSA would
be rather large.

Number of Gibbs sampling iterations. We execute
the full number specified.
Base distribution. Any probabilities supplied on the
pre-trained FST are interpreted as base distribution
probabilities. If no probabilities are supplied, then
the base distribution is taken to be uniform.
Hyperparameters. We supply a distinct α for each
machine in the FST cascade. We do not yet support
different α values for different states within a single
FST.
Random restarts. We can request multiple runs
from different, randomly-selected initial samples.
EM-based initial point. If random initial samples
are undesirable, we can request that the Gibbs sam-
pler be initialized with the Viterbi path using param-
eter values obtained by n iterations of EM.
Annealing schedule. If annealing is used, it follows
a linear annealing schedule with starting and stop-
ping temperature specified by the user.

EM and Bayesian training for arbitrary FST
cascades are both implemented in the finite-state
toolkit Carmel, which is distributed with source
code.3 All controls are implemented as command-
line switches. We use Carmel to carry out the exper-
iments in the next section.

4 Run Selection

For both EM and Bayesian methods, different train-
ing runs yield different results. EM’s objective func-
tion (probability of observed data) is very bumpy for
the unsupervised problems we work on—different
initial points yield different trained WFST cascades,
with different task accuracies. Averaging task accu-
racies across runs is undesirable, because we want to
deploy a particular trained cascade in the real world,
and we want an estimate of its performance. Select-
ing the run with the best task accuracy is illegal in an
unsupervised setting. With EM, we have a good al-
ternative: select the run that maximizes the objective
function, i.e., the likelihood of the observed training
data. We find a decent correlation between this value
and task accuracy, and we are generally able to im-
prove accuracy using this run selection method. Fig-
ure 4 shows a scatterplot of 1000 runs for POS tag-
ging. A single run with a uniform start yields 81.8%

3http://www.isi.edu/licensed-sw/carmel

 0.75

 0.8

 0.85

 0.9

 211200

 211300

 211400

 211500

 211600

 211700

 211800

 211900

 212000

 212100

 212200

T
a

g
g

in
g

 a
c
c
u

ra
c
y
 (

%
 o

f
w

o
rd

 t
o

k
e

n
s
)

-log P(data)

EM (random start)
EM (uniform start)

Figure 4: Multiple EM restarts for POS tagging. Each
point represents one random restart; the y-axis is tag-
ging accuracy and the x-axis is EM’s objective function,
− log P(data).

accuracy, while automatic selection from 1000 runs
yields 82.4% accuracy.

Gibbs sampling runs also yield WFST cascades
with varying task accuracies, due to random initial
samples and sampling decisions. In fact, the varia-
tion is even larger than what we find with EM. It is
natural to ask whether we can do automatic run se-
lection for Gibbs sampling. If we are using anneal-
ing, it makes sense to use the probability of the fi-
nal sample, which is supposed to approximate the
MAP derivation. When using averaging, however,
choosing the final sample would be quite arbitrary.
Instead, we propose choosing the run that has the
highest average log-probability (that is, the lowest
entropy) after burn-in. The rationale is that the runs
that have found their way to high-probability peaks
are probably more representative of the true distri-
bution, or at least capture a part of the distribution
that is of greater interest to us.

We find that this method works quite well in prac-
tice. Figure 5 illustrates 1000 POS tagging runs
for annealing with automatic run selection, yield-
ing 84.7% accuracy. When using averaging, how-
ever, automatic selection from 1000 runs (Figure 6)
produces a much higher accuracy of 90.7%. This
is better than accuracies reported previously using

 0.75

 0.8

 0.85

 0.9

 235100

 235150

 235200

 235250

 235300

 235350

 235400

T
a
g
g
in

g
 a

c
c
u
ra

c
y
 (

%
 o

f
w

o
rd

 t
o
k
e
n
s
)

-log P(derivation) for final sample

Bayesian run (with annealing)

Figure 5: Multiple Bayesian learning runs (using anneal-
ing with temperature decreasing from 2 to 0.08) for POS
tagging. Each point represents one run; the y-axis is tag-
ging accuracy and the x-axis is the − log P(derivation) of
the final sample.

 0.75

 0.8

 0.85

 0.9

 236800

 236900

 237000

 237100

 237200

 237300

 237400

 237500

 237600

 237700

 237800

 237900

T
a

g
g

in
g

 a
c
c
u

ra
c
y
 (

%
 o

f
w

o
rd

 t
o

k
e

n
s
)

-log P(derivation) averaged over all post-burnin samples

Bayesian run (using averaging)

Figure 6: Multiple Bayesian learning runs (using averag-
ing) for POS tagging. Each point represents one run; the
y-axis is tagging accuracy and the x-axis is the average
− log P(derivation) over all samples after burn-in.

Bayesian methods (85.2% from Goldwater and Grif-
fiths (2007), who use a trigram model) and close to
the best accuracy reported on this task (91.8% from
Ravi and Knight (2009b), who use an integer linear
program to minimize the model directly).

5 Experiments and Results

We run experiments for various natural language ap-
plications and compare the task accuracies achieved
by the EM and Bayesian learning methods. The
tasks we consider are:

Unsupervised POS tagging. We adopt the com-
mon problem formulation for this task described
by Merialdo (1994), in which we are given a raw
24,115-word sequence and a dictionary of legal tags
for each word type. The tagset consists of 45 dis-
tinct grammatical tags. We use the same modeling
approach as as Goldwater and Griffiths (2007), us-
ing a probabilistic tag bigram model in conjunction
with a tag-to-word model.

Letter substitution decipherment. Here, the task
is to decipher a 414-letter substitution cipher and un-
cover the original English letter sequence. The task
accuracy is defined as the percent of ciphertext to-

kens that are deciphered correctly. We work on the
same standard cipher described in previous litera-
ture (Ravi and Knight, 2008). The model consists
of an English letter bigram model, whose probabil-
ities are fixed and an English-to-ciphertext channel
model, which is learnt during training.

Segmentation of space-free English. Given
a space-free English text corpus (e.g.,
iwalkedtothe...), the task is to segment the
text into words (e.g., i walked to the ...).
Our input text corpus consists of 11,378 words,
with spaces removed. As illustrated in Figure 1,
our method uses a unigram FSA that models every
letter sequence seen in the data, which includes
both words and non-words (at most 10 letters long)
composed with a deterministic spell-out model.
In order to evaluate the quality of our segmented
output, we compare it against the gold segmentation
and compute the word token f-measure.

Japanese/English phoneme alignment. We
use the problem formulation of Knight and
Graehl (1998). Given an input English/Japanese
katakana phoneme sequence pair, the task is to
produce an alignment that connects each English

MLE Bayesian
EM prior VB-EM Gibbs

POS tagging 82.4 α = 10−2, β = 10−1 84.1 90.7
Letter decipherment 83.6 α = 106, β = 10−2 83.6 88.9
Re-spacing English 0.9 α = 10−8, β = 104 0.8 42.8
Aligning phoneme strings∗ 100 α = 10−2 99.9 99.1

Table 1: Gibbs sampling for Bayesian inference outperforms both EM and Variational Bayesian EM. ∗The output of
EM alignment was used as the gold standard.

phoneme to its corresponding Japanese sounds (a
sequence of one or more Japanese phonemes). For
example, given a phoneme sequence pair ((AH B
AW T) → (a b a u t o)), we have to produce
the alignments ((AH → a), (B → b), (AW →
a u), (T → t o)). The input data consists of
2,684 English/Japanese phoneme sequence pairs.
We use a model that consists of mappings from each
English phoneme to Japanese phoneme sequences
(of length up to 3), and the mapping probabilities
are learnt during training. We manually analyzed
the alignments produced by the EM method for
this task and found them to be nearly perfect.
Hence, for the purpose of this task we treat the EM
alignments as our gold standard, since there are no
gold alignments available for this data.

In all the experiments reported here, we run EM
for 200 iterations and Bayesian for 5000 iterations
(the first 2000 for burn-in). We apply automatic run
selection using the objective function value for EM
and the averaging method for Bayesian.

Table 1 shows accuracy results for our four tasks,
using run selection for both EM and Bayesian learn-
ing. For the Bayesian runs, we compared two infer-
ence methods: Gibbs sampling, as described above,
and Variational Bayesian EM (Beal and Ghahra-
mani, 2003), both of which are implemented in
Carmel. We used the hyperparameters (α, β) as
shown in the table. Setting a high value yields a fi-
nal distribution that is close to the original one (P0).
For example, in letter decipherment we want to keep
the language model probabilities fixed during train-
ing, and hence we set the prior on that model to
be very strong (α = 106). Table 1 shows that the
Bayesian methods consistently outperform EM for
all the tasks (except phoneme alignment, where EM
was taken as the gold standard). Each iteration of

Gibbs sampling was 2.3 times slower than EM for
POS tagging, and in general about twice as slow.

6 Discussion

We have described general training algorithms for
FST cascades and their implementation, and exam-
ined the problem of run selection for both EM and
Bayesian training. This work raises several interest-
ing points for future study.

First, is there an efficient method for perform-
ing pointwise sampling on general FSTs, and would
pointwise sampling deliver better empirical results
than blocked sampling across a range of tasks?

Second, can generic methods similar to the ones
described here be developed for cascades of tree
transducers? It is straightforward to adapt our meth-
ods to train a single tree transducer (Graehl et al.,
2008), but as most types of tree transducers are
not closed under composition (Gécseg and Steinby,
1984), the compose/de-compose method cannot be
directly applied to train cascades.

Third, what is the best way to extend the FST for-
malism to represent non-parametric Bayesian mod-
els? Consider the English re-spacing application. We
currently take observed (un-spaced) data and build
a giant unigram FSA that models every letter se-
quence seen in the data of up to 10 letters, both
words and non-words. This FSA has 207,253 tran-
sitions. We also define P0 for each individual transi-
tion, which allows a preference for short words. This
set-up works fine, but in a nonparametric approach,
P0 is defined more compactly and without a word-
length limit. An extension of FSTs along the lines
of recursive transition networks may be appropriate,
but we leave details for future work.

References
Matthew J. Beal and Zoubin Ghahramani. 2003. The

Variational Bayesian EM algorithm for incomplete
data: with application to scoring graphical model
structures. Bayesian Statistics, 7:453–464.

Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Os-
borne. 2009. A Gibbs sampler for phrasal syn-
chronous grammar induction. In Proceedings of ACL-
IJCNLP 2009.

Alexander Clark. 2002. Memory-based learning of mor-
phology with stochastic transducers. In Proceedings
of ACL 2002.

John DeNero, Alexandre Bouchard-Côté, and Dan Klein.
2008. Sampling alignment structure under a Bayesian
translation model. In Proceedings of EMNLP 2008.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of ACL 2005.

Jianfeng Gao and Mark Johnson. 2008. A comparison of
Bayesian estimators for unsupervised Hidden Markov
Model POS taggers. In Proceedings of EMNLP 2008.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest.

Stuart Geman and Donald Geman. 1984. Stochastic re-
laxation, Gibbs distributions and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(6):721–741.

Sharon Goldwater and Thomas L. Griffiths. 2007.
A fully Bayesian approach to unsupervised part-of-
speech tagging. In Proceedings of ACL 2007.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A Bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition,
112(1):21 – 54.

Jonathan Graehl, Kevin Knight, and Jonathan May. 2008.
Training tree transducers. Computational Linguistics,
34(3):391–427.

Kevin Knight and Yaser Al-Onaizan. 1998. Transla-
tion with finite-state devices. In Proceedings of AMTA
1998.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599–
612.

Knight Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Proceedings of CICLing-2005.

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji Ya-
mada. 2006. Unsupervised analysis for decipherment
problems. In Proceedings of COLING-ACL 2006.

Okan Kolak, Willian Byrne, and Philip Resnik. 2003. A
generative probabilistic OCR model for NLP applica-
tions. In Proceedings of HLT-NAACL 2003.

Lambert Mathias and William Byrne. 2006. Statisti-
cal phrase-based speech translation. In Proceedings
of ICASSP 2006.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Shmuel Peleg and Azriel Rosenfeld. 1979. Break-
ing substitution ciphers using a relaxation algorithm.
Communications of the ACM, 22(11):598–605.

Fernando C. N. Pereira and Michael D. Riley. 1996.
Speech recognition by composition of weighted finite
automata. Finite-State Language Processing, pages
431–453.

Fernando Pereira, Michael Riley, and Richard Sproat.
1994. Weighted rational transductions and their appli-
cations to human language processing. In ARPA Hu-
man Language Technology Workshop.

Sujith Ravi and Kevin Knight. 2008. Attacking deci-
pherment problems optimally with low-order n-gram
models. In Proceedings of EMNLP 2008.

Sujith Ravi and Kevin Knight. 2009a. Learning
phoneme mappings for transliteration without parallel
data. In Proceedings of NAACL HLT 2009.

Sujith Ravi and Kevin Knight. 2009b. Minimized mod-
els for unsupervised part-of-speech tagging. In Pro-
ceedings of ACL-IJCNLP 2009.

Richard Sproat, Chilin Shih, William Gale, and Nancy
Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

