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6.1 Introduction

Why use tree adjoining grammars (TAG) for statistical parsing? It
might be thought that its added formal power makes parameter estima-
tion unnecessarily difficult; or that whatever benefits it provides—the
ability to model unbounded cross-serial dependencies, for example—
are inconsequential for statistical parsing, which is concerned with the
probable rather than the possible.

But just as TAG is not by itself a complete linguistic theory, but a
formalism for specifying linguistic theories, it should not be viewed as a
statistical model but a formalism for specifying statistical models. The
advantage that TAG has over CFG is that it assigns richer structural
descriptions to sentences; specifically, in addition to parse trees, it as-
signs derivation trees (defined below) on which features of a parsing
model can be defined.

In this chapter we explore the use of TAG for statistical parsing. We
start by examining PCFG-based parsers which use head-lexicalization
to capture bilexical dependencies, beginning with the work of Mager-
man (1995) and continued by Charniak (1997, 2000) and Collins (1996,
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FIGURE 1 Grammar and derivation for “John should leave tomorrow.”

1997, 1999), and observe that these models are in fact closely related
to probabilistic lexicalized TAG (Schabes 1992, Resnik 1992). We in-
troduce a variant of probabilistic TAG that captures the same bilexical
dependencies that these PCFG-based models do (a possibility noted by
Resnik (1992) early on), but with less notational overhead, and demon-
strate that it can be used to parse with comparable accuracy.

We argue on the way that the use of probabilistic TAG provides two
benefits over PCFG: first, it naturally captures some dependencies that
must be encoded ad hoc into a PCFG, including dependencies which the
above PCFG-based parsers do not capture; second, the derivation trees
a TAG parser computes in addition to parse trees may be useful for
further processing (for example, translation or semantic interpretation).
Finally, we examine some recent parsers outside of the lexicalized PCFG
family and discuss how TAG might be of use in these systems as well.

6.2 The formalism

The formalism we use is a variant of lexicalized tree insertion gram-
mar (TIG), which is, in turn, a restricted version of lexicalized TAG
(Schabes and Waters 1995). In our variant there are three composition
operations: substitution (α2 in Figure 1), adjunction (β), and sister-
adjunction (α3). Auxiliary trees and adjunction are restricted as in
TIG: essentially, auxiliary trees with nonempty terminal nodes on both
sides of the foot node are not allowed, nor any adjunction operation
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that might create such a tree.
Sister-adjunction is not an operation found in standard definitions of

TAG, but is similar to the sister-adjunction operation of d-tree substi-
tution grammar (Rambow et al. 1995) and the modification operation
of Sima’an’s tree-gram model (2000, 2002b). In this operation the root
of an initial tree is inserted as a new daughter of an interior node. It is
similar to modifier adjunction (Schabes and Shieber 1994) in that mul-
tiple trees can be sister-adjoined at a single position. (By contrast, only
one auxiliary tree may be adjoined at a single node.) This operation
does not add any formal power; we simply introduce it so we can derive
the flat structures found in the Penn Treebank.

Rather than coin a new acronym for this particular variant, we will
simply refer to it as “TAG” and trust that no confusion will arise.
Figure 1 shows an example grammar and the derivation of the sentence
“John should leave soon.” The derivation tree encodes this process, with
each arc corresponding to a composition operation. Arcs corresponding
to substitution and adjunction are labeled with the Gorn address1 of
the substitution or adjunction site. An arc corresponding to the sister-
adjunction of a tree between the ith and i+1st children of η (allowing for
two imaginary children beyond the leftmost and rightmost children) is
labeled (η, i). This grammar, as well as the grammar used by the parser,
is lexicalized in the sense that every elementary tree has exactly one
terminal node, its lexical anchor.

Probabilistic TAG (Resnik 1992, Schabes 1992) is a history-based
model like PCFG; that is, it decomposes the probability of a tree into
probabilities of decisions made in building the tree. In PCFG the deci-
sions are rewritings of nonterminal symbols; in probabilistic TAG the
decisions are composition operations. The parameters of a probabilistic
TAG are: ∑

α

Pi(α) = 1
∑

α

Ps(α | η) = 1
∑

β

Pa(β | η) + Pa(NONE | η) = 1

where α ranges over initial trees, β over auxiliary trees, and η over
nodes. Pi(α) is the probability of beginning a derivation with α;
Ps(α | η) is the probability of substituting α at η; Pa(β | η) is the
probability of adjoining β at η; finally, Pa(NONE | η) is the proba-

1A Gorn address is a list of integers: the root of a tree has address ε, and the
jth child of the node with address i has address i · j.
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bility of nothing adjoining at η. Joshi and Sarkar (2002) give a fuller
introduction to PTAG; Carroll and Weir (1997, 2002) suggest other
parameterizations worth exploring as well.

Our variant adds another set of parameters for sister-adjunction:∑
α

Psa(α | η, i, X) + Psa(STOP | η, i, X) = 1

where α ranges over initial trees, and (η, i) ranges over possible sister-
adjunction sites. Psa(α) is the probability of sister-adjoining α, and
Psa(STOP) is the probability of no further sister-adjunction. X is the
root label of the previous tree (i. e., closer to the head) to sister-adjoin
at the site (η, i), or START if none; thus the roots of the trees sister-
adjoining at a given site are generated by a first-order Markov process.
This is similar to the base-NP model in Collins’ model (1997) and the
model from BBN’s SIFT system (Miller et al. 1998).

The probability of a derivation can then be expressed as a product
of the probabilities of the individual operations of the derivation. Thus
the probability of the example derivation of Figure 1 would be

Pi(α1) · Pa(NONE | α1(ε)) · Ps(α2 | α1(1)) · Pa(β | α1(2)) ·
Psa (α3 | α1(2), 1,START) · Psa (STOP | α2(2), 1, RB) ·
Psa (STOP | α2(ε), 0,START) · . . .

where α(i) is the node of α with address i.

6.3 Inducing a stochastic grammar from the Treebank
We want to obtain a maximum-likelihood estimate of these parame-
ters, but cannot estimate them directly from the Treebank, because
the sample space of PTAG is the space of TAG derivations, not the
derived trees that are found in the Treebank. For there are many TAG
derivations which can yield the same derived tree, even with respect
to a single grammar. We need, then, to reconstruct TAG derivations
somehow from the training data.

One approach, taken by Hwa (1998), is to choose some grammar gen-
eral enough to parse the whole corpus and obtain a maximum-likelihood
estimate using Expectation-Maximization (EM). A different approach,
taken by Magerman (1995) and others for lexicalized PCFGs and Neu-
mann (1998) and others (Xia 1999, Chen and Vijay-Shanker 2000) for
LTAGs, is to use heuristics to reconstruct the derivations, and directly
estimate the PTAG parameters from the reconstructed derivations. We
take this approach as well. (One could imagine combining the two ap-
proaches, using heuristics to extract a grammar and then EM to rees-
timate its parameters.)
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In fact, we can follow Magerman’s approach very closely. In a lexical-
ized TAG, because each composition brings together two lexical items,
every composition probability involves a bilexical dependency. Given
a CFG and a Magerman-style head-percolation scheme, an equivalent
TAG can be constructed whose derivations mirror the dependency anal-
ysis implicit in the head-percolation scheme, as shown below.

6.3.1 Reconstructing derivations
For each node η, the head-percolation and argument/adjunct rules clas-
sify exactly one child of η as a head and the rest as either arguments
or adjuncts. We use Collins’ rules with few modifications, but we treat
coordination specially: if an X dominates a CC, and the rightmost CC
has an X to its left and to its right, then that CC is marked as the
head and the two nearest Xs on either side as arguments.

Using this classification into heads, arguments, and adjuncts, we can
construct a TAG derivation (including elementary trees) from a derived
tree as follows:

1. If η is an adjunct, excise the subtree rooted at η to form a sister-
adjoined initial tree.

2. If η is an argument, excise the subtree rooted at η to form an
initial tree, leaving behind a substitution node.

3. But if η is an argument and η′ is the nearest ancestor with the
same label, and η is the rightmost descendant of η′, and all the
intervening nodes, including η′, are heads, excise the segment
from η′ down to η to form an auxiliary tree, leaving behind a
head node.

Rules (1) and (2) produce the desired result; rule (3) changes things
somewhat by making trees with recursive arguments into auxiliary
trees. For example, if applied to the derived tree in Figure 1, it would
be responsible for extracting β. In the present implementation, in fact,
it is restricted to nodes labeled VP. The complicated restrictions on η′

are simply to ensure that a well-formed TIG derivation is produced.

6.3.2 Parameter estimation and smoothing
Now that we have augmented the training data to include TAG deriva-
tions, we could try to directly estimate the parameters of the model
from Section 6.2. But since the number of possible composition opera-
tions is very high, the data would be too sparse. We therefore generate
an elementary tree in two steps: first the tree template (that is, the
elementary tree stripped of its lexical anchor), then the anchor. The
probabilities are decomposed as follows:
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Pi(α) = Pi1(τα)P2(wα | τα)
Ps(α | η) = Ps1(τα | η) · P2(wα | τα, tη, wη)
Pa(β | η) = Pa1(τβ | η) · P2(wβ | τβ , tη, wη)

Psa(α | η, i, X) = Psa1(τα | η, i, X) · P2(wα | τα, tη, wη, X)

where τα is the tree template of α and wα is the lexical anchor of α, and
similarly for β; wη is the lexical anchor of the elementary tree containing
η, and tη is the part-of-speech (POS) tag of that anchor. Note that the
same probability P2 is used for all three composition operations: when
X does not have a meaningful value, the value START is used.

These probabilities each have three backoff levels:

Ps1,a1(γ | · · ·) Psa1(γ | · · ·) P2(w | · · ·)
1 τη, wη, ηη τη, wη, ηη, i, X τγ , tη, wη, X
2 τη, ηη τη, ηη, i, X τγ , tη, X
3 τ̄η, ηη τ̄η, ηη, i τγ

4 ∅ ∅ tγ

where τη is the tree template of the elementary tree containing η, τ̄η is
τη stripped of its anchor’s POS tag, and ηη is the address of η in its
elementary tree; τγ is the tree template of γ, and tγ is the POS tag of
its anchor. The backed-off models are combined by linear interpolation:

e = λ1e1 + (1− λ1)(λ2e2 + (1 − λ2)(λ3e3 + (1− λ3)e4))

where ei is the estimate at level i, and the λi are computed by a com-
bination of formulas used by Collins (1999) and Bikel et al. (1997):

λi =
(

1− di−1

di

) (
1

1 + 5ui/di

)

where di is the number of occurrences in training of the context at level
i (d0 = 0), and ui is the number of unique outcomes for that context
seen in training.

To handle unknown words, we treat all words seen five or fewer times
in training as a single symbol *UNKNOWN*, following Collins (1997).

6.4 Experimental details
6.4.1 Extracting the grammar

When we run the algorithm given in Section 6.3.1 on sections 02–21
of the Penn Treebank, the resulting grammar has 50,628 lexicalized
trees (with words seen five or fewer times replaced with *UNKNOWN*).
However, if we consider elementary tree templates, the grammar is quite
manageable: 2104 tree templates, of which 1261 occur more than once
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FIGURE 3 Distribution of tree templates: frequency versus rank (log-log)

(see Figure 3). A few of the most frequent tree templates are shown in
Figure 2.

So the extracted grammar is fairly compact, but how complete is
it? Ideally the size of the grammar would converge, but if we plot its
growth during training (Figure 4), we see that even after training on
1 million words, new elementary tree templates continue to appear at
the rate of about four every 1000 words, or one every ten sentences.

We do not consider this effect to be seriously detrimental to pars-
ing. Since 90% of unseen sentences can be parsed perfectly with the
extracted grammar, its coverage is good enough potentially to parse
new data with state-of-the-art accuracy. Note that for the remaining
10% it is still quite possible for the grammar to derive a perfect parse,
since there can be many TAG derivations which yield the same derived
tree. Nevertheless, we would like to know the source of this effect and
minimize it. Three possible explanations are:
. New constructions continue to appear.
. Old constructions continue to be (erroneously) annotated in new

ways.
. Old constructions continue to be combined in new ways, and the

extraction heuristics fail to factor this variation out.

In a random sample of 100 once-seen elementary tree templates, we
found (by casual inspection) that 34 resulted from annotation errors,
50 from deficiencies in the heuristics, and four apparently from errors



Statistical parsing with an automatically extracted TAG / 9

1

10

100

1000

10000

1 10 100 1000 10000 100000

FIGURE 4 Growth of grammar during training: types versus tokens (log-log)

in the text itself. Only twelve appeared to be genuine.2

Therefore the extracted grammar is more complete than Figure 4
suggests at first glance. Evidently, however, our extraction heuristics
have room to improve. The majority of trees resulting from deficiencies
in the heuristics involved complicated coordination structures, which
is not surprising, since coordination has always been problematic for
TAG.

6.4.2 Parsing with the grammar
We used a CKY-style parser similar to the one described by Schabes
and Waters (1996), with a modification to ensure completeness (because
foot nodes are treated as empty, which standard CKY does not handle).
We also extended the parser to simulate sister-adjunction as regular
adjunction.

The parser uses a beam search, assigning a score to each item [η, i, j]
and pruning away any item with score less than 10−5 times that of the
best item for that span. The score of an item is its inside probability
multiplied by the prior probability P (η), following Goodman (1997).
P (η), in turn, is decomposed as P (τ̄η | tη, wη) · P (tη, wη), so that the
first term can be smoothed by linear interpolation (see Section 6.3.2)
with the backed-off estimate P (τ̄η | tη), following Collins (1999).

As mentioned above (Section 6.3.2), words occurring five or fewer
times in training were replaced with the symbol *UNKNOWN*. When any

2This survey was performed on an earlier version of the extraction heuristics.
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such word w occurs in the test data, it is also replaced with *UNKNOWN*.
Following Collins (1997), the parser only allows w to anchor templates
that have POS tags observed in training with w itself, or templates
that have the POS tag assigned to w by MXPOST (Ratnaparkhi 1996);
all other templates are thrown out for w. In addition, tree templates
occurring only once in training (with any anchor) are thrown out of the
grammar entirely.

6.5 Results and discussion
6.5.1 Comparison with previous work in TAG
Neumann (1998) describes an experiment similar to ours, although the
grammar he extracts only arrives at a complete parse for 10% of un-
seen sentences. Xia (1999) describes a TAG extraction system similar
to ours, and Sarkar (2001) reports results of parsing using its output
grammar, but since his work focuses on combining annotated and unan-
notated training data, these results are not directly comparable to ours.
Finally, Chen and Vijay-Shanker (2000) describe another similar TAG
extraction system, but do not report parsing results.

We can, however, directly compare our parser to Hwa’s (1998). To do
this, we trained the model on sentences of length 40 or less in sections
02–09 of the Penn Treebank, down to POS tags only, and then tested
on sentences of length 40 or less in section 23, parsing from POS tag
sequences to fully bracketed parses. The metric used was the percentage
of guessed brackets which did not cross any correct brackets:

Hwa (1998) 82.4
present model 84.7

The present model obtains an error reduction of 13% compared with
Hwa’s. (It should be noted that Hwa’s model does not make use of the
nonterminal labels in the training data, so in a sense our model was
trained on more data.)

6.5.2 Comparison with lexicalized PCFG parsers
Next we compared our parser against lexicalized PCFG parsers, train-
ing on sections 02–21 and testing on section 23. The results (Fig-
ure 5) show that our parser lies roughly midway between the earli-
est (Magerman 1995) and latest (Charniak 2000) of this class.3 While
these results are not state-of-the-art, they do verify the hypothesis that
a probabilistic TAG parser should perform at the same level as a lexi-
calized PCFG parser.

3Note that these figures are an improvement over those of an earlier version
(Chiang 2000).
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≤ 40 words
LR LP CB 0 CB ≤ 2 CB

Magerman (1995) 84.6 84.9 1.26 56.6 81.4
Charniak (1997) 87.5 87.4 1.0 62.1 86.1
present model 87.7 87.7 1.03 65.1 84.8
Collins (1999) 88.5 88.7 0.92 66.7 87.1
Charniak (2000) 90.1 90.1 0.74 70.1 89.6

≤ 100 words
LR LP CB 0 CB ≤ 2 CB

Magerman (1995) 84.0 84.3 1.46 54.0 78.8
Charniak (1997) 86.7 86.6 1.20 59.5 83.2
present model 87.0 86.9 1.22 62.0 82.2
Collins (1999) 88.1 88.3 1.06 64.0 85.1
Charniak (2000) 89.6 89.5 0.88 67.6 87.7

FIGURE 5 Parsing results. LR = labeled recall, LP = labeled precision; CB
= average crossing brackets, 0 CB = no crossing brackets, ≤ 2 CB = two or

fewer crossing brackets. All figures except CB are percentages.

Furthermore, there are some dependency analyses which are encod-
able by TAGs but not by a simple head-percolation scheme. For exam-
ple, for the sentence “John should have left,” Magerman’s rules make
should and have the heads of their respective VPs, so that there is no
dependency between left and its subject John (see Figure 6a). Nearly
a quarter of nonempty subjects appear in such a configuration. TAG
can produce the desired dependencies (b) easily, using the grammar of
Figure 1. A more complex lexicalization scheme for CFG could as well
(one which kept track of two heads at a time, for example), but the
TAG account is simpler and cleaner.

Bilexical dependencies are not the only nonlocal dependencies that
can be used to improve parsing accuracy. For example: the attachment
of an S depends on the presence or absence of the embedded subject
(Collins 1999); Treebank-style two-level NPs are mismodeled by PCFG
(Collins 1999, Johnson 1998); the generation of a node depends on the
label of its grandparent (Charniak 2000, Johnson 1998). In order to
capture such dependencies in a PCFG-based model, they must be lo-
calized either by transforming the data or modifying the parser. Such
changes are not always obvious a priori and often must be devised
anew for each language or each corpus.

But none of the cases listed above requires special treatment in a
PTAG model, because each composition probability involves not only
a bilexical dependency but a “biarboreal” (tree-tree) dependency. That
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FIGURE 6 Bilexical dependencies for “John should have left.”

is, PTAG generates an entire elementary tree at once, conditioned on
the entire elementary tree being modified. Thus some dependencies
that have to be stipulated in a PCFG by tree transformations or parser
modifications are captured for free in a PTAG model.

Of course, this additional context-sensitivity brings with it increased
data sparseness; we suspect that our model does not do better than
lexicalized PCFG models because it is not using this extra informa-
tion very robustly. Fine-tuning the backoff model might bring accuracy
closer to the state-of-the-art, but it may be more productive to look
beyond history-based models to models which provide more flexibility.

6.5.3 Beyond history-based models

Our parser does not fare as well when compared with recent parsers
which, unlike our parser and lexicalized PCFG–based parsers, are not
history-based models:

≤ 40 words ≤ 100 words
LR LP LR LP

present model 87.7 87.7 87.0 86.9
Collins (2000) 90.1 90.4 89.6 89.9
Bod (2001) 90.6 90.8 89.6 89.5

The Data-Oriented Parsing (DOP1) model (Bod and Scha 2002) is
related to ours in that both are based on probabilistic tree grammars;
Hoogweg’s TIGDOP model (2000, 2002) is even more closely related,
being based on TIG. But the key difference is that our parser computes
the best single derivation for the input sentence, whereas DOP1 com-
putes the best derived tree for the input sentence, by summing over
many derivations.
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We see two main benefits of our method. First, computing the
highest-probability single derivation is much more efficient than com-
puting the highest-probability derived tree. The latter is, in fact, NP-
hard (Sima’an 1999, Sima’an 2002a). Bod uses random sampling to
obtain a 5 million elementary tree subset of the much larger full gram-
mar, and then computes only the 1,000 best derivations, summing
those which yield the same derived tree. Even with the search space
thus reduced, this procedure is still very computationally expensive.

Second, even though a parser which finds the best single derivation
does less work, it delivers more, because it computes a derivation tree
in addition to a parse tree. This is important for applications in which
the derivation is used for later processing. For example, in synchronous
TAG (Shieber 1994) it is used as an interlingua of sorts for machine
translation. In the LTAG semantics of Kallmeyer and Joshi (1999),
interpretations are computed compositionally, not on derived trees, but
on derivation trees. Generally speaking, under any interpretation of
TAG which assigns some linguistic significance to derivation trees, a
parser which computes only derived trees is inadequate.

The primary advantage of DOP over our model is that DOP makes
use of multi-anchored elementary trees. It would be possible to do this
in our model as well, simply by modifying the extraction heuristics to
produce multi-anchored elementary trees. For example, we might put
a preposition and the headword of its object into the same elementary
tree, so that the attachment of a PP would be sensitive to its preposi-
tional object.

Our initial experiments in this direction, however, have yielded a
decrease in accuracy. The problem seems to be that our smoothing
method does not handle the additional data sparseness well. One might
think about backing off from generating multi-anchored trees to gener-
ating single-anchored trees; but since this means backing off from one
kind of derivation to another kind of derivation, this makes no sense if
we are looking for the best single derivation.

On the other hand, since DOP sums over all possible derivations
of a parse tree, it can combine probability estimates of parses which
are generated in chunks of varying size. Thus summing over deriva-
tions appears to accomplish what our smoothing method does not.
(Note that the model described by Sima’an (2000, 2002b) employs nei-
ther smoothing nor summing over derivations, and performs worse than
models which do either: 83/85% labeled recall/precision for sentences
of length ≤ 40.)

Another system which makes effective use of larger amounts of con-
text is described by Collins (2000). This system takes the parses pro-
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duced by a PCFG-based parser (Collins 1999) and uses a second model
to rerank them. This second model treats trees not as sequences of
decisions, but as arbitrary sets of features (not in the sense of annota-
tions on nodes, but characteristics of a tree which the model looks at
to compute a score). It is thus able to take into account more or less
context as appropriate.

There is no reason why such a method could not be applied to rerank-
ing TAG derivations instead of CFG derivations. In such a system one
could define features which span more than two elementary trees (for
example, relating a preposition, its object, and the NP or VP it mod-
ifies), without the complication of multi-anchored trees or other alter-
ations to the grammar. The advantage of TAG over CFG in this case
would be that TAG derivations provide a structure on which more com-
plex features can be more easily defined (for example, relating subjects
and objects, which do not always appear in the same relative config-
uration on the derived tree). And unlike DOP, such a system would
still compute derivations, retaining the advantages mentioned above
for applications.

6.5.4 An experiment on the Penn Chinese Treebank
To see how this system would adapt to a different corpus in a differ-
ent language, we replaced the head rules and argument/adjunct rules
with rules appropriate for the Penn Chinese Treebank (Xia et al. 2000).
These were adapted from rules constructed by Xia (1999).

We also made the following changes to the experimental setup:
. We lowered the unknown word threshold from five to one because

the new training set was smaller.. The POS tagger for unknown words had to be retrained on the new
corpus.. A beam width of 10−4 was used instead of 10−5.

We then trained the parser on sections 001–270 of the Penn Chi-
nese Treebank (84,873 words) and tested it on sections 271–300 (6776
words). To provide a basis for comparison with performance on En-
glish, we also trained the parser on sections 02–03 of the WSJ corpus
(82,592 words) and tested it on the first 400 sentences of section 23
(9473 words). Note that because of the relatively small datasets used,
cross-validation would be desirable for future studies.

The results (Figure 7) show that although there is a sizable gap
between performance on English and Chinese,4 it is quite usable on a

4This gap is wider than it was for an earlier version (Bikel and Chiang 2000),
even though accuracy for both languages improved.
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≤ 40 words
Model Corpus LR LP CB 0 CB ≤ 2 CB
present WSJ-small 84.0 83.6 1.34 50.4 79.4
present Xinhua 77.8 78.1 1.98 49.2 69.8

≤ 100 words
Model Corpus LR LP CB 0 CB ≤ 2 CB
present WSJ-small 83.4 83.1 1.53 48.5 76.8
present Xinhua 75.3 75.7 2.82 43.4 62.7

FIGURE 7 Parsing results. Abbreviations are as in Figure 5. Xinhua:
trained on Penn Chinese Treebank sections 001–270, tested on sections
271–300. WSJ-small: trained on Penn Treebank, Wall Street Journal

sections 02–03, tested on section 23, sentences 1–400.

language other than the one it was developed on. Indeed, this parser is
currently being used to augment the Penn Chinese Treebank, providing
rough parses which human annotators can correct up to twice as fast
as annotating from scratch (Chiou et al. 2001).

6.6 Conclusion
We have shown that probabilistic TAG can be used for statistical
parsing with accuracy comparable to that of models based on lexi-
calized PCFG, and that rule-based reconstruction of TAG derivations
from bracketed training data gives better accuracy than an EM-based
method (Hwa 1998).

Moreover, we have argued that TAG has advantages over CFG in two
areas: first, TAG derivations provide a convenient structure on which
features (like bilexical dependencies) can be easily defined; second, TAG
derivations provide extra information which is useful for applications
such as translation. Since neither of these advantages is bound to a
particular statistical model, we hope to continue this work by exploring
the usefulness of TAG under other approaches to the parsing problem
and its applications.
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Johnson, Mark. 1998. PCFG models of linguistic tree representations.
Computational Linguistics 24:613–632.

Joshi, Aravind, and Anoop Sarkar. 2002. Tree-Adjoining Grammars
and its application to statistical parsing. In Data-Oriented Parsing,
ed. Rens Bod, Remko Scha, and Khalil Sima’an. Stanford, CA: CSLI
Publications.



References / 19

Kallmeyer, Laura, and Aravind K. Joshi. 1999. Factoring predicate
argument and scope semantics: underspecified semantics with LTAG.
In Proceedings of the 12th Amsterdam Colloquium, ed. Paul Dekker,
169–174.

Magerman, David M. 1995. Statistical decision-tree models for parsing.
In Proceedings of the 33rd Annual Meeting of the Assocation for
Computational Linguistics, 276–283. Cambridge, MA.

Miller, Scott, Heidi Fox, Lance Ramshaw, and Ralph Weischedel. 1998.
SIFT – Statistically-derived Information From Text. In Proceedings
of the Seventh Message Understanding Conference (MUC-7). Wash-
ington, DC.

Neumann, Günter. 1998. Automatic extraction of stochastic lexical-
ized tree grammars from treebanks. In Proceedings of the Fourth In-
ternational Workshop on TAG and Related Formalisms (TAG+4),
120–123. Philadelphia, PA.

Rambow, Owen, K. Vijay-Shanker, and David Weir. 1995. D-tree gram-
mars. In Proceedings of the 33rd Annual Meeting of the Assocation
for Computational Linguistics, 151–158. Cambridge, MA.

Ratnaparkhi, Adwait. 1996. A maximum-entropy model for part-of-
speech tagging. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, 1–10. Philadelphia, PA.

Resnik, Philip. 1992. Probabilistic tree-adjoining grammar as a frame-
work for statistical natural language processing. In Proceedings of
the Fourteenth International Conference on Computational Linguis-
tics (COLING-92), 418–424. Nantes.

Sarkar, Anoop. 2001. Applying co-training methods to statistical pars-
ing. In Proceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguistics (NAACL
2001), 175–182. Pittsburgh, PA.

Schabes, Yves. 1992. Stochastic lexicalized tree-adjoining grammars.
In Proceedings of the Fourteenth International Conference on Com-
putational Linguistics (COLING-92), 426–432. Nantes.

Schabes, Yves, and Stuart M. Shieber. 1994. An alternative conception
of tree-adjoining derivation. Computational Linguistics 20:91–124.

Schabes, Yves, and Richard C. Waters. 1995. Tree insertion grammar: a
cubic-time parsable formalism that lexicalizes context-free grammar
without changing the trees produced. Computational Linguistics
21:479–513.

Schabes, Yves, and Richard C. Waters. 1996. Stochastic lexicalized
tree-insertion grammar. In Recent Advances in Parsing Technology,



20 / Data-Oriented Parsing

ed. H. Bunt and M. Tomita. 281–294. London: Kluwer Academic
Press.

Shieber, Stuart M. 1994. Restricting the weak generative capacity of
synchronous tree-adjoining grammars. Computational Intelligence
10(4):371–385. Special Issue on Tree Adjoining Grammars.

Sima’an, K. 2000. Tree-gram parsing: lexical dependencies and struc-
tural relations. In Proceedings of the 38th Annual Meeting of the
Assocation for Computational Linguistics, 53–60. Hong Kong.

Sima’an, Khalil. 1999. Learning Efficient Disambiguation. Doctoral
dissertation, University of Amsterdam.

Sima’an, Khalil. 2002a. Computational complexity of disambiguation
under DOP. In Data-Oriented Parsing, ed. Rens Bod, Remko Scha,
and Khalil Sima’an. Stanford, CA: CSLI Publications.

Sima’an, Khalil. 2002b. A head-driven data-oriented approach to lexical
dependency. In Data-Oriented Parsing, ed. Rens Bod, Remko Scha,
and Khalil Sima’an. Stanford, CA: CSLI Publications.

Xia, Fei. 1999. Extracting tree adjoining grammars from bracketed cor-
pora. In Proceedings of the 5th Natural Language Processing Pacific
Rim Symposium (NLPRS-99), 398–403.

Xia, Fei, Martha Palmer, Nianwen Xue, Mary Ellen Okurowski, John
Kovarik, Fu-Dong Chiou, Shizhe Huang, Tony Kroch, and Mitch
Marcus. 2000. Developing guidelines and ensuring consistency for
Chinese text annotation. In Proceedings of the Second International
Conference on Language Resources and Evaluation (LREC-2000).
Athens, Greece.


