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Abstract
In machine translation, discriminative models have almost entirely supplanted the classical noisy-
channel model, but are standardly trained using a method that is reliable only in low-dimensional
spaces. Two strands of research have tried to adapt more scalable discriminative training methods
to machine translation: the first uses log-linear probability models and either maximum likelihood
or minimum risk, and the other uses linear models and large-margin methods. Here, we provide an
overview of the latter. We compare several learning algorithms and describe in detail some novel
extensions suited to properties of the translation task: no single correct output, a large space of
structured outputs, and slow inference. We present experimental results on a large-scale Arabic-
English translation task, demonstrating large gains in translation accuracy.
Keywords: machine translation, structured prediction, large-margin methods, online learning,
distributed computing

1. Introduction

Statistical machine translation (MT) aims to learn models that can predict, given some utterance
in a source language, the best translation into some target language. The earliest of these models
were generative (Brown et al., 1993; Och et al., 1999): drawing on the insight of Warren Weaver
in 1947 that “translation could conceivably be treated as a problem in cryptography” (Locke and
Booth, 1955), they treated translation as the inverse of a process in which target-language utterances
are generated by a language model and then changed into source-language utterances via a noisy
channel, the translation model.

Och and Ney (2002) first proposed evolving this noisy-channel model into a discriminative
log-linear model, which incorporated the language model and translation model as features. This
allowed the language model and translation model be to scaled by different factors, and allowed
the addition of features beyond these two. Although discriminative models were initially trained by
maximum-likelihood estimation, the method that quickly became dominant was minimum-error-
rate training or MERT, which directly minimizes some loss function (Och, 2003). The loss function
of choice is most often Bleu (rather, 1 − Bleu), which is the standard metric of translation quality
used in current MT research (Papineni et al., 2002). However, because this loss function is in general
non-convex and non-smooth, MERT tends to be reliable for only a few dozen features.

Two strands of research have tried to adapt more scalable discriminative training methods to
machine translation. The first uses log-linear probability models, as in the original work of Och
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and Ney (2002), either continuing with maximum likelihood (Tillmann and Zhang, 2006; Blunsom
et al., 2008) or replacing it with minimum risk, that is, expected loss (Smith and Eisner, 2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010). The other uses linear models and large-margin
methods (Liang et al., 2006; Watanabe et al., 2007; Arun and Koehn, 2007); we have followed
this approach (Chiang et al., 2008b) and used it successfully with many different kinds of features
(Chiang et al., 2009; Chiang, 2010; Chiang et al., 2011).

Here, we provide an overview of large-margin methods applied to machine translation, and
describe in detail our approach. We compare MERT and minimum-risk against several online large-
margin methods: stochastic gradient descent, the Margin Infused Relaxed Algorithm or MIRA
(Crammer and Singer, 2003), and Adaptive Regularization of Weights or AROW (Crammer et al.,
2009). Using some simple lexical features, the best of these methods, AROW, yields a sizable
improvement of 2.4 Bleu over MERT in a large-scale Arabic-English translation task.

We discuss three novel extensions of these algorithms that adapt them to particular properties
of the translation task. First, in translation, there is no single correct output, but only a reference
translation, which is one of many correct outputs. We find that training the model to generate
the reference exactly can be too brittle; instead, we propose to update the model towards hope
translations which compromise between the reference translation and translations that are easier
for the model to generate (Section 4). Second, translation involves a large space of structured
outputs. We try to efficiently make use of this whole space, like most recent work in structured
prediction, but unlike much work in statistical MT, which relies on n-best lists of translations instead
(Section 5). Third, inference in translation tends to be very slow. Therefore, we investigate methods
for parallelizing training, and demonstrate a novel method that is expensive, but highly effective
(Section 6).

2. Preliminaries

In this section, we outline some basic concepts and notation needed for the remainder of the paper.
Most of this material is well-known in the MT literature; only Section 2.4, which defines the loss
function, contains new material.

2.1 Setting

In this paper, models are defined over derivations d, which are objects that encapsulate an input
sentence f (d), an output sentence e(d), and possibly other information.1 For any input sentence f ,
letD( f ) be the set of all valid derivations d such that f (d) = f .

A model comprises a mapping from derivations d to feature vectors h(d), together with a vector
of feature weights w, which are to be learned. The model score of a derivation d is w · h(d). The
1-best or Viterbi derivation of fi is d̂ = arg maxd∈D( fi) w · h(d), and the 1-best or Viterbi translation
is ê = e(d̂).

We are given a training corpus of input sentences f1, . . . , fN , and reference output translations
e1, . . . , eN produced by a human translator. Each ei is not the only correct translation of fi, but only
one of many. For this reason, often multiple reference translations are available for each fi, but

1. The variables f and e stand for French and English, respectively, in reference to the original work of Brown et al.
(1993).
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for notational simplicity, we generally assume a single reference, and describe how to extend to
multiple references when necessary.

Note that although the model is defined over derivations, only sentence pairs ( fi, ei) are observed.
There may be more than one derivation of ei, or there may be no derivations. Nevertheless, assume
for the moment that we can choose a reference derivation di that derives ei; we discuss various ways
of choosing di in Section 4.

2.2 Derivation forests

The methods described in this paper should work with a wide variety of translation models, but,
for concreteness, we assume a model defined using a weighted synchronous context-free grammar
or related formalism (Chiang, 2007). We do not provide a full definition here, but only enough
to explain the algorithms in this paper. In models of this type, derivations can be thought of as
trees, and the set of derivations D( f ) is called a forest. Although its cardinality can be worse than
exponential in | f |, it can be represented as a polynomial-sized hypergraph G = (V, E, r), where V is
a set of nodes, r ∈ V is the root node, and E ⊆ V × V∗ is a set of hyperedges. We write a hyperedge
as (v→ v). A derivation d is represented by an edge-induced subgraph of G such that r ∈ d and, for
every node v ∈ d, there is exactly one hyperedge (v→ v).

We require that h (and therefore w · h) decomposes additively onto hyperedges, that is, h can be
extended to hyperedges such that

h(d) =
∑

(v→v)∈d

h(v→ v)

This allows us to find the Viterbi derivation efficiently using dynamic programming.

2.3 Bleu

The standard metric for MT evaluation is currently Bleu (Papineni et al., 2002). Since we use this
metric not only for evaluation but during learning, it is necessary to describe it in detail.

For any string e, let gk(e) be the multiset of all k-grams of e. Let K be the maximum size k-grams
we will consider; K = 4 is standard. For any multiset A, let #A(x) be the multiplicity of x in A, let
|A| =

∑
x #A(x), and define the multisets A ∩ B, A ∪ B, and A∗ such that

#A∩B(x) = min(#A(x), #B(x))

#A∪B(x) = max(#A(x), #B(x))

#A∗(x) =

∞ if #A(x) > 0
0 otherwise

Let c be the candidate translation to be evaluated and let r be the reference translation. Then
define a vector of component scores

b(c, r) =
[
m1, . . .mK , n1, . . . nK , ρ

]
where

mk = |gk(c) ∩ gk(r)|

nk = |gk(c)|

ρ = |r|

1161



Chiang

If there is set of multiple references R, then

mk =

∣∣∣∣∣∣∣gk(c) ∩
⋃
r∈R

gk(r)

∣∣∣∣∣∣∣ (1)

ρ = arg min
r∈R

∣∣∣|r| − |c|∣∣∣ (2)

where ties are resolved by letting ρ be the length of the shorter reference.
The component scores are additive, that is, the component score vector for a set of sentences

c1, . . . , cN with references r1, . . . , rN is
∑

i b(ci, ri). Then the Bleu score is defined in terms of the
component scores:

Bleu(b) = exp

 1
K

K∑
k=1

log
mk

nk
+ min

(
0, 1 −

ρ

n1

)
2.4 Loss function

Our learning algorithms assume a loss function `i(e, ei) that indicates how bad it is to guess e instead
of the reference ei. Our loss function is based on Bleu, but because our learning algorithms are
online, we need to be able to evaluate the loss for a single sentence, whereas Bleu was designed to
be used on whole datasets. If we try to compute it on a single sentence, several problems arise. If
nk is zero, the Bleu score is undefined; if any of the mk are zero, the whole Bleu score is zero. Even
barring such problems, a Bleu score for a single sentence may not accurately reflect the impact of
that sentence on the whole test set (Chiang et al., 2008a).

The standard solution to these problems is to add pseudocounts (Lin and Och, 2004):

Bleu(b + b) = exp

 1
K

K∑
k=1

log
mk + mk

nk + nk
+ min

(
0, 1 −

ρ + ρ

n1 + n1

)
where b =

[
m1, . . . ,mK , n1, . . . , nK , ρ

]
are pseudocounts that must be set appropriately.

Watanabe et al. (2007) score a sentence in the context of all previously seen 1-best translations,
which they call the oracle document. We follow this approach here, but in order to reduce de-
pendence on the distant past, we use an exponential decay. That is, after processing each training
example ( fi, ei), we update the oracle document using the 1-best translation ê:

b← 0.9 · (b + b(ê, ei))

Then we define a per-sentence metric B that measures the impact that adding a new input and output
sentence will have on the Bleu score of the oracle document:

B(b) = n1 ·
(
Bleu(b + b) − Bleu(b)

)
(3)

The reason for the scaling factor n1, which is the size of the oracle document, is to try to correct for
the fact that if the oracle document is small, then adding a new sentence will have a large effect on
its Bleu score, and vice versa.

Finally, we can define the loss of a translation e relative to e′ as the difference between their
B scores, following Watanabe et al. (2007):

`i(e, e′) = B(b(e′, ei)) − B(b(e, ei))
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and, as shorthand,

`i(d, e′) ≡ `i(e(d), e′)

`i(d, d′) ≡ `i(e(d), e(d′))

3. Learning algorithms

In large-margin methods, we want to ensure that the difference, or margin, between the correct label
and an incorrect label exceeds some minimum; in margin scaling (Crammer and Singer, 2003), this
minimum is equal to the loss. That is, our learning problem is to minimize:

L(w) =
1
N

∑
i

Li(w) (4)

where

Li(w) = max
d∈D( fi)

vi(w, d, di)

vi(w, d, di) = `i(d, di) − w · (h(di) − h(d))

Note that since di ∈ D( fi) and vi(w, di, di) = 0, Li(w) is always nonnegative. We now review the
derivations of several existing algorithms for optimizing (4) for structured models.

3.1 Stochastic gradient descent

An easy way to optimize the objective function L(w) is stochastic (sub)gradient descent (SGD)
(Ratliff et al., 2006; Shalev-Shwartz et al., 2007). In SGD, we consider one component Li(w) of the
objective function at a time and update w by the subgradient:

w← w − η∇Li(w) (5)

∇Li(w) = −(h(di) − h(d+))

where

d+ = arg max
d∈D( fi)

vi(w, d, di)

If, as an approximation, we restrictD( fi) to just the 1-best derivation of fi, then we get the structured
perceptron algorithm (Rosenblatt, 1958; Freund and Schapire, 1999; Collins, 2002). Otherwise, we
get Algorithm 1. Note that, as is common practice with the perceptron, the final weight vector is
the average of the weight vector at each iteration. (Line 6 as implemented here can be inefficient; in
practice, we use the trick of Daumé (2006, p. 19) to average efficiently.)

The derivation d+ is the worst violator of our constraint that the margin be greater than or
equal to the loss, and appears frequently in large-margin learning algorithms. We call d+ the fear
derivation.2 An easy way to approximate the fear derivation would be to generate an n-best list and
select the derivation from it that maximizes vi. In Section 5 we discuss better ways to search for the
fear derivation.

2. The terminology of fear derivations and hope derivations to be defined below are due to Kevin Knight.
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Algorithm 1 Stochastic gradient descent
Require: training examples ( f1, e1), . . . , ( fN , eN)

1: w← 0
2: s← 0, t ← 0
3: while not converged do
4: for i ∈ {1, . . . ,N} in random order do
5: UpdateWeights(w, i)
6: s← s + w
7: t ← t + 1
8: w← s/t

9: procedure UpdateWeights(w, i)
10: d+ ← arg maxd∈D( fi) vi(w, d, di)
11: w← w + η(h(di) − h(d+))

3.2 MIRA

Kivinen and Warmuth (1996) derive SGD from the following update:

w← arg min
w′

(
1
2η
‖w′ − w‖2 + Li(w′)

)
(6)

where the first term, the conservativity term, prevents us from moving too far in a single iteration.
Taking partial derivatives and setting to zero, we get

w′ − w + η∇Li(w′) = 0

If we make the approximation ∇Li(w′) ≈ ∇Li(w), we get the gradient-descent update again:

w← w − η∇Li(w)

But the advantage of using (6) without approximation is that it will not overshoot the optimum if
the step size η happens to be too large. This is the Margin Infused Relaxed Algorithm (MIRA) of
Crammer and Singer (2003).

The MIRA update (6) replaces the procedure UpdateWeights in Algorithm 1. It is more com-
monly presented as a quadratic program (QP):

minimize
1
2η
‖w′ − w‖2 + ξi

subject to vi(w′, d, di) − ξi ≤ 0 ∀d ∈ D( fi)

where ξi is a slack variable.3 (Note that ξi ≥ 0 since di ∈ D( fi) and vi(w′, di, di) = 0.) The
Lagrangian is:

L =
1
2η
‖w′ − w‖2 + ξi +

∑
d∈D( fi)

αd(vi(w′, d, di) − ξi)

3. Watanabe et al. (2007) use a different slack variable ξid for each hypothesis d, which leads to a different update than
the one derived below.
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Setting partial derivatives to zero gives:

w′ = w + η
∑

d∈D( fi)

αd(h(di) − h(d))∑
d∈D( fi)

αd = 1

Substituting back into (3.2), we get the following dual problem:

maximize −
η

2

∥∥∥∥∥∥∥∥
∑

d∈D( fi)

αd(h(di) − h(d))

∥∥∥∥∥∥∥∥
2

+
∑

d∈D( fi)

αdvi(w, d, di)

subject to
∑

d∈D( fi)

αd = 1

αd ≥ 0 ∀d ∈ D( fi)

In machine translation, and in structured prediction in general, the number of hypotheses in
D( fi), and therefore the number of constraints in the QP, can be exponential or worse. Watanabe
et al. (2007) use the 1 best or 10 best hypotheses. In an earlier version of this work (Chiang et al.,
2008b), we used the top 10 fear derivations.4 Here, we use the cutting-plane algorithm of Tsochan-
taridis et al. (2004), which repeatedly recomputes the fear derivation and adds it to a working set Si

of derivations on which the QP is optimized (Algorithm 2). A new fear derivation is added to the
working set only if it is a worse violator by a certain margin (ε); otherwise, the algorithm terminates.

The procedure OptimizeSet solves the QP restricted to Si by sequential minimal optimization
(Platt, 1998), in which we repeatedly select a pair of derivations d′, d′′ and optimize their dual
variables αd′ , αd′′ . The function SelectPair uses the heuristics suggested by Taskar (2004, p. 80) to
select a pair of constraints: one must violate one of the KKT conditions (αd(vi(w′, d, di) − ξi = 0),
and the other must allow the objective to be improved. The procedure OptimizePair optimizes a
single pair of dual variables. This optimization is exact and can be derived as follows. Suppose we
have current suboptimal weights w(α) = w + η

∑
αd(h(di) − h(d)), and we want to increase αd′ by

δ and decrease αd′′ by δ. Then we get the following optimization in a single variable, δ:

maximize −
η

2

∥∥∥∥∥∥∥∑d

αd(h(di) − h(d)) + δ(−h(d′) + h(d′′))

∥∥∥∥∥∥∥
2

+ δ(vi(w, d′, di) − vi(w, d′′, di))

subject to − αd′ ≤ δ ≤ αd′′ (7)

Setting the partial derivative with respect to δ equal to zero, we get

δ =
η
∑

d αd(h(di) − h(d)) · (h(d′) − h(d′′)) + vi(w, d′, di) − vi(w, d′′, di)
η‖h(d′) − h(d′′)‖2

=
(w(α) − w) · (h(d′) − h(d′′)) + vi(w, d′, di) − vi(w, d′′, di)

η‖h(d′) − h(d′′)‖2

=
vi(w(α), d′, di) − vi(w(α), d′′, di)

η‖h(d′) − h(d′′)‖2

4. More accurately, we took the union of the 10 best derivations, the top 10 fear derivations, and the top 10 hope
derivations (to be defined below).
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Algorithm 2 MIRA weight update (Tsochantaridis et al., 2004; Platt, 1998; Taskar, 2004)
1: procedure UpdateWeights(w, i)
2: ε = 0.01
3: Si ← {di}

4: again← true
5: while again do
6: again← false
7: d+ ← arg max

d∈D( fi)
vi(w, d, di)

8: if vi(w, d+, di) > max
d∈Si

vi(w, d, di) + ε then

9: Si ← Si ∪ {d+}

10: OptimizeSet(w, i)
11: again← true

12: procedure OptimizeSet(w, i)
13: αd ← 0 for d ∈ Si

14: αdi ← 1
15: iterations← 0
16: while iterations < 1000 do
17: iterations← iterations + 1
18: d′, d′′ ← SelectPair(w, i)
19: if d′, d′′ not defined then
20: return
21: OptimizePair(w, i, d′, d′′)

22: function SelectPair(w, i)
23: ε = 0.01
24: for d′ ∈ Si do
25: vmax ← max

d′′,d′
vi(w, d′′, di)

26: if αd′ = 0 and vi(w, d′, di) > vmax + ε then
27: if ∃d′′ , d′ such that αd′′ > 0 then
28: return d′, d′′

29: if αd′ > 0 and vi(w, d′, di) < vmax − ε then
30: if ∃d′′ , d′ such that vi(w, d′′, di) > vi(w, d′, di) then
31: return d′, d′′

32: return undefined

33: procedure OptimizePair(w, i, d′, d′′)

34: δ←
vi(w, d′, di) − vi(w, d′′, di)

η‖h(d′) − h(d′′)‖2
35: δ← max(−αd′ ,min(αd′′ , δ))
36: αd′ ← αd′ + δ; αd′′ ← αd′′ − δ

37: w← w − ηδ(h(d′) − h(d′′))
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But in order to maintain constraint (7), we clip δ to the interval [−αd′ , αd′′] (line 35).
At the end of training, following McDonald et al. (2005), we average all the weight vectors

obtained at each iteration, just as in the averaged perceptron.

3.3 AROW

The conservativity term in (6) assumes that it is equally risky to move w in any direction, but this
is not the case in general. For example, even a small change in the language model weights could
result in a large change in translation length and fluency, whereas large changes in features like
those attached to number-translation rules have a relatively small effect.

Imagine that we choose a feature of our model, h j, and replace it with the feature h j · c while
replacing its weight with w j/c. This change has no effect on the scores assigned to derivations or the
translations generated, so intuitively one would hope that it also has no effect on learning. However,
it is easy to see that our online algorithms in fact apply updates that are c times bigger, and relative
to the new weight, c2 times bigger.

A number of approaches are suggested in the literature to address this problem, for example, the
second-order perceptron (Cesa-Bianchi et al., 2005), confidence-weighted learning (Dredze et al.,
2008), and Adaptive Regularization of Weights or AROW (Crammer et al., 2009). AROW replaces
the weight vector w with a Gaussian distribution over weight vectors, N(w,Σ). The conservativity
term in (6) accordingly changes from a Euclidean distance to a Kullback-Leibler distance. In ad-
dition, a new term is introduced that causes the confidence in the weights to increase over time (in
AROW’s predecessor (Dredze et al., 2008), it was motivated as the variance of Li):

w,Σ← arg min
w′,Σ′

(
KL

(
N(w′,Σ′) ‖ N(w,Σ)

)
+ Li(w′) +

λ

2
xTΣ′x

)
In the original formulation of AROW for binary classification, x is the instance vector. Here, we
set it to

∑
d∈Si αd (h(di) − h(d)), even though the αd aren’t known in advance; in practice, they are

known by the time they are needed.
With the KL distance between the two Gaussians written out explicitly, the quantity we want to

minimize is

1
2

(
log

det Σ

det Σ′
+ Tr

(
Σ−1Σ′

)
+ (w′ − w)TΣ−1(w′ − w) − D

)
+ Li(w′) +

λ

2
xTΣ′x

where D is the number of features. We minimize with respect to w′ and Σ′ separately. If we drop
terms not depending on w′, we get:

w← arg min
w′

1
2

(w′ − w)TΣ−1(w′ − w) + Li(w′)

which is the same as MIRA (6) except that Σ has taken the place of η. This leads to Algorithm 3,
which modifies Algorithm 2 in two ways. First, line 34 is replaced with:

δ←
vi(w, d′, di) − vi(w, d′′, di)

(h(d′) − h(d′′))Σ(h(d′) − h(d′′))

And line 37 is replaced with:
w← w − Σδ(h(d′) − h(d′′))
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Next, we turn to Σ. Setting partial derivatives with respect to Σ′ to zero, and using the fact that
Σ′ is symmetric, we get (Petersen and Pedersen, 2008):

1
2

(
−Σ′−1 + Σ−1

)
+
λ

2
xTx = 0

This leads to the AROW update, which follows the update for w (line 5 in Algorithm 1).

Σ−1 ← Σ−1 + λxTx

We initialize Σ to η0I and then update it at each iteration using this update; following Crammer et al.
(2009), we keep only the diagonal elements of Σ.

Algorithm 3 AROW (Crammer et al., 2009)
Require: training examples ( f1, e1), . . . , ( fN , eN)

1: w← 0
2: Σ← η0I
3: s← 0, t ← 0
4: while not converged do
5: for i ∈ {1, . . . ,N} in random order do
6: UpdateWeights(w, i) . Algorithm 2
7: s← s + w
8: t ← t + 1
9: x←

∑
d∈Si

αd (h(di) − h(d))

10: Σ−1 ← Σ−1 + λ diag(x2
1, . . . , x

2
n)

11: w← s/t

12: procedure OptimizePair(w, i, d′, d′′)

13: δ←
vi(w, d′, di) − vi(w, d′′, di)

(h(d′) − h(d′′))TΣ(h(d′) − h(d′′))
14: δ← max(−αd′ ,min(αd′′ , δ))
15: αd′ ← αd′ + δ

16: αd′′ ← αd′′ − δ

17: w← w − Σδ(h(d′) − h(d′′))

.

4. The reference derivation

We have been assuming that di is the derivation of the reference translation ei. However, this is not
always possible or even desirable. In this section, we discuss some alternative choices for di.

4.1 Bold/max-Bleu updating

It can happen that there does not exist any derivation of ei, for example, if ei contains a word never
seen before in training. In this case, Liang et al. (2006), in the scheme they call bold updating,

1168



Discriminative training of statistical translation models

simply skip the sentence. Another approach, called max-Bleu updating (Tillmann and Zhang, 2006;
Arun and Koehn, 2007), is to try to find the derivation with the highest Bleu score. However, Liang
et al. find that even when it is possible to find a di that exactly generates ei, it is not necessarily
desirable to update the model towards it, because it may be a bad derivation of a good translation.

For example, consider the following Arabic sentence (written left-to-right in Buckwalter roman-
ization) with English glosses:

(8) sd
blocked

qTEp
piece

mn
of

AlkEk
biscuit

AlmmlH
salted

“
“

brytzl
pretzel

”
”

Hlqh
his-throat

A very literal translation might be,

(9) A piece of a salted biscuit, a “pretzel,” blocked his throat

But the reference translation is in fact:

(10) A pretzel, a salted biscuit, became lodged in his throat

While still quite literal, translation (10) swaps grammatical roles in a way that is still difficult for
statistical MT systems to model. If the system happens to have some bad rules that translate sd
qTEp mn as a pretzel and “ brytzl ” as became lodged in, then it can use these bad rules to obtain
a perfect translation, but using this derivation as the reference derivation would only reinforce the
use of these bad rules. A derivation of translation (9) would probably serve better as the reference
translation. What we need is a good derivation of a good translation.

4.2 Local updating

The most common way to do this has been to generate the n-best derivations according to the model
and to choose the one with the lowest loss (Och and Ney, 2002). Liang et al. (2006) call this local
updating. Watanabe et al. (2007) generate a 1000-best list and select either the derivation with
lowest loss or the 10 derivations with lowest loss. The idea is that restricting to derivations with
a higher model score will filter out derivations that use bad, low-probability rules. Normally one
uses an n-best list as a proxy for the whole space of derivations, so that the larger n is, the better; in
this case, however, as n increases, local updating approaches max-Bleu updating, which is what we
are trying to avoid. It is not clear what the optimal n is, and whether it depends on factors such as
sentence length or pruning.

4.3 Hope derivations

Here, we propose an approach that ties the choice of di more closely to the model. We suppose that
for each fi, the reference derivation di is unknown, and it doesn’t necessarily derive the reference
translation ei, but we add a term to the objective function that says that we want di to have low loss
relative to ei.

w← arg min
w′

min
di∈D( fi)

(
1
2η
‖w′ − w‖2 + max

d∈D( fi)
vi(w′, d, di) + (1 − µ)`i(di, ei)

)
(11)

The parameter µ < 0 controls how strongly we want di to have low loss.
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We first optimize with respect to di, holding w′ constant. Then the optimization reduces to

di = arg max
d∈D( fi)

(µ`i(d, ei) + w · h(d)) (12)

Then, we optimize with respect to w′, holding di constant. Since this is identical to (6), we can use
any of the algorithms presented in Section 3.

We call di chosen according to (12) the hope derivation. Unlike the fear derivation, it is parame-
terized by µ. If we let µ = −1, the definition of the hope derivation becomes conveniently symmetric
with the fear derivation:

di = arg max
d∈D( fi)

(−`i(d, ei) + w · h(d))

Both the hope and fear derivations try to maximize the model score, but the fear derivation maxi-
mizes the loss whereas the hope derivation minimizes the loss.

5. Searching for hope and fear

As mentioned above, one simple way of approximating either the hope or fear derivation is to
generate an n-best list and choose from it the derivation that maximizes (12) or vi, respectively. But
Figure 1 shows that this approximation can be quite poor in practice, because the n-best list covers
such a small portion of the entire search space. Increasing n would help (and, unlike with local
updating, the larger n is, the better), but could become inefficient.

Instead, we use a dynamic program, analogous to the Viterbi algorithm, to directly search for
the hope/fear derivations in the forest. (For efficiency, we reuse the forest that is previously used to
search for the Viterbi derivation—an approximation, because this forest is pruned using the model
score.) If our loss function were decomposable onto hyperedges, this would be a simple matter
of setting the hyperedge weights to w · h(v → v) ± `i(v → v) and running the Viterbi algorithm.
However, our loss function is not hyperedge-decomposable, so we must resort to approximations.

5.1 Towards hyperedge-level Bleu

We begin by attempting to decompose the component scores b onto hyperedges. First, we need to
be able to calculate gk(v → v), the set of k-grams introduced by the hyperedge (v → v). This turns
out to be fairly easy, because nearly all decoder implementations have a mechanism for scoring a
k-gram language model, which is a feature of the form

hLMk (d) =
∑

w1···wk∈gk(e(d))

log P(wk | w1 · · ·wk−1) (13)

Since hLMk is decomposable onto hyperedges by assumption, it is safe to assume that gk is also
decomposable onto hyperedges, and so is nk, which is the cardinality of gk.

But mk is not as easy to decompose, because of “clipping” of k-gram matches. Suppose our
reference sentence is

(14) Australia is one of the few countries that have diplomatic relations with North Korea

and we have two partial translations

(15) the few
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Figure 1: Using loss-augmented inference to search for fear translations in the whole forest is better
than searching in the n-best list. Each point represents a derivation. The red square in the
upper-right is the fear derivation obtained by loss-augmented inference, whereas the red
square inside the box labeled “100-best” is the fear derivation selected from the 100-best
list. (The gray circles outside the box are 100 random samples from the forest.)
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(16) the countries

then for both, m1 = 2. But if we combine them into

(17) the few the countries

then m1 is not 2 + 2 = 4, but 3, because the only occurs once in the reference sentence. In order to
decompose mk exactly, we would have to structure the forest hypergraph so that subderivations with
different gk are rooted at different nodes, resulting in an exponential blowup. Therefore, following
Dreyer et al. (2007), we use unclipped counts of n-gram matches, which are not limited to the
number of occurrences in the reference(s), in place of (1):

mk =
∣∣∣gk(c) ∩ gk(r)∗

∣∣∣ (18)

These counts are easily decomposable onto hyperedges.
Finally, in order to decompose ρ, if there are multiple references, we can’t use the standard

definition of ρ in (2); instead we use the average reference length. Then we can apportion ρ among
hyperedges according to how much of the input sentence they consume:

ρ(v→ v) =
ρ

| fi|

| f (v)| −
∑
v′∈v

∣∣∣ f (v′)
∣∣∣ (19)

where f (v) is the part of the input sentence covered by the subderivation rooted at v.

5.2 Forest reranking

Appendix A.3, following Tromble et al. (2008), describes a way to fully decompose Bleu onto hy-
peredges. Here, however, we follow Dreyer et al. (2007), who use a special case of forest reranking
(Huang, 2008). To search for the hope or fear derivation, we use the following dynamic program:

vderiv(v) = arg max
d∈{vderiv(v→v)}

φ(d)

vderiv(v→ v) = {v→ v} ∪
⋃
v′∈v

vderiv(v′)

where φ is one of the following:

φ(d) = w · h(d) + B(b(d, ei)) hope

φ(d) = w · h(d) − B(b(d, ei)) fear

Note that maximizing w ·h(d)+ B(b(d, ei)) is equivalent to maximizing w ·h(d)−`i(d, ei), since they
differ by only a constant; likewise, maximizing w · h(d) − B(b(d, ei)) is equivalent to maximizing
w · h(d) + `i(d, ei).

This algorithm is not guaranteed to find the optimum, however. We illustrate with a counterex-
ample, using Bleu-2 (i.e., K = 2) instead of Bleu-4 for simplicity. Suppose our reference sentence
is as above, and we have two partial candidate sentences

(20) one of the few nations which maintain ties with the DPRK has been
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(21) North Korea with relations diplomatic have that countries few the of one is

Translation (20) has 4 unigram matches and 3 bigram matches, for a Bleu-2 score of
√

12/156;
translation (21) has 13 unigram matches and 1 bigram match, for a Bleu-2 score of

√
13/156.

If we extend both translations, however, with the word Australia, giving them each an extra uni-
gram match, then translation (20) gets a Bleu-2 score of

√
15/156, and translation (21),

√
14/156.

Though it does not always find the optimum, it works well enough in practice. After we find a hope
or fear derivation, we recalculate its exact Bleu score, without any of the approximations described
in this section.

6. Parallelization

Because inference is so slow for the translation task, and especially for the CKY-based decoder
we are using, parallelization is critical. Batch learning algorithms like MERT are embarrassingly
parallel, but parallelization of online learning is an active research area. Two general strategies have
been proposed for SGD. The simpler strategy is to run p learners in parallel and then average their
final weight vectors afterward (Mann et al., 2009; McDonald et al., 2010; Zinkevich et al., 2010).
The more communication-intensive option, known as asynchronous SGD, is to maintain a single
weight vector and for p parallel learners to update it simultaneously (Langford et al., 2009; Gimpel
et al., 2010). It is not actually necessary for a learner to wait for the others to finish computing their
updates; it can simply update the weight vector and move to the next example.

6.1 Iterative parameter mixing

A compromise between the two is iterative parameter mixing (McDonald et al., 2010), in which
a master node periodically averages the weight vectors of the learners. At the beginning of each
epoch, a master node broadcasts the same initial weight vector to p learners, which run in parallel
over the training data and send their weight vectors back to the master node. The master averages
the p weight vectors together to obtain the initial weight vector for the next epoch. At the end of
training, the weight vectors from each iteration of each learner are all averaged together to yield the
final weight vector.

6.2 Asynchronous MIRA/AROW

In asynchronous SGD, when multiple learners make simultaneous updates to the master weight vec-
tor, the updates are simply summed. Our experience is that this works, but requires carefully throt-
tling back the learning rate η. Here, we focus on asynchronous parallelization of MIRA/AROW. The
basic idea is to build forests for several examples in parallel, and optimize the QP over all of them
together. However, this would require keeping the forests of all the examples in a shared memory,
which would probably be too expensive. Instead, the solution we have adopted (Algorithm 4) is for
the learners to broadcast just the working sets Si to one another, rather than whole forests. Thus,
when each learner works on a training example ( fi, ei), it optimizes the QP on it along with all of the
working sets it received from other nodes. It can grow the working set Si, but not the working sets
it received from other nodes. For AROW, each node maintains its own Σ in addition to its own w.
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Algorithm 4 Asynchronous MIRA
1: wk ← 0 for each node k
2: sk ← 0, tk ← 0 for each node k
3: while not converged do
4: T ← training data
5: for each node k in parallel do
6: while T , ∅ do
7: pick a random ( fi, ei) from T and remove it
8: receive working sets {Si′ | i′ ∈ I} from other nodes
9: UpdateWeights(wk, i, I)

10: broadcast Si to other nodes
11: sk ← sk + wk

12: tk ← tk + 1

13: w←
∑

k sk∑
k tk

14: procedure UpdateWeights(w, i, I)
15: ε = 0.01
16: Si ← {di}

17: again← true
18: while again do
19: again← false
20: d+ ← arg max

d∈D( fi)
vi(w, d, di)

21: if vi(w, d+, di) > max
d∈Si

vi(w, d, di) + ε then

22: Si ← Si ∪ {d+}

23: again← true
24: if again then
25: OptimizeSets(w, {i} ∪ I)

26: procedure OptimizeSets(w, I)
27: for i ∈ I do
28: αd ← 0 for d ∈ Si

29: αdi ← 1
30: again← true
31: iterations← 0
32: while again and iterations < 1000 do
33: again← false
34: iterations← iterations + 1
35: for i ∈ I do
36: d′, d′′ ← SelectPair(w, i) . Algorithm 2
37: if d′, d′′ defined then
38: OptimizePair(w, i, d′, d′′)
39: again← true
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7. Experiments

We experimented with the methods described above on the hierarchical phrase-based translation
system Hiero (Chiang, 2005, 2007), using two feature sets. The small model comprises 13 features:
7 inherited from Pharaoh (Koehn et al., 2003), a second language model, and penalties for the glue
rule, identity rules, unknown-word rules, and two kinds of number/name rules. The large model
additionally includes the following lexical features:

• lex(e) fires when an output word e is generated

• lex( f , e) fires when an output word e is generated aligned to a input word f

• lex(null, e) fires when an output word e is generated unaligned

In all these features, f and e are limited to words occurring 10,000 times or more in the parallel data;
less-frequent words are replaced with the special symbol unk. Typically, this results in 10,000–
20,000 features.

Our training data were all drawn from the constrained track of the NIST 2009 Open Machine
Translation Evaluation. We extracted an Arabic-English grammar from all the allowed parallel data
(152+175M words), and we trained two 5-gram language models, one on the combined English
sides of the Arabic-English and Chinese-English tracks (385M words), and another on 2 billion
words of English.

We ran discriminative training on 3011 lines (67k Arabic words) of newswire and web data
drawn from the NIST 2004 and 2006 evaluations and newsgroup data from the GALE program
(LDC2006E92). After each epoch (pass through the discriminative-training data), we used the
averaged weights to decode our development data, which was from the NIST 2008 evaluation (1357
lines, 36k Arabic words). After 10 epochs, we chose the weights that yielded the highest Bleu on
the development data and decoded the test data, which was from the NIST 2009 evaluation (1313
lines, 34k Arabic words).

Except where noted, the following default settings were used:

• Learning rate η = 0.01

• Hope derivations with µ = −1

• Forest reranking for hope/fear derivations

• Iterative parameter mixing on 20 processors

A few probability features have to be initialized carefully: the two language models and the
two phrase translation probability models. If these features are given negative weights, extremely
long and disfluent translations result, and we find that the learner has difficulty recovering. So we
initialize their weights to 1 instead of 0, and in AROW, we initialize their learning rates to 0.01
instead of η0.

The learning curves in the figures referenced below show the Bleu score obtained on the devel-
opment data (disjoint from the discriminative-training data) over time. Figure 2abc shows learning
curves for SGD, MIRA, and minimum risk (see Appendix A) for several values of the learning rate
η, using the small model. Generally, all the methods converged to the same performance level, and
SGD and minimum risk were surprisingly not very sensitive to the learning rate η. MIRA, on the
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Figure 2: Learning curves of various algorithms on the development data, using the small model.
Graphs (a), (b), and (c) show the effect of the learning rate η on SGD, MIRA, and min-
imum risk. SGD and min-risk seem relatively insensitive to η, while MIRA converges
faster with higher η. Graph (d) compares the three online methods against MERT. The
online algorithms converge more quickly and smoothly than MERT does, with MIRA
slightly better than the others. The first two epochs of MERT, not shown here, had scores
of 10.6 and 31.6.
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Figure 3: Variations on selecting hope/fear derivations, using the small model. (a) Linear Bleu
performs as well as or slightly better than forest reranking. SGD, η = 0.01. (b) More neg-
ative values of the loss weight µ for hope derivations lead to higher initial performance,
whereas less negative loss weights lead to higher final performance. MIRA, η = 0.01.

other hand, converged faster with higher learning rates up to η = 0.05. Since our past experience
suggests that on tasks with lower Bleu scores (namely, Chinese-English web and speech), lower
learning rates are better, our default η = 0.01 seems like a generally safe value.

Figure 2d compares all three algorithms with MERT (20 random restarts). The online algo-
rithms converge more quickly and smoothly than MERT does, with MIRA converging faster than
the others. However, on the test set (Table 1), MERT outperformed the other algorithms. Using
bootstrap resampling with 1000 samples (Koehn, 2004; Zhang et al., 2004), only the difference with
minimum risk was significant (p < 0.05).

One possible confounding factor in our comparison with minimum risk is that it must use linear
Bleu to compute the gradient. To control for this, we ran SGD (on the hinge loss) using both
forest reranking and linear Bleu to search for hope/fear derivations (Figure 3a). We found that their
performance is quite close, strengthening our finding that the hinge loss performs slightly better
than minimum risk.

Figure 3b compares several values of the parameter µ that controls how heavily to weight the
loss function when computing hope derivations. Higher loss weights lead to higher initial perfor-
mance, whereas lower loss weights lead to higher final performance (the exception being µ− = 0.2,
which perhaps would have improved with more time). A weight of µ = −1 appears to be a good
tradeoff, and is symmetrical with the weight of 1 used when computing fear derivations. It would be
interesting, however, to investigate decaying the loss weight over time, as proposed by McAllester
et al. (2010).

We then compared the two methods of parallelization (Figure 4). These experiments were run on
a cluster of nodes communicating by MPI (Message Passing Interface) over Myrinet, a high-speed
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Figure 4: On the small model, asynchronous MIRA does not perform well compared to iterative
parameter mixing. But on the large model, asynchronous MIRA strongly outperforms
iterative parameter mixing. Increasing the number of processors to 50 provides little
benefit to iterative parameter mixing in either case, whereas asynchronous MIRA gets a
near-linear speedup.
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Figure 5: Taking a closer look at asynchronous sharing of working sets, we see that, at each epoch,
greater parallelization generally gives better performance.
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Figure 6: (a) With λ = 0.01, AROW seems relatively insensitive to the choice of η0 in the range of
0.1 to 1, but performs much worse outside that range. (b) With η0 = 1, AROW converges
faster for larger values of λ up to 0.01; at 0.1, however, the algorithm appears to be unable
to make progress.

local area networking system. In these graphs, the x-axis continues to be the number of epochs;
wallclock time is roughly proportional to the number of epochs divided by p, but mixed hardware
unfortunately prevented us from performing direct comparisons of wallclock time.

One might expect that, at each epoch, the curves with greater p underperform the curves with
lower p only slightly. With iterative parameter mixing, for both the small and large models, we
see that increasing p from 20 to 50 degrades performance considerably. It would appear that there
is very little speedup due to parallelization, probably because the training data is so small (3011
sentences).

Asynchronous MIRA using the small model starts off well but afterwards does not do as well
as iterative parameter mixing. On the large model, however, asynchronous MIRA performs dramat-
ically better. Taking a closer look at its performance for varying p (Figure 5), we see that, at each
epoch, the curves with greater p actually tend to outperform the curves with lower p.

Next, we tested the AROW algorithm. We held λ fixed to 0.01 and compared different values
of the initial learning rate η0 (Figure 6a, finding that the algorithm performed well for η0 = 0.1 and
1 and was fairly insensitive to the choice of η0 in that range; larger and smaller values, however,
performed worse. We then held η0 = 1 and compared different values of λ (Figure 6b), finding that
higher values converged faster, but λ = 0.1 did much worse.

The scores on the test set (Table 1) using the large model generally confirm what was already
observed on the development set. In total, the improvement over MERT on the test set is 2.4 Bleu.
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Bleu
model obj alg approx par epoch dev test
small 1 − Bleu MERT – – 6 42.1 45.2
small hinge SGD η = 0.02 rerank IPM 6 42.2 44.9
small risk SGD η = 0.05 linear IPM 8 41.9 44.8
small hinge MIRA η = 0.05 rerank IPM 4 42.2 44.9
large hinge SGD η = 0.01 rerank IPM 5 42.4 45.2
large hinge MIRA η = 0.01 rerank IPM 7 43.1 45.9
large hinge MIRA η = 0.01 rerank async 9 44.5 47.3
large hinge AROW η0 = 1 λ = 0.01 rerank async 4 44.7 47.6

Table 1: Final results. Key to columns: model = features used, obj = objective function, alg opti-
mization algorithm, approx = approximation for calculating the loss function on forests,
par = parallelization method, epoch = which epoch was selected on the development data,
dev and test = (case-insensitive IBM) Bleu score on development and test data (NIST 2008
and 2009, respectively).

8. Conclusion

We have surveyed several methods for online discriminative training and the issues that arise in
adapting these methods to the task of statistical machine translation. Using SGD, we found that the
large-margin objective performs slightly better than minimum risk. Then, using the large-margin
objective, we found that MIRA does better than SGD, and AROW, better still. We extended all of
these methods in novel ways to cope with the large structured search space of the translation task,
that is, to use as much of the translation forest as possible.

An apparent disadvantage of the large-margin objective is its requirement of a single correct
derivation, which does not exist. We showed that the hope derivation serves this purpose well. We
demonstrated that the highest-Bleu derivation is not in general the right choice, by showing that
performance drops for very negative values of µ. We also raised the possibility, as yet unexplored,
of decaying µ over time, as has been suggested by McAllester et al. (2010).

The non-decomposability of Bleu as a loss function is a nuisance that must be dealt with
carefully. However, the choice of approximation (forest reranking versus linear Bleu) for loss-
augmented inference or expectations turned out not to be very important. Past experience shows
that linear Bleu sometimes outperforms and sometimes underperforms forest reranking, but since it
is faster and easier to implement, it may be the better choice.

The choice of parallelization method turned out to be critical. We found that asynchronous
sharing of working sets in MIRA/AROW not only gave speedups that were nearly linear in the
number of processors, but also gave dramatically higher final Bleu scores than iterative parameter
mixing. It is not clear yet whether this is because iterative parameter mixing was not able to converge
in only 10 epochs or because aggregating working sets confers an additional advantage.

Although switching from MERT to online learning initially hurt performance, by adding some
very simple features to the model, we ended up with a gain of 2.4 Bleu over MERT. When these
online methods are implemented with due attention to translation forests, the nature of the transla-
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tion problem, the idiosyncrasies of Bleu, and parallelization, they are a highly effective vehicle for
exploring new extensions to discriminative models for translation.

Acknowledgements

This work evolved over time to support several projects adding new features to the ISI machine
translation systems, and would not have been possible without my collaborators on those projects:
Steve DeNeefe, Kevin Knight, Yuval Marton, Michael Pust, Philip Resnik, and Wei Wang. I also
thank Michael Bloodgood, Michael Collins, John DeNero, Vladimir Eidelman, Kevin Gimpel,
Chun-Nan Hsu, Daniel Marcu, Ryan McDonald, Fernando Pereira, Fei Sha, and the anonymous
reviewers for their valuable ideas and feedback. This work was supported in part by DARPA under
contract HR0011-06-C-0022 (subcontract to BBN Technologies), HR0011-09-1-0028, and DOI-
NBC D11AP00244. S.D.G.

Appendix A. Minimum risk training

In this appendix, we describe minimum risk (expected loss) training (Smith and Eisner, 2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010) and some notes on its implementation.

A.1 Objective function

Define a probabilistic version of the model,

PT (d | fi) ∝ exp
1
T

w · h(d)

where T is a temperature parameter, and for any random variable X over derivations, define

ET [X | fi] =
∑

d∈D( fi)

PT (d | fi)X(d)

In minimum-risk training, we want to minimize
∑

i ET [`i(d, di) | fi] for T = 1. In annealed
minimum-risk training (Smith and Eisner, 2006), we let T → 0, in which case the expected loss
approaches the loss.

This objective function is differentiable everywhere (unlike in MERT), though not convex (as
maximum likelihood is). The gradient for a single example is:

∇ET [`i(d, di) | fi] =
1
T

(ET [`ih | fi] − ET [`i | fi]ET [h | fi])

or, in terms of B:

∇ET [`i(d, di) | fi] = −∇ET [B(b(d, ei)) | fi]

= −
1
T

(ET [Bh | fi] − ET [B | fi]ET [h | fi]) (22)

A major advantage that minimum-risk has over the large-margin methods explored in this paper
is that it does not require a reference derivation, or a hope derivation as a proxy for the reference
derivation. The main challenge with minimum-risk training is that we must calculate expectations
of B and Bh. We discuss how this is done below.
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A.2 Relationship to hope/fear derivations

There is an interesting connection between the risk and the generalized hinge loss (4). McAllester
et al. (2010) show that for applications where the input space is continuous (as in speech processing),
a perceptron-like update using the hope and 1-best derivations, or the 1-best and fear derivations,
approaches the gradient of the loss. We provide here an analogous argument for the discrete input
case.

Consider a single training example ( fi, ei), so that we can simply write ` for `i and ET [X] for
ET [X | fi]. Define a loss-augmented model:

Pµ(d | fi) ∝ exp
1
µ

(w · h(d) + µ`(d, di))

and define

Eµ[X] =
∑

d∈D( fi)

Pµ(d | fi)X(d)

As before, the gradient with respect to w is:

∇wEµ[`] =
1
T

(
Eµ[`h] − Eµ[`]Eµ[h]

)
and, by the same reasoning, the partial derivative of E[h] with respect to µ comes out to be the same:

∂

∂µ
Eµ[h] =

1
T

(
Eµ[h`] − Eµ[h]Eµ[`]

)
Therefore we have

∇wE[`] =
∂Eµ[h]
∂µ

∣∣∣∣∣∣
µ=0

= lim
µ→0

1
2µ

(
Eµ[h] − E−µ[h]

)
which suggests the following update rule:

w← w −
η′

2µ

(
Eµ[h] − E−µ[h]

)
with µ decaying over time. But if we let µ = 1 (that is, to approximate the tangent with a secant),
and η′ = 2η, we get:

w← w − η (E+1[h] − E−1[h])

Having made this approximation, there is no harm in letting T = 0, so that the expectations of h
become the value of h at the mode of the underlying distribution:

w← w − η (h(d+1) − h(d−1))

d+1 = arg max
d

(w · h(d) + `(d, di))

d−1 = arg max
d

(w · h(d) − `(d, di))

But this is exactly the SGD update on the generalized hinge loss (5), with d+ = d+1 being the fear
derivation and di = d−1 being the hope derivation.
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A.3 Linear Bleu

In order to calculate the expected loss from a forest of derivations, we must make the loss fully
decomposable onto hyperedges. Tromble et al. (2008) define a linear approximation to Bleu which
they use for minimum Bayes risk decoding. We present here a version that includes the brevity
penalty.

Suppose we have some fixed document with component scores b and add a sentence to it that has
component scores b. How does adding the new sentence affect the Bleu score? Form a first-order
Taylor approximation around b:

Bleu(b + b) ≈ Bleu(b) + b · ∇Bleu(b)

= Bleu(b)

1 +

K∑
k=1

(
mk

Kmk
−

nk

Knk

)
+ H (ρ − n1)

ρn1

n2
1

−
ρ

n1


where

H(x) =

1 if x ≥ 0
0 if x < 0

Note that although the brevity penalty is not differentiable at n1 = ρ, we have filled in an arbitrary
value (which is easier than smoothing the brevity penalty and works well in practice).

Since this approximation is linear in the mk and nk, it is decomposable onto hyperedges. The
term involving ρ is the same for all derivations, so we don’t need to decompose it and can also
skip (19).

The approximation is highly dependent on b; Tromble et al. use a fixed b but we use the oracle
document defined in Section 2.4. Then B, defined as in (3) but using the linear approximation to
Bleu, is decomposable down to hyperedges, making it possible to compute E[B] as well as E[bh]
over the entire forest.

A.4 Calculating the risk and its gradient

To calculate the expected loss, we can use the expectation semiring of Eisner (2002); we give a
slightly modified definition that renormalizes intermediate values in such a way that they can be
stored directly instead of as signed logarithms:

expectB(v) =
∑

(v→v)∈E

insidew·h(v→ v)
insidew·h(v)

expectB(v→ v) (23)

expectB(v→ v) = B(v→ v) +
∑
v′∈v

expectB(v′) (24)

insidew·h(v) =
∑

(v→v)∈E

insidew·h(v→ v)

insidew·h(v→ v) = exp w · h(v→ v) ×
∏
v′∈v

insidew·h(v′)
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To calculate the expected product ET [Bh | fi] in the gradient (22), we use the second-order
expectation semiring (Li and Eisner, 2009), similarly modified:

expectBh(v) =
∑

(v→v)∈E

insidew·h(v→ v)
insidew·h(v)

expectBh(v→ v)

expectBh(v→ v) = expectB(v→ v)expecth(v→ v)

+
∑
v′∈v

(
expectBh(v′) − expectB(v′)expecth(v′)

)
where expecth is calculated analogously to expectB (23–24).
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Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end discriminative
approach to machine translation. In Proceedings of COLING-ACL, 2006.

Chin-Yew Lin and Franz Josef Och. ORANGE: A method for evaluating automatic evaluation
metrics for machine translation. In Proceedings of COLING, 2004.

William N. Locke and A. Donald Booth, editors. Machine Translation of Languages: Fourteen
Essays. Technology Press of MIT, Cambridge, MA, 1955.

1185



Chiang

Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and Daniel D. Walker. Efficient
large-scale distributed training of conditional maximum entropy models. In Advances in Neural
Information Processing Systems 22, 2009.

David McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization for structured pre-
diction. In Advances in Neural Information Processing Systems 23, 2010.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of depen-
dency parsers. In Proceedings of ACL, 2005.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In Proceedings of NAACL HLT, 2010.

Franz Josef Och. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, 2003.

Franz Josef Och and Hermann Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of ACL, 2002.

Franz Josef Och, Christoph Tillmann, and Hermann Ney. Improved alignment models for statistical
machine translation. In Proceedings of EMNLP, 1999.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of ACL, 2002.

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. 2008. http://
matrixcookbook.com.

John C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support
Vector Learning, pages 195–208. MIT Press, 1998.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Subgradient methods for maximum
margin structured learning. In Proceedings of the ICML Workshop on Learning in Structured
Output Spaces, 2006.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–408, 1958.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM. In Proceedings of ICML, 2007.

David A. Smith and Jason Eisner. Minimum risk annealing for training log-linear models. In
Proceedings of COLING/ACL, 2006. Poster Sessions.

Ben Taskar. Learning Structured Prediction Models: A Large Margin Approach. PhD thesis,
Stanford University, 2004.

Christoph Tillmann and Tong Zhang. A discriminative global training algorithm for statistical MT.
In Proceedings of COLING-ACL, 2006.

1186



Discriminative training of statistical translation models

Roy W. Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice minimum Bayes-
risk decoding for statistical machine translation. In Proceedings of EMNLP, 2008.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
machine learning for interdependent and structured output spaces. In Proceedings of ICML, 2004.

Taro Watanabe, Jun Suzuki, Hajime Tsukuda, and Hideki Isozaki. Online large-margin training for
statistical machine translation. In Proceedings of EMNLP, 2007.
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