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AbStr act annotated data Training ' Decoding parsed data
Many recent statistical parsers rely on a preprocess- l Model | T
ing step which uses hand-written, corpus-specific .. | porsed deta™

rules to augment the training data with extra infor- :

mation. For example, head-finding rules are used

to augment node labels with lexical heads. In thisFigure 1: Methodology for the development of a sta-
paper, we provide machinery to reduce the amountistical parser. A+ indicates augmentation.

of human &ort needed to adapt existing models to
new corpora: first, we propose a flexible notation for
specifying these rules that would allow them to be
shared by dferent models; second, we report on an
experiment to see whether we can use Expectatio
Maximization to automatically fine-tune a set of
hand-written rules to a particular corpus.

are performed by existing statistical parsers that we
have examined. Second, we explore a novel use of
r]Expectation-Maximization (Dempster et al., 1977)
that iteratively reestimates a parsing model using
the augmenting heuristics as a starting point. Specif-
1 Introduction ically, Fhe EM .algorithm we use is a varianF of

: - . the Inside-Outside algorithm (Baker, 1979; Lari and
Most work in statistical parsing does not O.perateYoung, 1990; Hwa, 1998). The reestimation adjusts
. e model’s parameters in the augmented parse-tree
treebanks, but rather on trees transformed via augs'pace to maximize the likelihood of the observed
mentation of their node labels, or some other trans(incomplete) data, in the hopes of finding a better
formatlon_(Johnson, 1998)'. This me;thqdology 'S.'I'distribution over augmented parse trees (the com-
lustrated in Figure 1. The information included in lete data). The ultimate goal of this work is to mini-

_tthe node Iabec;s Ialéglmﬁeiz)r(l'f[atl_og_s n:a)tlr:ncluge .IeX|ca ize the humanféort needed when adapting a pars-
items, or anode labe oindicate the nodeis an i, 1 odel to a new domain,

argument and not an adjunct; such extra information
may be viewed as latent information, in that it is noto Background
directly present in the treebank parse trees, but ma L
be recovered by some means. The process of recog-1 Head-lexicalization
ering this latent information has largely been limited Many of the recent, successful statistical parsers
to the hand-construction of heuristics. However, ashhave made use of lexical information or an im-
is often the case, hand-constructed heuristics maglicit lexicalized grammar, both for English and,
not be optimal or very robust. Also, théfert re- more recently, for other languages. All of these
quired to construct such rules can be considerablgyarsers recover the “hidden” lexicalizations in a
In both respects, the use of such rules runs countdreebank and find the most probable lexicalized tree
to the data-driven approach to statistical parsing. when parsing, only to strip out this hidden infor-
In this paper, we propose two steps to addressnation prior to evaluation. Also, in all these pars-
this problem. First, we define a new, fairly simple ing efforts lexicalization has meant finding heads
syntax for the identification and transformation of of constituents and then propagating those lexical
node labels that accommodates a wide variety oheads to their respective parents. In fact, nearly
node-label augmentations, including all those thatdentical head-lexicalizations were used in the dis-



S(caught-VBD) SG and the augmentation of nonterminals for gap

threading. Xia (1999) combines head-finding with
argument identification to extract elementary trees

NP(boy-NN)  ADVP(also-RB) VP(caught-VBD) for use in t_he Iex_icalized TAG formalism. cher re-
DET RN | P searchers investigated this type of extraction to con-
o R|B VED  NP(ball-NN) struct stochastic TAG parsers (Chiang, 2000; Chen
The  boy also Cat‘,ght DET NN and Vijay-Shanker, 2000; Sarkar, 2001).
tf‘le bgll 2.3 Problems with heuristics

While head-lexicalization and other tree transfor-
mations allow the construction of parsing models
with more data-sensitivity and richer representa-
criminative models described in (Magerman, 1995;tions, crafting rules for these transformations has
Ratnaparkhi, 1997), the lexicalized PCFG modeldeen largely an art, with heuristics handed down
in (Collins, 1999), the generative model in (Char-from researcher to researcher. What's more, on
niak, 2000), the lexicalized TAG extractor in (Xia, top of the large undertaking of designing and im-
1999) and the stochastic lexicalized TAG modelsplementing a statistical parsing model, the use of
in (Chiang, 2000; Sarkar, 2001; Chen and Vijay-heuristics has required a furtheff@t, forcing the
Shanker, 2000). Inducing a lexicalized structureresearcher to bring both linguistic intuition and,
based on heads has a two-prongdfkat: it not more often, engineering savvy to bear whenever
only allows statistical parsers to be sensitive to lex-moving to a new treebank. For example, in the rule
ical information by including this information in sets used by the parsers described in (Magerman,
the probability model's dependencies, but it also1995; Ratnaparkhi, 1997; Collins, 1999), the sets of
determines which of all possible dependencies—tules for finding the heads &ADJP, ADVP, NAC,
both syntactic and lexical—will be included in the PP andWHPPinclude rules for picking either the
model itself. For example, in Figure 2, the nontermi-rightmost or leftmosFW (foreign word). The ap-
nal NP(boy—NN) is dependent on VP(caught-VBD)parently haphazard placement of these rules that
and not the other way around. pick outFW and the rarity oW nodes in the data
strongly suggest these rules are the result of engi-
neering &ort. Furthermore, it is not at all apparent
Lexicalization via head-finding is but one of many that tree-transforming heuristics that are useful for
possible tree transformations that might be useone parsing model will be useful for another. Fi-
ful for parsing. As explored thoroughly by John- nally, as is often the case with heuristics, those used
son (1998), even simple, local syntactic trans-in statistical parsers tend not to be data-sensitive,
formations on training trees for an unlexicalized and ironically do not rely on the words themselves.
PCFG model can have a significant impact on pars- _

ing performance. Having picked up on this idea,3 Rule-based augmentation

Collins (1999) devises rules to identify arguments,In the interest of reducing thefert required to con-
i.e., constituents that are required to exist on a parstruct augmentation heuristics, we would like a no-
ticular side of a head child constituent dominatedtation for specifying rules for selecting nodes in
by a particular parent. The parsing model can therbracketed data that is both flexible enough to encode
probabilistically predict sets of requirements on ei-the kinds of rule sets used by existing parsers, and
ther side of a head constituent, thereby incorporatintuitive enough that a rule set for a new language
ing a type of subcategorization information. While can be written easily without knowledge of com-
the model is augmented to include this subcatputer programming. Such a notation would simplify
prediction feature, the actual identification of argu-the task of writing new rule sets, and facilitate ex-
ments is performed as one of many preprocessingerimentation with dferent rules. Moreover, rules
steps on training trees, using a set of rules simwritten in this notation would be interchangeable
ilar to those used for the identification of heads.between dferent models, so that, ideally, adapta-
Also, (Collins, 1999) makes use of several othertion of a model to a new corpus would be trivial.
transformations, such as the identification of sub- We define our notation in two parts:séructure
jectless sentences (augmenti@godes to become pattern languagewhose basic patterns are speci-

Figure 2: A simple lexicalized parse tree.

2.2 Other tree transformations



fications of single nodes written inlabel pattern  Rule (1) marks the second in YYY, but rule (2)
language marks the firsty. More formally,

3.1 Structure patterns a<(BUYy) (@<pB)U(a<y)

Most existing head-finding rules and argument- BUyY)>a = (B>a)U(y>a)

finding rules work by specifying parent-child rela- _ . _

tions €.g, NN is the head oNP, or NP is an argu-  But if a contains no unions or Kleene stars, then
ment of VP). A generalization of this scheme that

is familiar to linguists and computer scientists alike axp = a<p (f af)
would be a context-free grammar with rules of the Bra = f<a  (=pa)
form | So then, consider the following rules:
A= A---(A) A, ) ) )
where the superscriptspecifies that if this rule gets VP - l* ” VBh g l*’ (3)
used, theth child of A should be marked with the VP — 1"<VB <L (4)

labell.

, where L is a wildcard pattern which matches an
However, there are two problems with such an ap b y

: - single label (see below). Rule (3) mark with hn
proach. First, writing down such a grammar wouldthe rightmostvB child of a VP, whereas rule (4)
be tedious to say the least, and impossible if Wenarks the leftmosVB. This is t;ecause the Kleene
want to handle trees with arbitrary branching fac-Star always prefers to match as many times as possi-
tors. S0 we can use _aa;xtended 'CFC{Thatcher, ble, but in rule (3) the first Kleene star’s preference
1967), a CFG whose right-hand sides are regular exg, o priority over the last’s, whereas in rule (4) the
pressions. Thus we_lntroduce a union (_)peralm)r ( last Kleene star's preference takes priority over the
and a Kleene star] into the syntax for right-hand first's
sides. . . .

The second problem that our grammar may bepleign5|der the slightly more complicated exam
ambiguous. For example, the grammar '

X s yhy L yyh VP - 1*<(vB"uMDM) <1 (5)

_ _ _ VP - 1*<((vB"UMDM > 1% (6)
could mark with arh either the first or second sym-
bol of YY . So we impose an ordering on the rules ofRule (5) marks the leftmost child which is either a
the grammar: if two rules match, the first one wins.VB or aMD, whereas rule (6) marks the leftmost
In addition, we make the/ operator noncommuta- VB if any, or else the leftmosVID . To see why this
tive: a U tries to matche first, andg only if it does  so, consider the strinyID VB X . Rule (5) would
not matche, as in Perl. (Thus the above grammarmark theMD ash, whereas rule (6) would mark
would mark the firsl.) Similarly, o* tries to match  theVB. In both rulesvB is preferred oveMD, and

as many times as possible, also as in Perl. symbols to the left over symbols to the right, but in
But this creates a third and final problem: in therule (5) the leftmost preference (that is, the prefer-
grammar ence of the last Kleene star to match as many times

h h as possible) takes priority, whereas in rule (6) the
X = (YYTUYHYY UY), preference folB takes priority.

it is not defln_ed wh_lch sy_mbol ofYY should t_Je_ 3.2 Label pattems
marked, that is, which union operator takes priority " _

over the other. Perl circumvents this problem by al-Since nearly all treebanks have complex nontermi-
ways giving priority to the left. In algebraic terms, Nal alphabets, we need a way of concisely specify-
concatenation left-distributes over union but doednd classes of labels. Unfortunately, this will neces-

not right-distribute over union in general. sarily vary somewhat across treebanks: all we can

catenation operators:, which gives priority to the ~Pattérn, which matches any label. For Penn Tree-

left, and<, which gives priority to the right: bank Il style anr_lotation (Ma_rcus et al., 1993), in
h h which a nonterminal symbol is a category together
X — (YYTUYT)>(YYUY) (1) with zero or more functional tags, we adopt the fol-

X = (YYPuY"<(Yyuy) (2) lowing scheme: the atomic patteenmatches any



label with categorya or functional taga; more- by Chiang (2000). TIG (Schabes and Waters, 1995)
over, we define Boolean operatersv, and-. Thus is a weakly-context free restriction of tree adjoin-
NP A =ADV matchesNP-SBJbut notNP-ADV.! ing grammar (Joshi and Schabes, 1997), in which
3.3 Summary tree fragments calledlementary treesare com-

" bined by two composition operationsybstitution
Using the structure pattern language and the lag,g adjunction (see Figure 3). In TIG there are
bel pattern language together, one can fully encodgertain restrictions on the adjunction operation.
the heagargument rules used by Xia (which resem- chiang's model adds a third composition operation
ble (5) above), and the family of rule sets used bycq)ieq sister-adjunction(see Figure 3), borrowed
Black, Magerman, Collins, Ratnaparkhi, and othersyom p-tree substitution grammar (Rambow et al.,
(which resemble (6) above). In Collins’ version of 1995)2
the head rulef\P andPPrequire special treatment,  There is an important distinction betweserived
but these can be encoded in our notation as well. aasandderivation treeg(see Figure 3). A deriva-

4 Unsupervised learning of augmentations tion tree records the operations 'ghat are used to com-
bine elementary trees into a derived tree. Thus there

In the type of approach we have been discussings 5 many-to-one relationship between derivation

so far, hand-written rules are used to augment thgees and derived trees: every derivation tree speci-

training data, and this augmented training data igjes 4 derived tree, but a derived tree can be the result
then used to train a statistical model. However, |fwe0f several diferent derivations.

train the model by maximum-likelihood estimation,  the model can be trained directly on TIG deriva-
the estimate we get will indeed maximize the likeli- ;s if they are available, but corpora like the

hood of the training data as augmented by the hantbenn Treebank have only derived trees. Just as

written rules, but not necessarily that of the trainingq|iins uses rules to identify heads and arguments
data itself. In this section we explore the possibility 54 thereby lexicalize trees, Chiang uses nearly the
of training a model directly on unaugmented olata. same rules to reconstruct derivations: each training

A generative model that estimaté¥(S,T,T")  oyample is broken into elementary trees, with each
(whereT™ is an augmented tree) is n_ormally+usedhead child remaining attached to its parent, each ar-
for parsing, by computing the most likelf(T*) 5 ment broken into a substitution node and an ini-

for a givenS. But we may also use it for augment- yi5| root, and each adjunct brokeiff @s a modifier
ing trees, by computing the most likely* for a auxiliary tree.

given sentence-tree paig(T). From the latter per- However, in this experiment we view the derived

spective, because its trees are unaugmented, a r&Gsqq iy the Treebank as incomplete data, and try to

bank is a corpus of incomplete data, warranting thee ., nq4ct the derivations (the complete data) using
use of unsupervised learning methods to reestimatg . | side-Outside algorithm

a model that includes hidden parameters. The ap-
proach we take below is to seed a parsing mode#.2 Implementation

using hand-written rules, and then use the Insideryq oyhactation step (E-step) of the Inside-Outside
Outside algorithm to reestimate its parameters. Thecllgorithm is performed by a parser that computes all

rhesu(;tinfg rr]nodel, which I(d);:a_lly maéximizes thﬁ "ki"' possible derivations for each parse tree in the train-
00d of theunaugmentedraining data, can then be .4 a3 |t then computes inside and outside prob-

used in two ways: one might hope that as a parsegijities as in Hwa's experiment (1998), and uses

it would parse more .acc.urately thar_m a model whichy, o tq compute the expected number of times each
only maximizes the likelihood of training data aug- g\ent occurred. For the maximization step (M-step),
mented by hand-written rules; and that as a treeyq optain a maximum-likelihood estimate of the pa-

augmenter, it would augment trees in a more dataz; meters of the model using relative-frequency es-
sensitive way than hand-written rules.

. PR 2The parameters for sister-adjunction in the present model
4.1 Background: tree adjoining grammar differ slightly from the original. In the original model, all the

The parsing model we use is based on the stochasmodifier auxiliary trees that sister-adjoined at a particular po-

tic tree-insertion grammar (T|G) model describedsition were generated independently, except that each sister-

adjunction was conditioned on whether it was the first at that
INote that unlike the noncommutative union operatpthe position. In the present model, each sister-adjunction is condi-

disjunction operatowv has no preference for its first argument. tioned on the root label of the previous modifier tree.




S Derivation tree

o~ s Derived tree
NP, VP a2
A ’ | * 1INzt /\
leave — N,I\IP MD VP
NP VP NP | P
| (a2) ‘ John should  vB NP
NNP MD VP« NN | |
| | | leave NN
John should tomorrow |
tomorro
(1) ®) (6] W

Figure 3: Grammar and derivation for “John should leave tomorrow.” In this derivatiogets substituted,
B gets adjoined, ang gets sister-adjoined.

87.6

timation, just as in the original experiment, as if
the expected values for the complete data were the s7.55
training data.

Smoothing presents a special problem. There ar§
several several bacRolevels for each parameter § s7.45
class that are combined by deleted interpolation. L
@1, ¢ and ¢3 be functions from full history con-
texts Y to less specific contexts at levels 1, 2 and 87.35

3, respectively, for some parameter class with three

87.5

87.4

backdr levels (with level 1 using the most specific "o 5 10 15 20
contexts). Smoothed estimates for parameters in this Iteration
class are computed as follows:

e= 116 + (1 - 11)(12€2 + (1 - A2)€3)

Figure 4: English, starting with full rule set

whereg is the estimate op(X | ¢i(Y)) for some likelihood of the training data. Second, reestimation

future contextX, and thed; are computed by the tends to increase the size of the model in memory,
formula found in (Bikel et al., 1997), modified to since smoothing gives nonzero expected counts to
use the multiplicative constant 5 found in the similarmany events which were unseen in training. There-

formula of (Collins, 1999): fore, since the resulting model is quite large, if an
d 1 event at a particular point in the derivation forest
Ai=1- 2| ——— (7)  has an expected count below 18 we throw it out.
di 1+ 5Ui /di

whered; is the number of occurrences in training of 4.3 Experiment

the contexi;(Y) (anddp = 0), andy; is the number We first trained the initial model on sections 02-21
of unique outcomes for that context seen in training.of the WSJ corpus using the original head rules, and
There are several ways one might incorporate thishen ran the Inside-Outside algorithm on the same
smoothing into the reestimation process, and welata. We tested each successive model on some
chose to depart as little as possible from the origheld-out data (section 00), using a beam width of
inal smoothing method: in the E-step, we use thel0*, to determine at which iteration to stop. The
smoothed model, and after the M-step, we use th&-measure (harmonic mean of labeled precision and
original formula (7) to recompute the smoothing recall) for sentences of length 100 for each itera-
weights based on the new counts computed frontion is shown in Figure 4. We then selected the ninth
the E-step. While simple, this approach has two im+eestimated model and compared it with the initial
portant consequences. First, since the formula fomodel on section 23 (see Figure 7). This model did
the smoothing weights intentionally doest maxi-  only marginally better than the initial model on sec-
mize the likelihood of the training data, each itera-tion 00, but it actually performs worse than the ini-
tion of reestimation is not guaranteed to increase théal model on section 23. One explanation is that the
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rules have. We trained the model on sections 001—
270 of the Penn Chinese Treebank, and reestimated
it on the same data, testing it at each iteration on
sections 301-325 (Figure 6). We selected the 38th
reestimated model for comparison with the initial
model on sections 271-300 (Figure 7). Here we did

F-measure

84.65 observe a small improvement: an error reduction of
84.6 3.4% in the F-measure for sentences of lerngd0.
84.55

845 : : : : : : : 4.4 Discussion

0 5 10 15 20 25 30 35 40
Iteration

Our hypothesis that reestimation does not improve
on the original rule set for English because that
Figure 5: English, starting with simplified rule set rule set is already fine-tuned was partially borne
out by the second and third experiments. The model

735 trained with a simplified rule set for English showed

7345 improvement on held-out data during reestimation,
7;33"; but showed no improvement in the final evaluation;
7'33 however, the model trained on Chinese did show a

small improvement in both. We are uncertain as to
why the gains observed during the second experi-
ment were not reflected in the final evaluation, but
based on the graph of Figure 5 and the results on
Chinese, we believe that reestimation by EM can
73 T T o T . be used to facilitate adaptation of parsing models
to new languages or corpora.
It is possible that our method for choosing
Figure 6: Chinese, starting with full rule set ~ smoothing weights at each iteration (s&&.2) is
causing some interference. For future work, more
] ] ~ careful methods should be explored. We would
head rules, since they have been e>_<ten5|vely finesiso like to experiment on the parsing model of
tuned, do not leave much room for improvement.collins (1999), which, because it can recombine
To test this, we ran two more experiments. smaller structures and reorder subcategorization
The second experiment started with a simplifiedframes, might open up the search space for better
rule set, which simply chooses either the leftmost ofreestimation.
rightmost child of each node as the head, depend-
ing on the label of the pareng.g, for VP, the left- 5 Conclusion

most child is chosen; for NP, the rightmost child Even though researchers designing and implement-
is chosen. The argument rules, however, were ndhg statistical parsing models have worked in the
changed. This rule set is supposed to represent th@ethodology shown in Figure 1 for several years
kind of rule set that someone with basic familiarity now, most of the work has focused on finding ef-
with English syntax might write down in a few min- fective features for the model component of the
utes. The reestimated models seemed to improve omethodology, and on findingffective statistical
this simplified rule set when parsing section 00 (se@echniques for parameter estimation. However, there
Figure 5); however, when we compared the 30thhas been much behind-the-scenes work on the ac-
reestimated model with the initial model on sectiontya| transformations, such as head finding, and most
23 (see Figure 7), there was no improvement. of this work has consisted of hand-tweaking exist-
The third experiment was on the Chinese Treeing heuristics. It is our hope that by introducing this
bank, starting with the same head rules used imew syntax, less toil will be needed to write non-
(Bikel and Chiang, 2000). These rules were origi-terminal augmentation rules, and that huméiore
nally written by Xia for grammar development, and will be lessened further by the use of unsupervised
although we have modified them for parsing, theymethods such as the one presented here to produce
have not received as much fine-tuning as the Englishetter models for parsing and tree augmentation.

73.25
73.2
73.15
73.1
73.05

F-measure

Iteration



< 100 words < 40 words

Model Step LR LP CB 0CB <2CB| LR LP CB O0CB <2CB
Original initial | 86.95 87.02 1.21 62.38 82.3387.68 87.76 1.02 65.30 84.86
Original 9 86.37 86.71 1.26 61.42 81.7987.18 87.48 1.06 64.41 84.23
Simple initial | 84.50 84.18 154 5757 78.3585.46 85.17 129 60.71 81.11
Simple 30 8421 8450 153 57.95 77.7785.12 85.35 1.30 60.94 80.62
Chinese initial| 75.30 76.77 2.72 4595 67.0%78.37 80.03 1.79 52.82 74.75
Chinese 38 75.20 77.99 266 47.69 67.6378.79 81.06 1.69 54.15 75.08

Figure 7: Results on test sets. Origiratrained on English with original rule set; SimpieEnglish, sim-
plified rule set. LR= labeled recall, LP= labeled precision; CB- average crossing brackets, 0 GBo
crossing brackets; 2 CB = two or fewer crossing brackets. All figures except CB are percentages.
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