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Abstract

We discuss the relevance of k-best parsing to
recent applications in natural language pro-
cessing, and develop efficient algorithms for
k-best trees in the framework of hypergraph
parsing. To demonstrate the efficiency, scal-
ability and accuracy of these algorithms, we
present experiments on Bikel’s implementation
of Collins’ lexicalized PCFG model, and on
Chiang’s CFG-based decoder for hierarchical
phrase-based translation. We show in particu-
lar how the improved output of our algorithms
has the potential to improve results from parse
reranking systems and other applications.

1 Introduction
Many problems in natural language processing (NLP) in-
volve optimizing some objective function over a set of
possible analyses of an input string. This set is often
exponential-sized but can be compactly represented by
merging equivalent subanalyses. If the objective function
is compatible with a packed representation, then it can be
optimized efficiently by dynamic programming. For ex-
ample, the distribution of parse trees for a given sentence
under a PCFG can be represented as a packed forest from
which the highest-probability tree can be easily extracted.

However, when the objective function f has no com-
patible packed representation, exact inference would be
intractable. To alleviate this problem, one common ap-
proach from machine learning is loopy belief propaga-
tion (Pearl, 1988). Another solution (which is popular
in NLP) is to split the computation into two phases: in
the first phase, use some compatible objective function
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f ′ to produce a k-best list (the top k candidates under
f ′), which serves as an approximation to the full set.
Then, in the second phase, optimize f over all the anal-
yses in the k-best list. A typical example is discrimina-
tive reranking on k-best lists from a generative module,
such as (Collins, 2000) for parsing and (Shen et al., 2004)
for translation, where the reranking model has nonlocal
features that cannot be computed during parsing proper.
Another example is minimum-Bayes-risk decoding (Ku-
mar and Byrne, 2004; Goodman, 1998),where, assum-
ing f ′ defines a probability distribution over all candi-
dates, one seeks the candidate with the highest expected
score according to an arbitrary metric (e.g., PARSEVAL
or BLEU); since in general the metric will not be com-
patible with the parsing algorithm, the k-best lists can
be used to approximate the full distribution f ′. A simi-
lar situation occurs when the parser can produce multiple
derivations that are regarded as equivalent (e.g., multiple
lexicalized parse trees corresponding to the same unlexi-
calized parse tree); if we want the maximum a posteriori
parse, we have to sum over equivalent derivations. Again,
the equivalence relation will in general not be compati-
ble with the parsing algorithm, so the k-best lists can be
used to approximate f ′, as in Data Oriented Parsing (Bod,
2000) and in speech recognition (Mohri and Riley, 2002).

Another instance of this k-best approach is cascaded
optimization. NLP systems are often cascades of mod-
ules, where we want to optimize the modules’ objective
functions jointly. However, often a module is incompati-
ble with the packed representation of the previous module
due to factors like non-local dependencies. So we might
want to postpone some disambiguation by propagating
k-best lists to subsequent phases, as in joint parsing and
semantic role labeling (Gildea and Jurafsky, 2002; Sutton
and McCallum, 2005), information extraction and coref-
erence resolution (Wellner et al., 2004), and formal se-
mantics of TAG (Joshi and Vijay-Shanker, 1999).

Moreover, much recent work on discriminative train-
ing uses k-best lists; they are sometimes used to ap-
proximate the normalization constant or partition func-



tion (which would otherwise be intractable), or to train a
model by optimizing some metric incompatible with the
packed representation. For example, Och (2003) shows
how to train a log-linear translation model not by max-
imizing the likelihood of training data, but maximizing
the BLEU score (among other metrics) of the model on
the data. Similarly, Chiang (2005) uses the k-best pars-
ing algorithm described below in a CFG-based log-linear
translation model in order to learn feature weights which
maximize BLEU.

For algorithms whose packed representations are
graphs, such as Hidden Markov Models and other finite-
state methods, Ratnaparkhi’s MXPARSE parser (Ratna-
parkhi, 1997), and many stack-based machine transla-
tion decoders (Brown et al., 1995; Och and Ney, 2004),
the k-best paths problem is well-studied in both pure
algorithmic context (see (Eppstein, 2001) and (Brander
and Sinclair, 1995) for surveys) and NLP/Speech com-
munity (Mohri, 2002; Mohri and Riley, 2002). This pa-
per, however, aims at the k-best tree algorithms whose
packed representations are hypergraphs (Gallo et al.,
1993; Klein and Manning, 2001) (equivalently, and/or
graphs or packed forests), which includes most parsers
and parsing-based MT decoders. Any algorithm express-
ible as a weighted deductive system (Shieber et al., 1995;
Goodman, 1999; Nederhof, 2003) falls into this class. In
our experiments, we apply the algorithms to the lexical-
ized PCFG parser of Bikel (2004), which is very similar
to Collins’ Model 2 (Collins, 2003), and to a synchronous
CFG based machine translation system (Chiang, 2005).

2 Previous Work
As pointed out by Charniak and Johnson (2005), the ma-
jor difficulty in k-best parsing is dynamic programming.
The simplest method is to abandon dynamic program-
ming and rely on aggressive pruning to maintain tractabil-
ity, as is used in (Collins, 2000; Bikel, 2004). But this
approach is prohibitively slow, and produces rather low-
quality k-best lists (see Sec. 5.1.2). Gildea and Juraf-
sky (2002) described an O(k2)-overhead extension for the
CKY algorithm and reimplemented Collins’ Model 1 to
obtain k-best parses with an average of 14.9 parses per
sentence. Their algorithm turns out to be a special case
of our Algorithm 0 (Sec. 4.1), and is reported to also be
prohibitively slow.

Since the original design of the algorithm described
below, we have become aware of two efforts that are
very closely related to ours, one by Jiménez and Marzal
(2000) and another done in parallel to ours by Charniak
and Johnson (2005). Jiménez and Marzal present an al-
gorithm very similar to our Algorithm 3 (Sec. 4.4) while
Charniak and Johnson propose using an algorithm similar
to our Algorithm 0, but with multiple passes to improve
efficiency. They apply this method to the Charniak (2000)

parser to get 50-best lists for reranking, yielding an im-
provement in parsing accuracy.

Our work differs from Jiménez and Marzal’s in the
following three respects. First, we formulate the pars-
ing problem in the more general framework of hyper-
graphs (Klein and Manning, 2001), making it applica-
ble to a very wide variety of parsing algorithms, whereas
Jiménez and Marzal define their algorithm as an exten-
sion of CKY, for CFGs in Chomsky Normal Form (CNF)
only. This generalization is not only of theoretical impor-
tance, but also critical in the application to state-of-the-
art parsers such as (Collins, 2003) and (Charniak, 2000).
In Collins’ parsing model, for instance, the rules are dy-
namically generated and include unary productions, mak-
ing it very hard to convert to CNF by preprocessing,
whereas our algorithms can be applied directly to these
parsers. Second, our Algorithm 3 has an improvement
over Jiménez and Marzal which leads to a slight theoret-
ical and empirical speedup. Third, we have implemented
our algorithms on top of state-of-the-art, large-scale sta-
tistical parser/decoders and report extensive experimental
results while Jiménez and Marzal’s was tested on rela-
tively small grammars.

On the other hand, our algorithms are more scalable
and much more general than the coarse-to-fine approach
of Charniak and Johnson. In our experiments, we can ob-
tain 10000-best lists nearly as fast as 1-best parsing, with
very modest use of memory. Indeed, Charniak (p.c.) has
adopted our Algorithm 3 into his own parser implemen-
tation and confirmed our findings.

In the literature of k shortest-path problems, Minieka
(1974) generalized the Floyd algorithm in a way very
similar to our Algorithm 0 and Lawler (1977) improved
it using an idea similar to but a little slower than the bi-
nary branching case of our Algorithm 1. For hypergraphs,
Gallo et al. (1993) study the shortest hyperpath problem
and Nielsen et al. (2005) extend it to k shortest hyper-
path. Our work differes from (Nielsen et al., 2005) in two
aspects. First, we solve the problem of k-best derivations
(i.e., trees), not the k-best hyperpaths, although in many
cases they coincide (see Sec. 3 for further discussions).
Second, their work assumes non-negative costs (or prob-
abilities ≤ 1) so that they can apply Dijkstra-like algo-
rithms. Although generative models, being probability-
based, do not suffer from this problem, more general
models (e.g., log-linear models) may require negative
edge costs (McDonald et al., 2005; Taskar et al., 2004).
Our work, based on the Viterbi algorithm, is still appli-
cable as long as the hypergraph is acyclic, and is used by
McDonald et al. (2005) to get the k-best parses.

3 Formulation
Following Klein and Manning (2001), we use weighted
directed hypergraphs (Gallo et al., 1993) as an abstraction



of the probabilistic parsing problem.

Definition 1. An ordered hypergraph (henceforth hy-
pergraph) H is a tuple 〈V, E, t,R〉, where V is a finite
set of vertices, E is a finite set of hyperarcs, and R
is the set of weights. Each hyperarc e ∈ E is a triple
e = 〈T (e), h(e), f (e)〉, where h(e) ∈ V is its head and
T (e) ∈ V∗ is a vector of tail nodes. f (e) is a weight func-
tion from R|T (e)| to R. t ∈ V is a distinguished vertex
called target vertex.

Note that our definition is different from those in previ-
ous work in the sense that the tails are now vectors rather
than sets, so that we can allow multiple occurrences of
the same vertex in a tail and there is an ordering among
the components of a tail.

Definition 2. A hypergraph H is said to be monotonic if
there is a total ordering � on R such that every weight
function f in H is monotonic in each of its arguments ac-
cording to �, i.e., if f : Rm 7→ R, then ∀1 ≤ i ≤ m, if ai �
a′i , then f (a1, · · · , ai, · · · , am) � f (a1, · · · , a′i , · · · , am).
We also define the comparison function min�(a, b) to out-
put a if a � b, or b if otherwise.

In this paper we will assume this monotonicity, which
corresponds to the optimal substructure property in dy-
namic programming (Cormen et al., 2001).

Definition 3. We denote |e| = |T (e)| to be the arity of the
hyperarc. If |e| = 0, then f (e) ∈ R is a constant and we
call h(e) a source vertex. We define the arity of a hyper-
graph to be the maximum arity of its hyperarcs.

Definition 4. The backward-star BS(v) of a vertex v is
the set of incoming hyperarcs {e ∈ E | h(e) = v}. The
in-degree of v is |BS (v)|.

Definition 5. A derivation D of a vertex v in a hyper-
graph H, its size |D| and its weight w(D) are recursively
defined as follows:

• If e ∈ BS (v) with |e| = 0, then D = 〈e, ε〉 is
a derivation of v, its size |D| = 1, and its weight
w(D) = f (e)().

• If e ∈ BS (v) where |e| > 0 and Di is a derivation
of Ti(e) for 1 ≤ i ≤ |e|, then D = 〈e,D1 · · ·D|e|〉 is
a derivation of v, its size |D| = 1 + ∑|e|i=1 |Di| and its
weight w(D) = f (e)(w(D1), . . . ,w(D|e|)).

The ordering on weights in R induces an ordering on
derivations: D � D′ iff w(D) � w(D′).

Definition 6. Define Di(v) to be the ith-best derivation of
v. We can think of D1(v), . . . ,Dk(v) as the components of
a vector we shall denote by D(v). The k-best derivations
problem for hypergraphs, then, is to find D(t) given a hy-
pergraph 〈V, E, t,R〉.

With the derivations thus ranked, we can introduce a
nonrecursive representation for derivations that is analo-
gous to the use of back-pointers in parser implementa-
tion.
Definition 7. A derivation with back-pointers (dbp) D̂
of v is a tuple 〈e, j〉 such that e ∈ BS(v), and j ∈
{1, 2, . . . , k}|e|. There is a one-to-one correspondence ∼
between dbps of v and derivations of v:

〈e, ( j1 · · · j|e|)〉 ∼ 〈e,D j1 (T1(e)) · · ·D j|e| (T |e|(e))〉

Accordingly, we extend the weight function w to dbps:
w(D̂) = w(D) if D̂ ∼ D. This in turn induces an ordering
on dbps: D̂ � D̂′ iff w(D̂) � w(D̂′). Let D̂i(v) denote the
ith-best dbp of v.
Where no confusion will arise, we use the terms ‘deriva-
tion’ and ‘dbp’ interchangeably.

Computationally, then, the k-best problem can be
stated as follows: given a hypergraph H with arity a, com-
pute D̂1(t), . . . , D̂k(t).1

As shown by Klein and Manning (2001), hypergraphs
can be used to represent the search space of most parsers
(just as graphs, also known as trellises or lattices, can
represent the search space of finite-state automata or
HMMs). More generally, hypergraphs can be used to rep-
resent the search space of most weighted deductive sys-
tem (Nederhof, 2003). For example, the weighted CKY
algorithm given a context-free grammar G = 〈N,T, P, S 〉
in Chomsky Normal Form (CNF) and an input string w
can be represented as a hypergraph of arity 2 as follows.
Each item [X, i, j] is represented as a vertex v, corre-
sponding to the recognition of nonterminal X spanning
w from positions i+1 through j. For each production rule
X → YZ in P and three free indices i < j < k, we have a
hyperarc 〈((Y, i, k), (Z, k, j)), (X, i, k), f 〉 corresponding to
the instantiation of the inference rule C in the de-
ductive system of (Shieber et al., 1995), and the weight
function f is defined as f (a, b) = ab ·Pr(X → YZ), which
is the same as in (Nederhof, 2003). In this sense, hyper-
graphs can be thought of as compiled or instantiated ver-
sions of weighted deductive systems.

A parser does nothing more than traverse this hyper-
graph. In order that derivation values be computed cor-
rectly, however, we need to traverse the hypergraph in a
particular order:
Definition 8. The graph projection of a hypergraph H =
〈V, E, t,R〉 is a directed graph G = 〈V, E′〉 where E′ =
{(u, v) | ∃e ∈ BS (v), u ∈ T (e)}. A hypergraph H is said to
be acyclic if its graph projection G is a directed acyclic
graph; then a topological ordering of H is an ordering

1Note that although we have defined the weight of a deriva-
tion as a function on derivations, in practice one would store a
derivation’s weight inside the dbp itself, to avoid recomputing
it over and over.
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Figure 1: Examples of hypergraph, hyperpath, and derivation: (a) a hypergraph H, with t as the target vertex and p, q as
source vertices, (b) a hyperpath πt in H, and (c) a derivation of t in H, where vertex u appears twice with two different
(sub-)derivations. This would be impossible in a hyperpath.

of V that is a topological ordering in G (from sources to
target).

We assume the input hypergraph is acyclic so that we
can use its topological ordering to traverse it. In practice
the hypergraph is typically not known in advance, but the
topological ordering often is, so that the (dynamic) hy-
pergraph can be generated in that order. For example, for
CKY it is sufficient to generate all items [X, i, j] before all
items [Y, i′, j′] when j′ − i′ > j − i (X and Y are arbitrary
nonterminals).

Excursus: Derivations and Hyperpaths
The work of Klein and Manning (2001) introduces a cor-
respondence between hyperpaths and derivations. When
extended to the k-best case, however, that correspondence
no longer holds.
Definition 9. (Nielsen et al., 2005) Given a hypergraph
H = 〈V, E, t,R〉, a hyperpath πv of destination v ∈ V is an
acyclic minimal hypergraph Hπ = 〈Vπ, Eπ, v,R〉 such that

1. Eπ ⊆ E

2. v ∈ Vπ =
⋃

e∈Eπ (T (e) ∪ {h(e)})

3. ∀u ∈ Vπ, u is either a source vertex or connected to
a source vertex in Hπ.

As illustrated by Figure 1, derivations (as trees) are dif-
ferent from hyperpaths (as minimal hypergraphs) in the
sense that in a derivation the same vertex can appear more
than once with possibly different sub-derivations while it
is represented at most once in a hyperpath. Thus, the k-
best derivations problem we solve in this paper is very
different in nature from the k-shortest hyperpaths prob-
lem in (Nielsen et al., 2005).

However, the two problems do coincide when k = 1
(since all the sub-derivations must be optimal) and for
this reason the 1-best hyperpath algorithm in (Klein and
Manning, 2001) is very similar to the 1-best tree algo-
rithm in (Knuth, 1977). For k-best case (k > 1), they also
coincide when the hypergraph is isomorphic to a Case-
Factor Diagram (CFD) (McAllester et al., 2004) (proof

(A→ α.Bβ, i, j)

(A→ α.Bβ, i, j)
(B→ .γ, j, j)

· · · · · ·

(B→ γ., j, k)
(A→ αB.β, i, k)

Figure 2: An Earley derivation. Note that item (A →
α.Bβ, i, j) appears twice (predict and complete).

1: procedure V(k)
2: for v ∈ V in topological order do
3: for e ∈ BS(v) do . for all incoming hyperarcs
4: D̂1(v)← min�(D̂1(v), 〈e, 1〉) . update

Figure 3: The generic 1-best Viterbi algorithm

omitted). The derivation forest of CFG parsing under the
CKY algorithm, for instance, can be represented as a
CFD while the forest of Earley algorithm can not. An
item (or equivalently, a vertex in hypergraph) can appear
twice in an Earley derivation because of the prediction
rule (see Figure 2 for an example).

The k-best derivations problem has potentially more
applications in tree generation (Knight and Graehl,
2005), which can not be modeled by hyperpaths. But de-
tailed discussions along this line are out of the scope of
this paper.

4 Algorithms

The traditional 1-best Viterbi algorithm traverses the hy-
pergraph in topological order and for each vertex v, cal-
culates its 1-best derivation D1(v) using all incoming hy-
perarcs e ∈ BS(v) (see Figure 3). If we take the arity of
the hypergraph to be constant, then the overall time com-
plexity of this algorithm is O(|E|).



4.1 Algorithm 0: naı̈ve
Following (Goodman, 1999; Mohri, 2002), we isolate
two basic operations in line 4 of the 1-best algorithm that
can be generalized in order to extend the algorithm: first,
the formation of the derivation 〈e, 1〉 out of |e| best sub-
derivations (this is a generalization of the binary operator
⊗ in a semiring); second, min�, which chooses the better
of two derivations (same as the ⊕ operator in an idem-
potent semiring (Mohri, 2002)). We now generalize these
two operations to operate on k-best lists.

Let r = |e|. The new multiplication operation,
mult�k(e), is performed in three steps:

1. enumerate the kr derivations {〈e, j1 · · · jr〉 | ∀i, 1 ≤
ji ≤ k}. Time: O(kr).

2. sort these kr derivations (according to weight).
Time: O(kr log(kr)) = O(rkr log k).

3. select the first k elements from the sorted list of kr

elements. Time: O(k).

So the overall time complexity of mult�k is O(rkr log k).
We also have to extend min� to merge�k, which takes

two vectors of length k (or fewer) as input and outputs the
top k (in sorted order) of the 2k elements. This is similar
to merge-sort (Cormen et al., 2001) and can be done in
linear time O(k). Then, we only need to rewrite line 4 of
the Viterbi algorithm (Figure 3) to extend it to the k-best
case:

4: D̂(v) ← merge�k(D̂(v),mult�k(e))
and the time complexity for this line is O(|e|k|e| log k),
making the overall complexity O(|E|ka log k) if we con-
sider the arity a of the hypergraph to be constant.2 The
overall space complexity is O(|V |k) since for each vertex
we need to store a vector of length k.

In the context of CKY parsing for CFG, the 1-best
Viterbi algorithm has complexity O(n3|P|) while the k-
best version is O(n3|P|k2 log k), which is slower by a fac-
tor of O(k2 log k).

4.2 Algorithm 1: speed up mult�k

First we seek to exploit the fact that input vectors are all
sorted and the function f is monotonic; moreover, we are
only interested in the top k elements of the k|e| possibili-
ties.

Define 1 to be the vector whose elements are all 1; de-
fine bi to be the vector whose elements are all 0 except
bi

i = 1.

2Actually, we do not need to sort all k|e| elements in order
to extract the top k among them; there is an efficient algorithm
(Cormen et al., 2001) that can select the kth best element from
the k|e| elements in time O(k|e|). So we can improve the overhead
to O(ka).

As we compute pe = mult�k(e), we maintain a candi-
date set C of derivations that have the potential to be the
next best derivation in the list. If we picture the input as an
|e|-dimensional space, C contains those derivations that
have not yet been included in pe, but are on the bound-
ary with those which have. It is initialized to {〈e, 1〉}. At
each step, we extract the best derivation from C—call it
〈e, j〉—and append it to pe. Then 〈e, j〉 must be replaced
in C by its neighbors,

{〈e, j + bl〉 | 1 ≤ l ≤ |e|}

(see Figure 4.2 for an illustration). We implement C as a
priority queue (Cormen et al., 2001) to make the extrac-
tion of its best derivation efficient. At each iteration, there
are one E-M and |e| I operations. If we use
a binary-heap implementation for priority queues, we get
O(|e| log k|e|) time complexity for each iteration.3 Since
we are only interested in the top k elements, there are
k iterations and the time complexity for a single mult�k
is O(k|e| log k|e|), yielding an overall time complexity of
O(|E|k log k) and reducing the multiplicative overhead by
a factor of O(ka−1) (again, assuming a is constant). In
the context of CKY parsing, this reduces the overhead
to O(k log k). Figure 5 shows the additional pseudocode
needed for this algorithm. It is integrated into the Viterbi
algorithm (Figure 3) simply by rewriting line 4 of to in-
voke the function M(e, k):

4: D̂(v) ← merge�k(D̂(v),M(e, k))

4.3 Algorithm 2: combine merge�k into mult�k

We can further speed up both merge�k and mult�k by a
similar idea. Instead of letting each mult�k generate a full
k derivations for each hyperarc e and only then applying
merge�k to the results, we can combine the candidate sets
for all the hyperarcs into a single candidate set. That is,
we initialize C to {〈e, 1〉 | e ∈ BS (v)}, the set of all the
top parses from each incoming hyperarc (cf. Algorithm
1). Indeed, it suffices to keep only the top k out of the
|BS (v)| candidates in C, which would lead to a significant
speedup in the case where |BS (v)| � k. 4 Now the top
derivation in C is the top derivation for v. Then, whenever
we remove an element 〈e, j〉 from C, we replace it with
the |e| elements {〈e, j + bl〉 | 1 ≤ l ≤ |e|} (again, as in
Algorithm 1). The full pseudocode for this algorithm is
shown in Figure 5.

3If we maintain a Min-Heap along with the Min-Heap, we
can reduce the per-iteration cost to O(|e| log k), and with Fi-
bonacci heap we can further improve it to be O(|e| + log k). But
these techniques do not change the overall complexity when a
is constant, as we will see.

4This can be implemented by a linear-time randomized-
selection algorithm (a.k.a. quick-select) (Cormen et al., 2001).
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Figure 4: An illustration of Algorithm 1 in |e| = 2 dimensions. Here k = 3, � is the numerical ≤, and the monotonic
function f is defined as f (a, b) = a + b. Italic numbers on the x and y axes are ai’s and b j’s, respectively. We want
to compute the top 3 results from f (ai, b j) with 1 ≤ i, j ≤ 3. In each iteration the current frontier is shown in oval
boxes, with the bold-face denoting the best element among them. That element will be extracted and replaced by its
two neighbors (⇑ and⇒) in the next iteration.

1: function M(e, k)
2: cand ← {〈e, 1〉} . initialize the heap
3: p← empty list . the result of mult�k
4: while |p| < k and |cand| > 0 do
5: AN(cand,p, k)
6: return p
7:
8: procedure AN(cand, p)
9: 〈e, j〉 ← E-M(cand)

10: append 〈e, j〉 to p
11: for i← 1 . . . |e| do . add the |e| neighbors
12: j′ ← j + bi

13: if j′i ≤ |D̂(Ti(e))| and 〈e, j′〉 < cand then
14: I(cand, 〈e, j′〉) . add to heap

Figure 5: Part of Algorithm 1.

1: procedure FAKB(k)
2: for v ∈ V in topological order do
3: FKB(v, k)
4:
5: procedure FKB(v, k)
6: GC(v, k) . initialize the heap
7: while |D̂(v)| < k and |cand[v]| > 0 do
8: AN(cand[v], D̂(v))
9:

10: procedure GC(v, k)
11: temp← {〈e, 1〉 | e ∈ BS (v)}
12: cand[v]← the top k elements in temp .

(optional) prune away useless candidates
13: H(cand[v])

Figure 6: Algorithm 2

1: procedure LKB(v, k, k′) . k′ is the global k
2: if cand[v] is not defined then . first visit of vertex v?
3: GC(v, k′) . initialize the heap
4: while |D̂(v)| < k do
5: if |D̂(v)| > 0 then . already have last derivation extracted?
6: 〈e, j〉 ← D̂|D̂(v)|(v) . get last derivation
7: LN(cand[v], e, j, k′) . update the heap, adding the successors of last derivation
8: if |cand[v]| > 0 then
9: append E-M(cand[v]) to D̂(v) . get the next best derivation and delete it from the heap

10: else
11: break . no more derivations
12:
13: procedure LN(cand, e, j, k′)
14: for i← 1 . . . |e| do . add the |e| neighbors
15: j′ ← j + bi

16: LKB(Ti(e), j′i , k′) . recursively solve a sub-problem
17: if j′i ≤ |D̂(Ti(e))| and 〈e, j′〉 < cand then . if it exists and is not in heap yet
18: I(cand, 〈e, j′〉) . add to heap

Figure 7: Algorithm 3



Algorithm Time Complexity
1-best Viterbi O(E)
Algorithm 0 O(Eka log k)
Algorithm 1 O(Ek log k)
Algorithm 2 O(E + Vk log k)
Algorithm 3 O(E + |Dmax|k log k)

generalized J&M O(E + |Dmax|k log(d + k))

Table 1: Summary of Algorithms.

4.4 Algorithm 3: compute mult�k lazily
Algorithm 2 exploited the idea of lazy computation: per-
forming mult�k only as many times as necessary. But this
algorithm still calculates a full k-best list for every ver-
tex in the hypergraph, whereas we are only interested in
the k-best derivations of the target vertex (goal item). We
can therefore take laziness to an extreme by delaying the
whole k-best calculation until after parsing. Algorithm 3
assumes an initial parsing phase that generates the hyper-
graph and finds the 1-best derivation of each item; then
in the second phase, it proceeds as in Algorithm 2, but
starts at the goal item and calls itself recursively only as
necessary. The pseudocode for this algorithm is shown
in Figure 7.5 As a side note, this second phase should
be applicable also to a cyclic hypergraph as long as its
derivation weights are bounded.

Algorithm 2 has an overall complexity of O(|E| +
|V |k log k) and Algorithm 3 is O(|E|+ |Dmax|k log k) where
|Dmax| is the size of the longest among all top k deriva-
tions (for CFG in CNF, |D| = 2n−1 for all D, so |Dmax| is
O(n)). These are significant improvements against Algo-
rithms 0 and 1 since it turns the multiplicative overhead
into an additive overhead. In practice, |E| usually dom-
inates, as in CKY parsing of CFG. So theoretically the
running times grow very slowly as k increases, which is
exactly demonstrated by our experiments below.

4.5 Summary and Discussion of Algorithms
The four algorithms, along with the 1-best Viterbi algo-
rithm and the generalized Jiménez and Marzal algorithm,
are compared in Table 1.

The key difference between our Algorithm 3 and
Jiménez and Marzal’s algorithm is the restriction of top
k candidates before making heaps (line 11 in Figure 6,
see also Sec. 4.3). Without this line Algorithm 3 could
be considered as a generalization of the Jiménez and
Marzal algorithm to the case of acyclic monotonic hy-
pergraphs. This line is also responsible for improving
the time complexity from O(|E| + |Dmax|k log(d + k))
(generalized Jiménez and Marzal algorithm) to O(|E| +

5This version corrects the behavior of the previously pub-
lished version in case a vertex has only one incoming hyperarc
but has more than one derivations. Furthermore, it improves the
efficiency by eliminating possible extra work in LN.

|Dmax|k log k), where d = maxv |BS (v)| is the maximum
in-degree among all vertices. So in case k < d, our algo-
rithm outperforms Jiménez and Marzal’s.

5 Experiments
We report results from two sets of experiments. For prob-
abilistic parsing, we implemented Algorithms 0, 1, and
3 on top of a widely-used parser (Bikel, 2004) and con-
ducted experiments on parsing efficiency and the qual-
ity of the k-best-lists. We also implemented Algorithms 2
and 3 in a parsing-based MT decoder (Chiang, 2005) and
report results on decoding speed.

5.1 Experiment 1: Bikel Parser
Bikel’s parser (2004) is a state-of-the-art multilingual
parser based on lexicalized context-free models (Collins,
2003; Eisner, 2000). It does support k-best parsing, but,
following Collins’ parse-reranking work (Collins, 2000)
(see also Section 5.1.2), it accomplishes this by sim-
ply abandoning dynamic programming, i.e., no items
are considered equivalent (Charniak and Johnson, 2005).
Theoretically, the time complexity is exponential in n (the
input sentence length) and constant in k, since, without
merging of equivalent items, there is no limit on the num-
ber of items in the chart. In practice, beam search is used
to reduce the observed time.6 But with the standard beam
width of 10−4, this method becomes prohibitively expen-
sive for n ≥ 25 on Bikel’s parser. Collins (2000) used
a narrower 10−3 beam and further applied a cell limit of
100,7 but, as we will show below, this has a detrimental
effect on the quality of the output. We therefore omit this
method from our speed comparisons, and use our imple-
mentation of Algorithm 0 (naı̈ve) as the baseline.

We implemented our k-best Algorithms 0, 1, and 3 on
top of Bikel’s parser and conducted experiments on a 2.4
GHz 64-bit AMD Opteron with 32 GB memory. The pro-
gram is written in Java 1.5 running on the Sun JVM in
server mode with a maximum heap size of 5 GB. For this
experiment, we used sections 02–21 of the Penn Tree-
bank (PTB) (Marcus et al., 1993) as the training data and
section 23 (2416 sentences) for evaluation, as is now stan-
dard. We ran Bikel’s parser using its settings to emulate
Model 2 of (Collins, 2003).

5.1.1 Efficiency
We tested our algorithms under various conditions. We

first did a comparison of the average parsing time per
6In beam search, or threshold pruning, each cell in the chart

(typically containing all the items corresponding to a span [i, j])
is reduced by discarding all items that are worse than β times the
score of the best item in the cell. This β is known as the beam
width.

7In this type of pruning, also known as histogram pruning,
only the α best items are kept in each cell. This α is called the
cell limit.



sentence of Algorithms 0, 1, and 3 on section 23, with
k ≤ 10000 for the standard beam of width 10−4. Fig-
ure 8(a) shows that the parsing speed of Algorithm 3 im-
proved dramatically against the other algorithms and is
nearly constant in k, which exactly matches the complex-
ity analysis. Algorithm 1 (k log k) also significantly out-
performs the baseline naı̈ve algorithm (k2 log k).

We also did a comparison between our Algorithm 3
and the Jiménez and Marzal algorithm in terms of average
heap size. Figure 8(b) shows that for larger k, the two al-
gorithms have the same average heap size, but for smaller
k, our Algorithm 3 has a considerably smaller average
heap size. This difference is useful in applications where
only short k-best lists are needed. For example, McDon-
ald et al. (2005) find that k = 5 gives optimal parsing
accuracy.

5.1.2 Accuracy
Our efficient k-best algorithms enable us to search over

a larger portion of the whole search space (e.g. by less
aggressive pruning), thus producing k-best lists with bet-
ter quality than previous methods. We demonstrate this
by comparing our k-best lists to those in (Ratnaparkhi,
1997), (Collins, 2000) and the parallel work by Char-
niak and Johnson (2005) in several ways, including oracle
reranking and average number of found parses.

Ratnaparkhi (1997) introduced the idea of oracle
reranking: suppose there exists a perfect reranking
scheme that magically picks the best parse that has the
highest F-score among the top k parses for each sentence.
Then the performance of this oracle reranking scheme
is the upper bound of any actual reranking system like
(Collins, 2000).As k increases, the F-score is nondecreas-
ing, and there is some k (which might be very large) at
which the F-score converges.

Ratnaparkhi reports experiments using oracle rerank-
ing with his statistical parser MXPARSE, which can
compute its k-best parses (in his experiments, k = 20).
Collins (2000), in his parse-reranking experiments, used
his Model 2 parser (Collins, 2003) with a beam width of
10−3 together with a cell limit of 100 to obtain k-best lists;
the average number of parses obtained per sentence was
29.2, the maximum, 101.8 Charniak and Johnson (2005)
use coarse-to-fine parsing on top of the Charniak (2000)
parser and get 50-best lists for section 23.

Figure 9(a) compares the results of oracle reranking.
Collins’ curve converges at around k = 50 while ours
continues to increase. With a beam width of 10−4 and
k = 100, our parser plus oracle reaches an F-score of
96.4%, compared to Collins’ 94.9%. Charniak and John-
son’s work, however, is based on a completely different

8The reason the maximum is 101 and not 100 is that Collins
merged the 100-best list using a beam of 10−3 with the 1-best
list using a beam of 10−4 (Collins, p.c.).

parser whose 1-best F-score is 1.5 points higher than the
1-bests of ours and Collins’, making it difficult to com-
pare in absolute numbers. So we instead compared the
relative improvement over 1-best. Figure 9(b) shows that
our work has the largest percentage of improvement in
terms of F-score when k > 20.

To further explore the impact of Collins’ cell limit on
the quality of k-best lists, we plotted average number of
parses for a given sentence length (Figure 10). Generally
speaking, as input sentences get longer, the number of
parses grows (exponentially). But we see that the curve
for Collins’ k-best list goes down for large k (> 40). We
suspect this is due to the cell limit of 100 pruning away
potentially good parses too early in the chart. As sen-
tences get longer, it is more likely that a lower-probability
parse might contribute eventually to the k-best parses. So
we infer that Collins’ k-best lists have limited quality for
large k, and this is demonstrated by the early convergence
of its oracle-reranking score. By comparison, our curves
of both beam widths continue to grow with k = 100.

All these experiments suggest that our k-best parses are
of better quality than those from previous k-best parsers,
and similar quality to those from (Charniak and Johnson,
2005) which has so far the highest F-score after rerank-
ing, and this might lead to better results in real parse
reranking.

5.2 Experiment 2: MT decoder
Our second experiment was on a CKY-based decoder
for a machine translation system (Chiang, 2005), imple-
mented in Python 2.4 accelerated with Psyco 1.3 (Rigo,
2004). We implemented Algorithms 2 and 3 to compute
k-best English translations of Mandarin sentences. Be-
cause the CFG used in this system is large to begin with
(millions of rules), and then effectively intersected with
a finite-state machine on the English side (the language
model), the grammar constant for this system is quite
large. The decoder uses a relatively narrow beam search
for efficiency.

We ran the decoder on a 2.8 GHz Xeon with 4 GB of
memory, on 331 sentences from the 2002 NIST MTEval
test set. We tested Algorithm 2 for k = 2i, 3 ≤ i ≤ 10, and
Algorithm 3 (offline algorithm) for k = 2i, 3 ≤ i ≤ 20.
For each sentence, we measured the time to calculate the
k-best list, not including the initial 1-best parsing phase.
We then averaged the times over our test set to produce
the graph of Figure 11, which shows that Algorithm 3
runs an average of about 300 times faster than Algorithm
2. Furthermore, we were able to test Algorithm 3 up to
k = 106 in a reasonable amount of time.9

9The curvature in the plot for Algorithm 3 for k < 1000
may be due to lack of resolution in the timing function for short
times.
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6 Conclusion
The problem of k-best parsing and the effect of k-best list
size and quality on applications are subjects of increas-
ing interest for NLP research. We have presented here
a general-purpose algorithm for k-best parsing and ap-
plied it to two state-of-the-art, large-scale NLP systems:
Bikel’s implementation of Collins’ lexicalized PCFG
model (Bikel, 2004; Collins, 2003) and Chiang’s syn-
chronous CFG based decoder (Chiang, 2005) for machine
translation. We hope that this work will encourage further
investigation into whether larger and better k-best lists
will improve performance in NLP applications, questions
which we ourselves intend to pursue as well.
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