
Putting Some Weakly Context-Free Formalisms in Order
David Chiang
University of Pennsylvania

1. Introduction

A number of formalisms have been proposed in order to restrict tree adjoining grammar (TAG) to be weakly
equivalent to context free grammar (CFG): for example, tree substitution grammar (TSG), tree insertion grammar
(TIG), and regular-form TAG (RF-TAG); in the other direction, tree-local multicomponent TAG (TL-MCTAG) has
been proposed as an extension to TAG which is weakly equivalent to TAG. These formalisms have been put to use
in various applications. For example, Kroch and Joshi (1987) and others use TL-MCTAG for linguistic description;
Bod (1992) uses TSG, and Chiang (2000) uses TIG, for statistical parsing; Shieber (1994) proposes to use TSG
for generating synchronous TAG derivations for translation, and Dras (1999) uses RF-TAG for the same purpose.
Although it is understood that these formalisms are useful because they have greater strong generative capacity
(henceforth SGC) than their weakly-equivalent relatives, it is not always made clear what this actually means:
sometimes it is understood in terms of phrase structures, sometimes in terms of a broader notion of structural
descriptions (so Chomsky (1963)).

We take the latter view, and follow Miller (1999) in seeing phrase structures as just one of many possible
interpretations of structural descriptions (alongside, for example, dependency structures). For Miller, structural
descriptions themselves should never be compared (since they vary widely across formalisms), but only their
interpretations. Thus SGC in the phrase-structure sense is one of several ways of testing SGC in the broader sense.
However, not much effort has been made to demonstrate precisely how formalisms compare in these other ways.

In this paper we examine four formalisms—CFG, TIG, RF-TAG, and what we callcomponent-local scattered
context grammar(CL-SCG)—under four different interpretations, and find that TIG, RF-TAG, and CL-SCG all
extend the expressivity of CFG in different ways (see Figure 1). These results show that it is possible to make
formally precise statements about notions of generative capacity other than weak generative capacity (henceforth
WGC), as a step towards articulating desiderata of formal grammars for various applications.

string sets CFG= TIG = RF-TAG= CL-SCG

tree sets
(modulo projection)

TIG

CFG= RF-TAG= CL-SCG

indexed string sets
string relations

RF-TAG CL-SCG

CFG= TIG

Figure 1: Summary of results. Edges denote strict inclusion (lower⊂ higher);= denotes equivalence.

2. Definitions

We assume familiarity with CFGs and TAGs, and proceed to define two restrictions on TAGs:

Definition 1. A left (or right) auxiliary tree is an auxiliary tree in which every frontier node to the right (resp.,
left) of the foot node is labeled with the empty string. Atree insertion grammar(Schabes and Waters, 1995) is a
TAG in which all auxiliary trees are either left or right auxiliary trees, and adjunction is constrained so that:

• no left (right) auxiliary tree can be adjoined on any node that is on the spine of a right (left) auxiliary tree, and

• no adjunction is permitted on a node that is to the right (left) of the spine of a left (right) auxiliary tree.
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Definition 2. We say that a TAG is inregular form (Rogers, 1994) if there exists some partial ordering� over
nonterminal symbols such that ifβ is an auxiliary tree whose root and foot nodes are labeledX, andη is a node
labeledY on β’s spine where adjunction is allowed, thenX � Y, and X = Y only if η is a foot node. Thus
adjunction at the foot node is allowed freely, adjunction at the middle of a spine is allowed only to a bounded
depth, and adjunction at the root is not allowed at all.1

Next we define CL-SCG, first introducing the notion of an indexed string, which we will make use of in several
places in this paper.

Definition 3. An indexed stringis a pair (w; Iw), wherew is a string andIw is an equivalence relation over string
positions ofw. An indexed string n-tupleis an (n+ 1)-tuple (w1, . . . ,wn; Iw), wherew1, . . . ,wn are strings andIw is
an equivalence relation over string positions of thewi . We notate these equivalence relations using boxed indices.

Definition 4. A local scattered context grammar2 is a tupleG = (N,T,P,S), where

• N andT are finite, disjoint sets of nonterminal symbols and terminal symbols, respectively,

• S ∈ N is the start symbol, and

• P is a finite set of productions of the form

(A1, . . . ,An)→ (α1, . . . , αn; Iα)

wheren ≥ 1, Ai ∈ N and (αi , . . . , αn; Iα) is an indexed tuple of strings over (N ∪ T)∗.

We write (γ; Iγ) ⇒G (δ, Iδ), where (γ; Iγ) and (δ; Iδ) are indexed strings, if and only if there exists a production
(A1, . . . ,An)→ (α1, . . . , αn; Iα) ∈ P such that

γ = γ0A1γ1 · · ·Anγn

whereA1, . . . ,An comprise an equivalence class ofIγ, and

δ = γ0α1γ1 · · ·αnγn,

where any nonterminal instances in theγi whose corresponding instances inγ are equivalent underIγ are also
equivalent underIδ, as are any nonterminal instances in theαi which are equivalent underIα, and nothing else.

Let IS be the equivalence relation on string positions ofS that relatesS to itself. Then

L(G) = {w | (S; IS)
∗⇒G (w; Iw) for someIw}.

We say that a local scattered context grammar iscomponent-localif for each production (A1, . . . ,An) →
(α1, . . . , αn; Iα) ∈ P, a nonterminal instance inαi and a nonterminal instance inα j are equivalent underIα only if
i = j.

We call this restriction “component-local” by analogy with tree-local MCTAG (Weir, 1988), because a pro-
duction simultaneously rewrites multiple nonterminals with multiple components, but all those nonterminals must
have come from the same component.

3. The formalisms considered as string-rewriting systems

Proposition 1. CFG, TIG, RF-TAG, and CL-SCG are weakly equivalent.

Proof. The weak equivalence of TIG to CFG was shown by Schabes and Waters (1995). The basic idea is to flatten
each elementary tree into a CFG production, discarding every foot node, but adding a nonterminal to the left (right)
of every node at which left-adjunction (resp., right-adjunction) is possible.

1. Note that this definition is stricter than Rogers’ original definition, which allows “redundant” elementary trees. His parsing
algorithm does not produce all possible derivations under the original definition, but does under the stricter definition.
2. This definition is based on local unordered scattered context grammar (Rambow and Satta, 1999), but is simplified in two
ways: first, our scattered contexts are ordered rather than unordered; second, our productions explicitly specify which sets of
nonterminals may be rewritten. We do not believe either of these simplifications affects the results shown here.
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The weak equivalence of RF-TAG to CFG was shown by Rogers (1994). The basic idea is to break each
elementary tree into CFG productions, augmenting the nonterminal alphabet with a stack of bounded depth to
keep track of non-foot adjunctions.

For any CL-SCG, a weakly equivalent CFG can be obtained by a construction analogous to that for tree-
local multicomponent TAG (Weir, 1988). Given a CL-SCGG = (N,T,P,S), let f be the maximum number of
components of (the left- or right-hand side of) any production inP, and letN′ = (

⋃ f
i=1 Ni × {1, . . . , f }). We want

to break each production ofP into its component CFG productions, using this augmented nonterminal alphabet to
ensure that all the component productions are used together. To do this, constructP′ from P as follows:

• For every nonterminal occurrenceAi on a left-hand side (A1, . . .An), replaceAi with (A1, . . . ,An, i).

• For every nonterminal occurrenceAi on a right-hand side (α1, . . . , αn; Iα), if Ai is theith member of an equiva-
lence class ofIα whose members areA1, . . . ,An, in that order, replaceAi with (A1, . . . ,An, i).

Then constructP′′ from P′ as follows: if (A′1, . . . ,A
′
n) → (α′1, . . . , α

′
n) ∈ P′, thenA′i → α′i ∈ P′′ for all i between 1

andn. Then the CFG (N′,T,P′′, (S, 1)) is weakly equivalent toG. �

4. The formalisms considered as tree-rewriting systems

CFG generates only local sets, whereas CL-SCG and RF-TAG generate some recognizable sets which are not
local. However, any recognizable set can be made from a local set by projection of labels (Thatcher, 1967). If we
factor out this distinction, then CL-SCG and RF-TAG are no more powerful than CFG:

Proposition 2. For any RF-TAG (or CL-SCG) G, there is a CFG G′ and a projection of labelsπ such that T(G) =
{π(t) | t ∈ T(G′)}.
Proof. The constructions used to prove the weak equivalence of these formalisms to CFG also preserve trees,
modulo projection of labels. �

Proposition 3. TIG can generate a tree set which is not recognizable.

Proof. As was observed by Schabes and Waters (1995), the following TIG generates a non-recognizable set:

S

x

S

A

S

B

S∗

a

When the path set is intersected with{SA}∗S{BS}∗x, the result is{(SA)nS(BS)nx | n ≥ 0}, a non-regular set. �

5. The formalisms considered as linking systems

We now define derivational generative capacity (henceforth DGC, introduced by Becker et al. (1992)), which
measures the generative capacity of what Miller (1999) calls “linking systems.”

Definition 5. We say that a grammarG index-generatesan indexed string (a1 · · ·an; Iw) (see Definition 3) ifG
generatesa1 · · ·an such thatai andaj are equivalent underIw if and only if ai andaj are contributed by the same
derivation step. Thederivational generative capacityof a grammarG is the set of all indexed string sets index-
generated byG.

In this section we notate indexed strings by drawing links (following Joshi (1985)) between all the positions
of each equivalence class. Thus the CFGX → aXb | ε index-generates the familiar-looking indexed string set





a a · · · a b · · · b b





.
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We saw in the previous section that with respect to SGC (in the sense of phrase structures), TIG was more
powerful than CFG, whereas RF-TAG and CL-SCG were no more powerful than CFG. With respect to DGC, the
opposite obtains.

Proposition 4. CFG and TIG are derivationally equivalent.

Proof. The construction given by Schabes and Waters (1995) preserves derivations, and therefore preserves in-
dexed strings. �

On the other hand, RF-TAG and CL-SCG both have greater DGC than CFG (and TIG). Moreover, they extend
CFG in different ways, because each is able to generate an indexed string set that the other is not.

Lemma 5 (indexed pumping lemma).Let L be an indexed string set generated by a CFG (or CL-SCG). Then
there is a constant n such that if(z; Iz) is in L and |z| ≥ n, then z may be rewritten as uvwxy, with|vx| > 0 and
|vwx| ≤ n, such that for all i≥ 1, there is an equivalence relation Ii

z such that(uviwxiy; I i
z) is in L and Iiz does not

relate any positions in w to any positions in u or y.

Proof. The proof is analogous to that of the standard pumping lemma (Hopcroft and Ullman, 1979). However,
since the grammar cannot be put into Chomsky normal form, we letn = mk instead of 2k, wherek is the size of the
nonterminal alphabet andm is the maximum number of symbols on any right-hand side. The key difference from
the standard proof is the observation that since, for eachi, the derivation ofuviwxiy can be written as

S
∗⇒ uAy

∗⇒ uviAxiy
∗⇒ uviwxiy

for some nonterminalA, no position inw can be contributed by the same derivation step as any position inu or y.
The generalization to CL-SCG is straightforward, since a CL-SCGG can be converted into a CFGG′ which

generates the same trees.G′ will not generate the same indexed strings asG; nevertheless, the equivalence relations
index-generated byG can only relate terminal instances which are first cousins in the derived tree, so fori ≥ 1, it
remains the case that no position inw is related to any position inu or y. �

Proposition 6. The following indexed string set is index-generable by an RF-TAG but not by any CL-SCG:

L1 =





c a a · · · a c b · · · b b c





Proof. The following RF-TAG generatesL1:

X

c Y

c

c

Y

a Y∗ b

But supposeL1 is index-generated by some CFG or CL-SCGG. For anyn given by the indexed pumping lemma,
let z= cancbnc satisfy the conditions of the pumping lemma. It must be the case thatv andx contain onlya’s and
b’s, respectively, or elseuviwxiy < L1. But thenu, w, andy would each have to contain one of thec’s, and since the
c’s are all related, this contradicts the pumping lemma. �

Proposition 7. The following indexed string set (consisting of a single string) is generable by a CL-SCG but not
by any RF-TAG, nor indeed by any TAG:

L2 =





a b a b a b




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Proof. The following CL-SCG generatesL2:

(S)→ (aB1 aB1 aB1 )

(B,B,B)→ (b, b, b)

But L2 cannot be generated by any TAG. In general, ifa1 · · ·b · · ·a2 is index-generable by a TAG such thata1 and
a2 are related, then either the tree that contributesa1 anda2 (call it βa) adjoins into the tree that contributesb (call
it βb) such that its foot node dominatesb, or elseβb adjoins intoβa. In the case ofL2, suppose that thea’s are
contributed byβa, and theb’s are contributed byβb. If βa adjoins intoβb, its foot node must dominate both of the
b’s, which is a contradiction; similarly ifβb adjoins intoβa. �

6. The formalisms considered as local synchronous systems

In a local synchronous system(Aho and Ullman, 1969; Shieber, 1994; Rambow and Satta, 1996), two gram-
mars are constrained to generate pairs of strings via isomorphic derivations (up to relabeling and reordering of
sisters). Although translation via a synchronous grammar is not really an “interpretation” in Miller’s sense, never-
theless, because a synchronous derivation in effect realizes a single derivation structure in two different ways, we
expect the set of string relations generated by a local synchronous system to reveal something about the relationship
between derivations and strings that weak generative capacity does not.

Definition 6. A synchronous CFGis a tupleG = (N,T,P,S), whereN, T, andS are as in ordinary CFG, andP is
a set of productions of the form

(A : A′)→ (α : α′; Iα)

whereA,A′ ∈ N, α, α′ ∈ (N ∪ T)∗, and Iα is a bijection between nonterminal instances inα and nonterminal
instances inα′.

We write (γ : γ′; Iγ) ⇒G (δ : δ′; Iδ), where (γ : γ′; Iγ) and (δ : δ′; Iδ) are indexed string pairs, if and only if
there exists a production (A : A′)→ (α : α′; Iα) ∈ P such that

γ = γ0Aγ1 γ′ = γ′0A′γ′1

whereA andA′ are related underIγ, and

δ = γ0αγ1 δ′ = γ′0α
′γ′1

where any nonterminal instances inγ0, γ1, γ′0, orγ′1 whose corresponding instances inγ are equivalent underIγ are
also equivalent underIδ, as are any nonterminal instances inα andα′ which are equivalent underIα, and nothing
else.

Let IS be the equivalence relation on string positions of (S : S) which relates both instances ofS to each other.
Then theweak generative capacityof G is the string relation

L(G) = {(w : w′) | (S : S; IS)
∗⇒G (w : w′; Iw)}.

The definition of synchronous TAG (Shieber, 1994) is analogous, but with bijections between adjunction
sites instead of bijections between nonterminal instances; synchronous TIG and synchronous RF-TAG are just
restrictions of synchronous TAG. The definition of synchronous CL-SCG is also analogous, but with bijections
between equivalence classes of nonterminal instances instead of bijections between nonterminal instances. These
four synchronous formalisms relate to each other in the same way as the linking systems of the previous section.

Proposition 8. Synchronous CFG and synchronous TIG are weakly equivalent.

Proof. The construction given by Schabes and Waters (1995) preserves derivations, and therefore preserves string
pairs. �

Lemma 9 (synchronous pumping lemma).Let L be a string relation generated by a synchronous CFG (or
synchronous CL-SCG). Then there is a constant n such that if(z : z′) is in L and|z| ≥ n and|z′| ≥ n, then(z : z′)
may be written as(uwy : u′w′y′), and there exist strings v, x, v′, x′, such that|vxv′x′| > 0, |vwx| ≤ n, |v′w′x′| ≤ n,
and for all i ≥ 0, (uviwxiy : u′v′iw′x′iy′) is in L.
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Proof. The proof is again analogous to that of the standard pumping lemma: letG = (N,T,P,S) be a synchronous
CFG generatingL. We choosen as the proof of the standard lemma would if the nonterminal alphabet wereN×N.
This guarantees the existence of a pair of corresponding paths in the derivation of (z : z′) such that the same pair
of nonterminals (A : A′) occurs twice:

(S : S)
∗⇒ (uAy : u′A′y′)

∗⇒ (u1vAxy1 : u′1v′A′x′y′1)
∗⇒ (u1vwxy1 : u′1v′w′x′y′1)

If we let u = u1v andy = xy1, and likewiseu′ = u′1v′ andy′ = x′y′1, then (z : z′) = (uwy : u′w′y′), and for alli ≥ 0,
(uviwxiy : u′v′iw′x′iy′) ∈ L.

The CL-SCG case is similar but quite messy. A CL-SCG derivation tree has the same height as its derived tree,
minus one. Therefore we can choosen such that any derivation of (z : z′) where|z| ≥ n and|z′| ≥ n must have a pair
of corresponding paths such that the same set of nonterminals occurs twice (new material underlined for clarity):

(S : S)
∗⇒ (u0A1u1 · · ·Akuk · · ·Anun : u′0A′1u′1 · · ·A′k′uk′ · · ·A′n′u′n′ )
∗⇒ (u0v1u1 · · · vk0A1vk1 · · ·Anvknuk · · · vnun : u′0v

′
1u′1 · · · v′k′0A′1v′k′1 · · ·A′n′v′k′n′u′k′ · · · v′n′u′n′)

∗⇒ (u0v1u1 · · · vk0w1vk1 · · ·wnvknuk · · · vnun : u′0v
′
1u′1 · · · v′k′0w′1v′k′1 · · ·w′n′v′k′n′u′k′ · · · v′n′u′n′)

If we let

u = u0v1u1 · · · vk−1uk−1 u′ = u′0v′1u′1 · · ·v′k′−1u′k′−1

v = vk0v1vk1 · · · vk−1vk,k−1 v′ = v′k′0v′1v′k′1 · · · v′k′−1v′k′,k′−1

w = vk0w1vk1 · · ·wnvkn w′ = v′k′0w′1v′k′1 · · ·w′n′v′k′n′
x = vk,k+1vk+1 · · · vnvkn x′ = v′k′,k′+1v′k′+1 · · ·v′n′v′k′n′
y = ukvk+1uk+1 · · · vnun y′ = u′k′v

′
k′+1u′k′+1 · · · v′n′u′n′

then (z : z′) = (uwy : u′w′y′), and for alli ≥ 0, (uviwxiy : u′v′iw′x′iy′) ∈ L. �

Proposition 10. The string relation
L3 = {(ambncndm : bnamdmcn)}

is generable by a synchronous RF-TAG but not by any synchronous CL-SCG.

Proof. The following synchronous RF-TAG generatesL3:



A 1

B 2

ε

:

B 2

A 1

ε







A

a A∗
1

a
:

A

a A∗
1

a







B

b B∗
1

b
:

B

b B∗
1

b




But supposeL3 can be generated by some CL-SCGG. For anyn given by the pumping lemma, let (z : z′) =
(anbncndn : bnancndn) satisfy the conditions of the pumping lemma. Thenvxv′x′ must contain onlya’s andd’s, or
only b’s andc’s, otherwise (uviwxiy : u′v′iw′x′iy′) will not be in L. But in the former case,|vwx| > n, and in the
latter case,|v′w′x′| > n, which is a contradiction.3 �

Proposition 11. There is a string relation which is generable by a synchronous CL-SCG but not by any syn-
chronous RF-TAG, nor indeed by any synchronous TAG.

Proof. DefineL4(k) to be
{(w1 · · ·w2n : wπk

n(1) · · ·wπk
n(2n)) | wi ∈ {σ(i)}∗, n ≥ 1},

where

σ(i) =





a if i is odd,

b if i is even,

3. An analogous result for synchronous regular-form two-level TAG was shown by Chiang et al. (2000).
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π3
6 π5

6

Figure 2: Example diagrams ofπk
n.

and

πk
n(i) =





i + k if i is odd andi + k ≤ 2n,

i − k if i is even andi − k ≥ 1,

i otherwise.

See Figure 2 for examples ofπk
n. The following synchronous CL-SCGs generateL4(3) andL4(5), respectively:

(S : S)→ (X 1 A 2 Y 1 : X 1 A 2 Y 1 )

(X,Y : X,Y)→ (X 1 A 2 Y 1 ,B 3 : X 1 B 3 Y 1 ,A 2 )

| (ε,B 1 : ε,B 1 )

(A : A)→ (aA 1 : aA 1 ) | (ε : ε)

(B : B)→ (bB 1 : bB 1 ) | (ε : ε)

(S : S)→ (X 1 A 2 Y 1 A 3 Z 1 : X 1 A 2 Y 1 A 3 Z 1 )

(X,Y,Z : X,Y,Z)→ (X 1 A 2 Y 1 A 3 Z 1 ,B 4 ,B 5 : X 1 B 4 Y 1 B 5 Z 1 ,A 2 ,A 3 )

| (ε,B 1 ,B 2 : ε,B 1 ,B 2 )

(A : A)→ (aA 1 : aA 1 ) | (ε : ε)

(B : B)→ (bB 1 : bB 1 ) | (ε : ε)

But supposeL4(3) is generated by a synchronous CFGG. Let r be the order ofG, that is, the maximum number
of nonterminals in either half of the right-hand side of any production. By means of closure properties it can be
shown that there is a synchronous CFGG′ of orderr which generates the language

{(w1 · · ·w2n : wπ3
n(1) · · ·wπ3

n(2n)) | wi ∈ {ci}∗},

wheren = max{3, d r+1
2 e} andπk

n is as above. But this leads to a contradiction by means of the same argument used
by Aho and Ullman (1969) to show that the synchronous CFGs of orderr + 1 properly include the synchronous
CFGs of orderr. The basic idea is as follows: we say that a productioncoversci if its right-hand side derives an
unbounded number ofci ’s. Then it can be shown that any production which covers two of theci must cover all of
them. So there would have to be a production covering all 2n of theci , with 2n nonterminals on its right-hand side,
each of which gets rewritten with a production covering only one of theci . But since 2n > r, this is a contradiction.

For the TAG case, supposeL4(5) is generated by a synchronous TAGG, and again letr be the order ofG. By
means of closure properties it can be shown that there is a synchronous TAGG′ of orderr which generates the
language

{(w1 · · ·w2n : wπ5
n(1) · · ·wπ5

n(2n)) | wi ∈ {ci}∗},

wheren = 4r +1 andπk
n is as above. This case is more difficult because unlike a CFG nonterminal, a TAG auxiliary

tree has a hole in its span created by its foot node. But it can be shown that any elementary tree pair which covers
three of theci , such that none of them are separated by a foot node in either the domain or the range, must cover
all theci except perhaps one. Given our choice ofn, this suffices to show thatG′ cannot exist.

�
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7. Conclusion

Joshi (2000) poses the question, “How much strong generative power can be squeezed out of a formal sys-
tem without increasing its weak generative power?” The shifting relations between these four formalisms under
different interpretations (see Figure 1) show that there is more than one way to answer this question.

First, there is more than one way to measure strong generative power. That TIG generates more tree sets than
RF-TAG or CL-SCG but fewer indexed string sets demonstrates a point noted by Becker et al. (1992): that SGC
(in the sense of phrase structures) and DGC are orthogonal notions. This is because SGC (in the sense of phrase
structures) is based on the tree yield function, which can be chosen somewhat independently of the string yield
function. On the other hand, DGC and synchronous WGC, which are both based on the string yield function, order
our four formalisms in the same way.

Second, there is more than one way to squeeze a formal system. RF-TAG and CL-SCG are incommensurate
with respect to both DGC and synchronous WGC; that is, each is able to do something the other is not. Thus, even
under a particular interpretation of strong generative power, the question is not only, how much strong generative
power can be squeezed, but also, in what ways? Characterizing the different ways in which strong generative power
can be both measured and squeezed is a task for future research.
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