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Applications of grammars

• Statistical parsing (Charniak, 1997; Collins, 1997)

• Language modeling (Chelba and Jelinek, 1998)

• Statistical machine translation (Wu, 1997; Yamada and Knight,
2001)

• Prediction or modeling of RNA/protein structure (Searls, 1992)
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Applications of grammars

• Grammars are a convenient way to. . .

� encode bits of theories (subcategorization, SVO/SOV/VSO)
� structure algorithms (searching through word alignments, chain
foldings)

• A di�culty of using grammars: don't know what kind to use
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The overarching question

What makes one grammar better than another?

• Weak generative capacity (WGC): what strings does a grammar
generate?

• Strong generative capacity (SGC): what structural descriptions (SDs)
does a grammar generate?

� speci�es whatever is needed to determine how the sentence is
used and understood (Chomsky)

� not just phrase-structure trees
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Weak vs. strong generative capacity

• Chomsky:

� WGC is �the only area in which substantial results of a
mathematical character have been achieved�

� SGC is �by far the more interesting notion�

• Theory focuses on WGC because it's easier to compare strings than
to compare SDs

• Applications are concerned with SGC because SDs contain the
information that eventually gets used

• Occasional treatment of SGC (Kuroda, 1976; Miller 1999) but
nothing directed towards computational applications
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Objective

• Ask the right questions: re�ne SGC so that it is rigorous (unlike
before) and relevant (unlike WGC) to applications

• Answer the questions and see what the consequences are for
applications

• Three areas:

� Statistical natural language parsing
� Natural language translation
� Biological sequence analysis
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Historical example: cross-serial dependencies

• Example from Dutch:
dat
that

Jan
Jan

Piet
Piet

de kinderen
the children

zag
saw

helpen
help

zwemmen
swim

`that Jan saw Piet help the children swim'

• Looks like non-context-free {ww} but actually context-free, like
{anbn} (Pullum and Gazdar, 1982)

• How to express intuition that this is beyond the power of CFG?
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Historical example: a solution

Two things had to happen to show this was beyond CFG but within
TAG (Joshi, 1985):

1. A di�erent notion of generative capacity: not strings, but strings
with links representing dependencies (derivational generative
capacity)

dat Jan Piet de kinderen zag helpen zwemmen

2. A locality constraint on how grammars generate these objects:
links must be con�ned to a single elementary structure
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Historical example: a solution

• CFG can't do this

S → Piet S? helpen S? S → de kinderen S? zwemmen S?

• TAG can

S
S

NP
N
Piet

VP
S V

t

V
helpen

∗

S
S

NP
de kinderen

VP
V
t

V
zwemmen
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Historical example: a solution
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Miller (1999): relativized SGC

• Generalize from DGC to many notions of SGC

• Miller: SGC should not compare SDs, but interpretations of SDs in
various domains

Structural descriptions

Strings

Trees
Linked
strings

Weighted
parse
trees

Translated
strings
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Joshi et many al.: Local grammar formalisms

• Generalize from TAG to many formalisms, retaining the idea of
locality:

� SDs built out of a �nite set of elementary structures
� Interpretation functions factor into local interpretation functions
de�ned on elementary structures

• Linear context-free rewriting systems (Weir, 1988) or simple literal
movement grammar (Groenink, 1997)
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Combined framework

• Choose interpretation domains to measure SGC in a sense suitable
for applications

• De�ne how interpretation functions should respect locality of
grammars

• Show how various formalisms compare

• Test them by experiments (or thought experiments!)
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Overview of comparisons: statistical parsing

Trees Weighted trees

TIG

CFG = TSG = RF-TAG = clMC-CFG

TIG

CFG = TSG = RF-TAG = clMC-CFG
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Overview of comparisons: translation

Tree relations String relations

RF-TAG clMC-CFG TIG

TSG

CFG

2CFG

RF-TAG clMC-CFG

CFG = TSG = TIG

2CFG
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Overview of comparisons: biological sequence
analysis

Weighted linked strings

RF-TAG clMC-CFG CFG ∩ FSA

CFG = TSG = TIG
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First application: statistical parsing

• Measuring statistical-modeling power of grammars

• A negative result leads to a reconceptualization of some current
parsers

• Experiments on a stochastic TAG-like model
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Measuring modeling power

• Statistical parsers use probability distributions over parse
structures (trees)

• Statistical parsing models map from parse structures to products
of parameters

� History-based: event sequences
� Maximum-entropy: feature vectors

• Right notion of SGC: parse structures with generalized weights
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Measuring modeling power

• Locality constraint: weights must be decomposed so that each
elementary structure gets a �xed weight

• History-based: each elementary structure gets a single event (e.g.,
PCFG) or event sequence, combine by concatenation

• Maximum-entropy: each elementary structure gets a feature vector
(Chiang, 2003; Miyao and Tsujii, 2002), combine by addition

• Grammars with semiring weights
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Modeling power for free?

• We might hope that there are formalisms with the same parsing
complexity as, say, CFG that have greater modeling power than
PCFG

• Often a weakly CF formalism has a parsing algorithm which
dynamically compiles the grammar G down to a CFG (a cover
grammar)

• Easy to show that weights can be chosen for the cover to give the
same weights as G
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Modeling power for free?

Trees Weighted trees

TIG

CFG = TSG = RF-TAG = clMC-CFG

TIG

CFG = TSG = RF-TAG = clMC-CFG

• Not very promising

• However, we may still learn something. . .
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Example: cover grammar of a TSG

• A tree-substitution grammar

NP
NNP
Qintex

S
NP VP

MD
would

VP

VP
VB
sell

NP
NP
NNS
assets

• Constructing a cover grammar, step 1:

NP(α)
NNP(α)
Qintex(α)

S(β)
NP(*) VP(β)

MD(β)
would(β)

VP(β)

VP(γ)
VB(γ)
sell(γ)

NP(*)
NP(δ)
NNS(δ)
assets(δ)
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Example: cover grammar of a TSG

• Constructing a cover grammar, step 2:

NP(α)→ PRP(α) PRP(α)→ Qintex(α)
S(β)→ NP(∗) VP(β)
VP(β)→ MD(β) VP(∗) MD(β)→ would(β)
VP(γ)→ VB(γ) NP(∗) VB(γ)→ sell(γ)
NP(δ)→ NNS(δ) NNS(δ)→ assets(δ)
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Example: cover grammar of a TSG

• But this is almost identical to the PCFGs many current parsers use

NP(Qintex)→ PRP(Qintex) PRP(Qintex)→ Qintex
S(would)→ NP(∗) VP(would)
VP(would)→ MD(would) VP(∗) MD(would)→ would
VP(sell)→ VB(sell) NP(∗) VB(sell)→ sell

NP(assets)→ NNS(assets) NNS(assets)→ assets

(Charniak, 1997, 2000; Collins, 1997, 1999)

• Think of these PCFGs as a compiled version of something with
richer SDs, like a TSG
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Lexicalized PCFG

Train from the Treebank by using heuristics (head rules, argument
rules) to create lexicalized trees

S(would)

NP(Qintex)

NNP(Qintex)

Qintex

VP(would)

MD(would)

would

VP(sell)

VB(sell)

sell

PRT(o�)

RP(o�)

o�

NP(assets)

NNS(assets)

assets
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Lexicalized PCFG as a cover grammar

• Conventional wisdom: propagation of head words rearranges
lexical information in trees to bring pairs of words together

• But experiments show that bilexical statistics not as important as
lexico-structural statistics (Gildea, 2001; Bikel, 2004)

• These structures are in the propagation paths and subcategorization
frames

• New view: what matters is the structural information reconstructed
heuristically
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A stochastic TIG model (Chiang, 2000)

• Direct implementation of new view�why?

• Sometimes better not to use head word as a proxy

• Greater �exibility (e.g., multi-headed elementary trees)

• Alternative training method
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A stochastic TIG model (Chiang, 2000)

NP
NNP
Qintex

VP
MD
would

VP

S
NP VP

VB
sell

NP

PRT
RP
o�

NP
NNS
assets

⇒

S

NP

NNP

Qintex

VP

MD

would

VP

VB

sell

PRT

RP

o�

NP

NNS

assets

Pi(α) start with initial tree α

Ps(α | η) substitute α at node η

Psa(α | η, i) sister-adjoin α under η between ith, (i+1)st children
Pa(β | η) adjoin β at node η (β's foot node must be at left or

right corner)

Dissertation defense 27



First training method: extraction heuristics
(Chiang, 2000)

• Use heuristics (head rules, argument rules) to reconstruct TAG
derivations from training data

• Do relative-frequency estimation on resulting derivations

• Advantages: fast, simple

• Disadvantages:

� handwritten rules doesn't always work perfectly
� relies on reconstructed data
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Second training method: EM (Hwa, 1998;
Chiang and Bikel, 2002)

• Start with model from previous method

• Iteratively maximize likelhood of observed data by Expectation-
Maximization

• Advantages: more data-driven

• Disadvantages: slow
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Results (English)

Training on WSJ sections 02�21, testing on section 23, sentences ≤40
words

Model Lab. recall Lab. precision F-measure
Rules 87.7 87.8 87.7
Rules+EM 87.2 87.5 87.3
Magerman (1995) 84.6 84.9 84.7
Charniak (2000) 90.1 90.1 90.1

Rules = head rules adapted from Magerman; argument rules from
Collins

• Same level of accuracy as lexicalized PCFG

• Reestimation doesn't help
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Results (Chinese)

Training on Xinhua sections 001�270, testing on sections 271�300,
sentences ≤40 words

Model Corpus LR LP F
Rules Xinhua 78.4 80.0 79.2
Rules+EM Xinhua 78.8 81.1 79.9
Bikel (2002) Xinhua 77.0 81.6 79.2
Rules Xinhua English 76.4 82.3 79.2

Rules = head/argument rules adapted from Xia

• Slightly behind current best parser

• Reestimation seems to edge accuracy past the current best parser
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Statistical parsing: conclusion

• Shouldn't hope to get (much) statistical-modeling power for free

• Models like lexicalized PCFG can be thought of as compiled
versions of richer models

• Made explicit in a stochastic TIG model with comparable accuracy
to lexicalized PCFG models

• Future work:

� Model and both training methods have room for improvement
� Maximum-entropy models
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Second application: translation

• Measuring translation power of grammars

• Comparing translation power

• Implications for syntax-based machine translation
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Measuring translation power

• Right notion of SGC: string relations or tree relations

• Locality constraint: de�ne mapping on elementary structures

• Synchronous grammar

� Set of pairs of elementary structures
� Grammar speci�es mapping between paired structures
� But parallel derivations must be isomorphic
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Example: synchronous TAG

• Pairs of elementary structures with linked rewriting sites

S
NP VP

V
misses

NP

S
NP VP

V
manque

PP
P
à
NP

John misses Mary Mary manque à John

• Rewriting operations take place simultaneously at linked sites
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Translation power of various formalisms

Tree relations String relations

RF-TAG clMC-CFG TIG

TSG

CFG

2CFG

RF-TAG clMC-CFG

CFG = TSG = TIG

2CFG

Dissertation defense 36



Toy example

• RF-TAG: adjunction into middle of spines is restricted (foot
unrestricted)

• Synchronous RF-TAG can still �stretch� reorderings

S
NP VP

V
to miss

NP

S
NP VP

V
manquer

PP
P
à
NP

VP
V

seems
VP

VP
V

semble
VP∗ ∗

• A double contrast with parsing
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Conclusion: statistical parsing vs. MT

• Statistical parsing: we can and should use CFG to simulate
grammars with richer SDs

• Machine translation: we can't use CFG to simulate richer grammars,
so we should use richer grammars

• Synchronous RF-TAG would be a conservative extension of a model
like (Yamada and Knight, 2001)

• Greater �exibility without dramatic(?) increase in computation
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Third application: biological sequence analysis

• Background

• Measuring structure-modeling power of grammars

• Testing extra structure-modeling power
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Background: RNAs

• Strings of nucleotides: A, U, C, G

• Bonds form between complementary pairs (A�U, C�G), bending the
chain into a secondary/tertiary structure:

• Messenger RNA is for information storage, but transfer RNA and
ribosomal RNA form the machinery used for assembling proteins
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Background: proteins

• Sequences of amino acids: 20 types, encoded in triples of DNA
bases

• Again, bonds form between amino acids, bending the chain into a
secondary/tertiary structure

α-helix β-sheet

• Proteins used for many di�erent purposes: catalyzing reactions,
providing physical structure, etc.
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Some objectives

• Want to accurately model relationship between sequences and
possible structures

• Also want to model dynamics:

� folding process,
� transitions under temperature changes,
� �uctuations from native structure which determine function

• Potential to improve understanding of biochemical processes

• Potential to facilitate applications like drug design

Dissertation defense 42



Grammars for secondary/tertiary structures

• Just as grammars can relate sentences to syntactic structures,
maybe they can relate genetic sequences to molecular structures

• Searls (1992): RNA secondary structures ↔ CFG derivation trees

S
a S
c S

S
g S
c S

ε

g
c

S
S

u S
g S

ε

c
a

S
c S
a S

ε

u
g

g
u

S
a S
c S

S
g S
c S

ε

g
c

S
S

u S
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ε

c
a

S
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ε

u
g

g
u
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Measuring structure-modeling power

• Right notion of SGC: represent folded structures with linked strings

• Moreover, want to model relative importance of structures:
weighted linked strings

• Partition function (unnormalized probability distribution)

Q =
∑

j

Ωje
−Ej/kT

• Ej is energy, Ωj is number of conformations
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Grammars for secondary/tertiary structures

• Locality constraint: restrict self-contacts to elementary structures

• Generalize beyond CFG; with �stretching� we might lose nice
drawings

X
a X
a X

⇒

X
a X

X
a X

but the modeled structure is still the same

• Most previous approaches (informally) follow these principles
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Grammars for partition functions

• Decompose term Ωje
−Ej/kT into factors ωe−∆E/kT , one for each

elementary structure

• Grammar must be designed properly

� energies ∆E should be approximately independent
� conformation counts ω should be approximately independent

• Then the parser can give us the total Q or various subtotals of Q

• (Chen and Dill, 1995, 1998) as a CFG
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Structure-modeling power of various
formalisms

Weighted linked strings

RF-TAG clMC-CFG CFG ∩ FSA

CFG = TSG = TIG
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Squeezing DGC out of CFG

• CFG can basically only handle nested dependencies

• RF-TAG and clMC-CFG can handle limited crossing dependencies
(Chiang, 2002)

• clMC-CFG: can simultaneously rewrite sister nodes

S
h h Y

h
h X
Y
h
h X
Y
h
h X
S
ε
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Intersection

• Idea: analyze a string with two di�erent grammars, or two di�erent
parts of a grammar, and merge their SDs

• Largely overlooked in NLP

• For biomolecules: (Brown and Wilson, 1996) tried to intersect CFLs
for a type of RNA structure with crossing links, but �awed
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A new problem: helix bundles

• Chen and Dill's model captures nested links

• Well-established theory of partition functions of α-helices (Zimm-
Bragg)

• Want to combine to form a theory of helix bundles
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Intersecting a CFG and a �nite-state automaton

• Chen and Dill's model is a CFG

• α-helices

� Our grammar is coverable by a �nite-state machine
S

h h Y
h
h X
Y
h
h X
Y
h
h X
S
ε

� Zimm-Bragg (a Markov chain) supplies the weights

• Combine the two by intersection
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Comparison against exact enumeration

3
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Sequence: hpphhpphhpphhpphhpph
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A further problem: larger helix bundles,
β-sheets

• Above approach, because based on CFG, can only bundles of two
antiparallel helices

• Can we do better?

• Similar to β-sheets
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Multicomponent TAG for β-sheets?

• Could use an MC-TAG (Abe and Mamitsuka)

X

σ1 X

σ2 X σ3

σ4

NA

∗

X

σ5 X

X

NA

∗

• But parsing complexity is exponential in number of strands

• Prone to spurious ambiguity? (many derivations, one structure)
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Simple literal movement grammar

• Closely related to range concatenation grammar (Boullier, 2000)

• Basic idea:
S→ NP VP

S(xy):−NP(x),VP(y)

• Allows intersection:
A(x):−B(x),C(x)

• And �partial� intersection:

A(xyz):−B(x, y),C(y, z)
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An sLMG analysis of β-sheets

• Generating pairs of antiparallel strands (hairpin) or parallel strands
is easy

• Use intersection to combine them into a sheet

• Essentially, build a sheet by merging last strand of a sheet with one
strand of a hairpin

= +
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An sLMG analysis of β-sheets

• Faster than MC-TAG analysis (O(n5) for any number of strands)

• Permuting the strands makes complexity go up, no advantage in
worst case

O(n5) O(n7) O(n12) · · ·

• Computational complexity seems to correlate with folding di�culty

• Certain inter-hairpin dependencies could make the problem NP-
hard
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Biological sequence analysis: conclusion

• Synthesized and formalized existing approaches

• Recast Chen and Dill's model as a weighted CFG, opening the door
to richer models

• Limited crossing dependencies can be modeled by clMC-CFG or
RF-TAG without any extra cost

• Intersection allows modeling of helix bundles and maybe β-sheets
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Conclusion

• What makes one grammar formalism better than another?
Introduced machinery for giving rigorous answers

• Demonstrated a new view of recent statistical parsers as compiled
versions of grammars with richer SDs

• Argued that machine translation stands to gain much more from
richer grammars

• Synthesized previous grammatical models of biomolecules and
demonstrated some new approaches
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Future work

• Statistical parsing: maximum-entropy models

• Translation: implement an RF-TAG version of some existing CFG
model

• Biological sequence analysis: extend CFG parser, compare MC-TAG
analysis to sLMG analysis

• New application areas
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