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Abstract

We explore the application of neural language
models to machine translation. We develop a
new model that combines the neural proba-
bilistic language model of Bengio et al., rec-
tified linear units, and noise-contrastive esti-
mation, and we incorporate it into a machine
translation system both by reranking k-best
lists and by direct integration into the decoder.
Our large-scale, large-vocabulary experiments
across four language pairs show that our neu-
ral language model improves translation qual-
ity by up to 1.1 Bleu.

1 Introduction

Machine translation (MT) systems rely upon lan-
guage models (LMs) during decoding to ensure flu-
ent output in the target language. Typically, these
LMs are n-gram models over discrete representa-
tions of words. Such models are susceptible to data
sparsity–that is, the probability of an n-gram ob-
served only few times is difficult to estimate reli-
ably, because these models do not use any informa-
tion about similarities between words.

To address this issue, Bengio et al. (2003) pro-
pose distributed word representations, in which each
word is represented as a real-valued vector in a
high-dimensional feature space. Bengio et al. (2003)
introduce a feed-forward neural probabilistic LM
(NPLM) that operates over these distributed repre-
sentations. During training, the NPLM learns both a
distributed representation for each word in the vo-

cabulary and an n-gram probability distribution over
words in terms of these distributed representations.

Although neural LMs have begun to rival or even
surpass traditional n-gram LMs (Mnih and Hin-
ton, 2009; Mikolov et al., 2011), they have not yet
been widely adopted in large-vocabulary applica-
tions such as MT, because standard maximum like-
lihood estimation (MLE) requires repeated summa-
tions over all words in the vocabulary. A variety of
strategies have been proposed to combat this issue,
many of which require severe restrictions on the size
of the network or the size of the data.

In this work, we extend the NPLM of Bengio et
al. (2003) in two ways. First, we use rectified lin-
ear units (Nair and Hinton, 2010), whose activa-
tions are cheaper to compute than sigmoid or tanh
units. There is also evidence that deep neural net-
works with rectified linear units can be trained suc-
cessfully without pre-training (Zeiler et al., 2013).
Second, we train using noise-contrastive estimation
or NCE (Gutmann and Hyvärinen, 2010; Mnih and
Teh, 2012), which does not require repeated summa-
tions over the whole vocabulary. This enables us to
efficiently build NPLMs on a larger scale than would
be possible otherwise.

We then apply this LM to MT in two ways. First,
we use it to rerank the k-best output of a hierarchi-
cal phrase-based decoder (Chiang, 2007). Second,
we integrate it directly into the decoder, allowing the
neural LM to more strongly influence the model. We
achieve gains of up to 0.6 Bleu translating French,
German, and Spanish to English, and up to 1.1 Bleu
on Chinese-English translation.
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Figure 1: Neural probabilistic language model (Bengio et
al., 2003).

2 Neural Language Models

Let V be the vocabulary, and n be the order of
the language model; let u range over contexts, i.e.,
strings of length (n−1), and w range over words. For
simplicity, we assume that the training data is a sin-
gle very long string, w1 · · ·wN , where wN is a special
stop symbol, </s>. We write ui for wi−n+1 · · ·wi−1,
where, for i ≤ 0, wi is a special start symbol, <s>.

2.1 Model

We use a feedforward neural network as shown in
Figure 1, following Bengio et al. (2003). The input
to the network is a sequence of one-hot represen-
tations of the words in context u, which we write
u j (1 ≤ j ≤ n − 1). The output is the probability
P(w | u) for each word w, which the network com-
putes as follows.

.

The hidden layers consist of rec-
tified linear units (Nair and Hinton,
2010), which use the activation func-
tion ϕ(x) = max(0, x) (see graph at
right).

The output of the first hidden layer h1 is

h1 = ϕ

n−1∑
j=1

C jDu j

 (1)

where D is a matrix of input word embeddings
which is shared across all positions, the C j are the

context matrices for each word in u, and ϕ is applied
elementwise. The output of the second layer h2 is

h2 = ϕ (Mh1) ,

where M is the matrix of connection weights be-
tween h1 and h2. Finally, the output layer is a soft-
max layer,

P(w | u) ∝ exp
(
D′h2 + b

)
(2)

where D′ is the output word embedding matrix and b
is a vector of biases for every word in the vocabulary.

2.2 Training

The typical way to train neural LMs is to maximize
the likelihood of the training data by gradient ascent.
But the softmax layer requires, at each iteration, a
summation over all the units in the output layer, that
is, all words in the whole vocabulary. If the vocabu-
lary is large, this can be prohibitively expensive.

Noise-contrastive estimation or NCE (Gutmann
and Hyvärinen, 2010) is an alternative estimation
principle that allows one to avoid these repeated
summations. It has been applied previously to log-
bilinear LMs (Mnih and Teh, 2012), and we apply it
here to the NPLM described above.

We can write the probability of a word w given a
context u under the NPLM as

P(w | u) =
1

Z(u)
p(w | u)

p(w | u) = exp
(
D′h2 + b

)
Z(u) =

∑
w′

p(w′ | u) (3)

where p(w | u) is the unnormalized output of the unit
corresponding to w, and Z(u) is the normalization
factor. Let θ stand for the parameters of the model.

One possibility would be to treat Z(u), instead of
being defined by (3), as an additional set of model
parameters which are learned along with θ. But it is
easy to see that we can make the likelihood arbitrar-
ily large by making the Z(u) arbitrarily small.

In NCE, we create a noise distribution q(w).
For each example uiwi, we add k noise samples
w̄i1, . . . , w̄ik into the data, and extend the model to
account for noise samples by introducing a random



variable C which is 1 for training examples and 0 for
noise samples:

P(C = 1,w | u) =
1

1 + k
· 1

Z(u)
p(w | u)

P(C = 0,w | u) =
k

1 + k
· q(w).

We then train the model to classify examples as
training data or noise, that is, to maximize the con-
ditional likelihood,

L =
N∑

i=1

(
log P(C = 1 | uiwi) +

k∑
j=1

log P(C = 0 | uiw̄i j)
)

with respect to both θ and Z(u).
We do this by stochastic gradient ascent. The gra-

dient with respect to θ turns out to be

∂L
∂θ
=

N∑
i=1

(
P(C = 0 | uiwi)

∂

∂θ
log p(wi | ui) −

k∑
j=1

P(C = 1 | uiw̄i j)
∂

∂θ
log p(w̄i j | ui)

)
and similarly for the gradient with respect to Z(u).
These can be computed by backpropagation. Unlike
before, the Z(u) will converge to a value that normal-
izes the model, satisfying (3), and, under appropriate
conditions, the parameters will converge to a value
that maximizes the likelihood of the data.

3 Implementation

Both training and scoring of neural LMs are compu-
tationally expensive at the scale needed for machine
translation. In this section, we describe some of the
techniques used to make them practical for transla-
tion.

3.1 Training
During training, we compute gradients on an en-
tire minibatch at a time, allowing the use of matrix-
matrix multiplications instead of matrix-vector mul-
tiplications (Bengio, 2012). We represent the inputs
as a sparse matrix, allowing the computation of the
input layer (1) to use sparse matrix-matrix multi-
plications. The output activations (2) are computed

only for the word types that occur as the positive ex-
ample or one of the noise samples, yielding a sparse
matrix of outputs. Similarly, during backpropaga-
tion, sparse matrix multiplications are used at both
the output and input layer.

In most of these operations, the examples in a
minibatch can be processed in parallel. However, in
the sparse-dense products used when updating the
parameters D and D′, we found it was best to di-
vide the vocabulary into blocks (16 per thread) and
to process the blocks in parallel.

3.2 Translation

To incorporate this neural LM into a MT system, we
can use the LM to rerank k-best lists, as has been
done in previous work. But since the NPLM scores
n-grams, it can also be integrated into a phrase-based
or hierarchical phrase-based decoder just as a con-
ventional n-gram model can, unlike a RNN.

The most time-consuming step in computing n-
gram probabilities is the computation of the nor-
malization constants Z(u). Following Mnih and Teh
(2012), we set all the normalization constants to one
during training, so that the model learns to produce
approximately normalized probabilities. Then, when
applying the LM, we can simply ignore normaliza-
tion. A similar strategy was taken by Niehues and
Waibel (2012). We find that a single n-gram lookup
takes about 40 µs.

The technique, described above, of grouping ex-
amples into minibatches works for scoring of k-best
lists, but not while decoding. But caching n-gram
probabilities helps to reduce the cost of the many
lookups required during decoding.

A final issue when decoding with a neural LM
is that, in order to estimate future costs, we need
to be able to estimate probabilities of n′-grams for
n′ < n. In conventional LMs, this information is
readily available,1 but not in NPLMs. Therefore, we
defined a special word <null> whose embedding is
the weighted average of the (input) embeddings of
all the other words in the vocabulary. Then, to esti-
mate the probability of an n′-gram u′w, we used the
probability of P(w | <null>n−n′u′).

1However, in Kneser-Ney smoothed LMs, this information
is also incorrect (Heafield et al., 2012).



setting dev 2004 2005 2006
baseline 38.2 38.4 37.7 34.3
reranking 38.5 38.6 37.8 34.7
decoding 39.1 39.5 38.8 34.9

Table 1: Results for Chinese-English experiments, with-
out neural LM (baseline) and with neural LM for rerank-
ing and integrated decoding. Reranking with the neural
LM improves translation quality, while integrating it into
the decoder improves even more.

4 Experiments

We ran experiments on four language pairs – Chi-
nese to English and French, German, and Spanish
to English – using a hierarchical phrase-based MT
system (Chiang, 2007) and GIZA++ (Och and Ney,
2003) for word alignments.

For all experiments, we used four LMs. The base-
lines used conventional 5-gram LMs, estimated with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998) on the English side of the bitext and the
329M-word Xinhua portion of English Gigaword
(LDC2011T07). Against these baselines, we tested
systems that included the two conventional LMs as
well as two 5-gram NPLMs trained on the same
datasets. The Europarl bitext NPLMs had a vocab-
ulary size of 50k, while the other NPLMs had a vo-
cabulary size of 100k. We used 150 dimensions for
word embeddings, 750 units in hidden layer h1, and
150 units in hidden layer h2. We initialized the net-
work parameters uniformly from (−0.01, 0.01) and
the output biases to − log |V |, and optimized them by
10 epochs of stochastic gradient ascent, using mini-
batches of size 1000 and a learning rate of 1. We
drew 100 noise samples per training example from
the unigram distribution, using the alias method for
efficiency (Kronmal and Peterson, 1979).

We trained the discriminative models with MERT
(Och, 2003) and the discriminative rerankers on
1000-best lists with MERT. Except where noted, we
ran MERT three times and report the average score.
We evaluated using case-insensitive NIST Bleu.

4.1 NIST Chinese-English

For the Chinese-English task (Table 1), the training
data came from the NIST 2012 constrained track,
excluding sentences longer than 60 words. Rules

Fr-En De-En Es-En
setting dev test dev test dev test
baseline 33.5 25.5 28.8 21.5 33.5 32.0
reranking 33.9 26.0 29.1 21.5 34.1 32.2
decoding 34.12 26.12 29.3 21.9 34.22 32.12

Table 2: Results for Europarl MT experiments, without
neural LM (baseline) and with neural LM for reranking
and integrated decoding. The neural LM gives improve-
ments across three different language pairs. Superscript 2
indicates a score averaged between two runs; all other
scores were averaged over three runs.

without nonterminals were extracted from all train-
ing data, while rules with nonterminals were ex-
tracted from the FBIS corpus (LDC2003E14). We
ran MERT on the development data, which was the
NIST 2003 test data, and tested on the NIST 2004–
2006 test data.

Reranking using the neural LM yielded improve-
ments of 0.2–0.4 Bleu, while integrating the neural
LM yielded larger improvements, between 0.6 and
1.1 Bleu.

4.2 Europarl

For French, German, and Spanish translation, we
used a parallel text of about 50M words from Eu-
roparl v7. Rules without nonterminals were ex-
tracted from all the data, while rules with nonter-
minals were extracted from the first 200k words. We
ran MERT on the development data, which was the
WMT 2005 test data, and tested on the WMT 2006
news commentary test data (nc-test2006).

The improvements, shown in Table 2, were more
modest than on Chinese-English. Reranking with
the neural LM yielded improvements of up to 0.5
Bleu, and integrating the neural LM into the decoder
yielded improvements of up to 0.6 Bleu. In one
case (Spanish-English), integrated decoding scored
higher than reranking on the development data but
lower on the test data – perhaps due to the differ-
ence in domain between the two. On the other tasks,
integrated decoding outperformed reranking.

4.3 Speed comparison

We measured the speed of training a NPLM by NCE,
compared with MLE as implemented by the CSLM
toolkit (Schwenk, 2013). We used the first 200k
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Figure 2: Noise contrastive estimation (NCE) is much
faster, and much less dependent on vocabulary size, than
MLE as implemented by the CSLM toolkit (Schwenk,
2013).

lines (5.2M words) of the Xinhua portion of Giga-
word and timed one epoch of training, for various
values of k and |V |, on a dual hex-core 2.67 GHz
Xeon X5650 machine. For these experiments, we
used minibatches of 128 examples. The timings are
plotted in Figure 2. We see that NCE is considerably
faster than MLE; moreover, as expected, the MLE
training time is roughly linear in |V |, whereas the
NCE training time is basically constant.

5 Related Work

The problem of training with large vocabularies in
NPLMs has received much attention. One strategy
has been to restructure the network to be more hi-
erarchical (Morin and Bengio, 2005; Mnih and Hin-
ton, 2009) or to group words into classes (Le et al.,
2011). Other strategies include restricting the vocab-
ulary of the NPLM to a shortlist and reverting to a
traditional n-gram LM for other words (Schwenk,
2004), and limiting the number of training examples
using resampling (Schwenk and Gauvain, 2005) or
selecting a subset of the training data (Schwenk et
al., 2012). Our approach can be efficiently applied
to large-scale tasks without limiting either the model
or the data.

NPLMs have previously been applied to MT, most
notably feed-forward NPLMs (Schwenk, 2007;
Schwenk, 2010) and RNN-LMs (Mikolov, 2012).
However, their use in MT has largely been limited
to reranking k-best lists for MT tasks with restricted
vocabularies. Niehues and Waibel (2012) integrate a
RBM-based language model directly into a decoder,
but they only train the RBM LM on a small amount
of data. To our knowledge, our approach is the first
to integrate a large-vocabulary NPLM directly into a
decoder for a large-scale MT task.

6 Conclusion

We introduced a new variant of NPLMs that com-
bines the network architecture of Bengio et al.
(2003), rectified linear units (Nair and Hinton,
2010), and noise-contrastive estimation (Gutmann
and Hyvärinen, 2010). This model is dramatically
faster to train than previous neural LMs, and can be
trained on a large corpus with a large vocabulary and
directly integrated into the decoder of a MT system.
Our experiments across four language pairs demon-
strated improvements of up to 1.1 Bleu. Code for
training and using our NPLMs is available for down-
load.2
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