
Making a Binary Heap from a List

CSE 30331/34331

Fall 2015 (version 1)

To initially build a binary heap from a list of n elements, we could start with
an empty heap and then push each element. Equivalently, copy all the elements
into the heap, in any order. Then, working top-down, reheapify-up each node.
Since the reheapify-up operation takes O(log n) time and there are n elements,
this takes O(n log n) time.1

But there is a faster way, which is used by std::priority_queue and
std::make_heap. Copy all the elements into the heap, in any order. Then,
working bottom-up, reheapify-down each node. How is this any faster? It would
seem that the reheapify-down operation takes O(log n) time and there are n
elements, so this takes O(n log n) time.

A more careful analysis shows that it actually takes O(n) time. Intuitively,
it’s because if we reheapify-up, the biggest levels have the longest distance to
travel, whereas if we reheapify-down, the biggest levels have the shortest dis-
tance to travel.

Let h = blg nc, the height of the tree (h = 0 means just a root node).

1 element at height h = 2

2 elements at height 1

≤ 4 elements at height 0

There is 1 element at height h (the root), 2 elements at height h − 1, and so
on down to height 0 (the bottom level). In general there are 2h−k elements
at height k (where 0 ≤ k ≤ h). And an element at height k takes at most k

1Under certain assumptions, this can be shown to be average-case linear-time, but the
algorithm presented next is worst-case linear-time.

1



operations to bubble down. So the total number of operations is at most

T (n) ≤
h∑

k=0

2h−kk

= 2h
h∑

k=0

k

2k

≤ n

h∑
k=0

k

2k
.

To evaluate the summation, we need a trick (which you are not responsible for
on the exam!). Let x = 1

2 . Then we have

h∑
k=0

k

2k
=

h∑
k=0

kxk

≤
∞∑
k=0

kxk

= x

∞∑
k=0

kxk−1

= x
d

dx

∞∑
k=0

xk (the trick)

= x
d

dx

1

1− x

= x
1

(1− x)2

= 2.

So the total number of operations is at most 2n. So building a heap takes
time O(n).

2


