Very Big Data Structures

CSE 30331/34331
2015/12/01

Overview

Today’s lecture will discuss how to store and process large amounts of data.

Question: What are some examples of big data that would require large amounts of storage
and processing?

1. Social/Information Networks (Facebook, Reddit, etc.)

2. Internet of Things (sensors, thermostats, etc.)

3. Transactions (credit cards, payments, ad clicks, etc.)

4. Ratings (Amazon, Netflix, App Store, etc.)

5. Biological Data (gene sequencing, Fitbit, etc.)

6. Multimedia (Instagram, YouTube, etc.)

7. Textual Data (Project Gutenberg, Google Books, etc.)
Because of the large amount of data and the need to process and analyze the data quickly and
effectively, we must harness the computational resources of multiple machines (i.e., distributed

systems).

In particular, we will briefly discuss how the Google File System stores large amounts of data,
and how Map-Reduce is used to process and analyze the vast collection of information.

http://research.google.com/archive/gfs-sosp2003.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf

Google File System

Google File System (GFS) is a scalable’, distributed? file system?® on inexpensive
commodity hardware* that provides:

1.

Fault Tolerance
File system runs on hundreds or thousands of storage machines with inexpensive
commodity parts. Example is 1000 storage nodes with over 300 TB.

2. High Aggregate Performance
Fully utilize bandwidth to transfer data to many clients, achieving high system
throughput.
Terms:
1. scalable: system grows with amount of data without significant performance loss
(remains efficient)
2. distributed: system is spread across multiple machines, possibly multiple clusters or
data centers that communicate via a network
3. file system: system for organizing and managing persistent data (usually but not
necessarily hierarchical)
4. inexpensive commodity hardware: non-exotic, run-of-the-mill, standard hardware that
any consumer can buy
Google Data Center
Design

The design of GFS revolves around the following observations and assumptions:

Observations Conventional Google
Reliability Systems assume a working Component failures are the
environment and handle failures as norm rather than the
worst case scenarios. exception, therefore constant

monitoring, error detection,
fault tolerance, and automatic
recovery must be integral to
system.

http://www.wired.com/2012/10/ff-inside-google-data-center/

File Sizes

File systems are composed of many File system must store a

small files and a few large ones and modest number of huge files
thus block sizes are minimized to (multi-GB) organized into
support a wide variety of file sizes. data sets in the range of TBs

with billions of objects.

Due to the focus on
processing large amounts of
data in bulk, high sustained
bandwidth is more important
than low latency.

I1/0 Pattern

Normally, files are updated in place, Data is appended rather than
synchronization requires locking, and overwritten. Random writes
caching is important for performance. are rare. Once written, files

are only read (usually
sequentially).

Caching is not important
because most applications
stream through huge files or
have extremely large working
sets.

These observations and assumptions are uncharacteristic for conventional systems and
environments and are particular to Google’s specific distributed and large scale
applications and workloads.

Architecture

Application

GFS client

(file name, chunk index) |

GFS master

(chunk handle, byte range)

_» /foof/bar

File namespace

(chunk handle, ;
chunk locations)

chunk 2ef0

Legend:

mmmp Data messages

Instructions to chunkserver

Chunkserver state

—- Control messages

chunk data

GFS chunkserver

GFS chunkserver

Linux file system

Linux file system

sl —

=l -~

1. Chunks: files split into fixed-sized chunks which is given a globally unique chunk handle.
a. Chunks replicated on multiple chunkservers (default is 3) for reliability.
b. Chunk size is 64MB which is much larger than normal file system blocks.

i. Advantages:

1. Reduces interaction w/ master.

2. Reduces metadata stored on master.
ii. Disadvantages:

1. Small files may become hotspots.

2. Master: Single node maintains all of the metadata such as namespace, ACLs, mapping
from files to chunks, and current location of chunks. Also sets policies regarding chunk
management (garbage collection, migration, etc).

a.

Metadata kept in memory:
i. File and chunk namespaces.
ii. Mapping from files to chunks.
iii. Locations of chunk's replicas.

b. Operation log is used to persistently store metadata operations and record order

C.

of concurrent operations.
i. Recovers filesystem by replaying this log.
ii. Checkpoints used to minimize startup time.
iii. Replicated to local disk and remote machines.

Many data storage systems (e.g databases, filesystems) perform some sort of
transaction logging or journaling whereby intended actions are recorded,
performed, and then committed.

Example:

TIMESTAMP OPERATION CHUNK PROPERTY VALUE
100000000 CREATE 2

100000001 UPDATE 2 NAME DATA.TXT
100000002 CREATE 3
100000003 UPDATE 3 NAME DATA.CSV
100000004 REMOVE 2

Question: How would you implement this? (Hash Table)

100000000 Chunks
100000001 Chunks
100000002 Chunks
100000003 Chunks
100000004 Chunks

{2: {}}

{2: {NAME: DATA.TXT}}

{2: {NAME: DATA.TXT}, 3: {}}

{2: {NAME: DATA.TXT}, 3: {NAME: DATA.CSV}}
{3: {NAME: DATA.CSV}}

Periodic scans enable garbage collection, re-replication and chunk migration.

d. Single master ensures that file namespace mutations are atomic.
e. Shadow masters provide read-only access to file system when master is down.
3. Chunkservers: Multiple storage nodes that store chunks on local disks as Linux files
and read/write data specified by chunk handle.

a. Stores chunk location information and sends to master on startup.

b. Clients do not cache data, but do cache metadata. Chunkservers do not
manually cache data because Linux's buffer cache will do it.

Reading:

1. File name, chunk index

Application GFS Master

2. chunk handle, locations

. - Namespace,
GFS Client Matadaia
3. chunk handle,
byte range
. GFS GFS GFS
Chunkserver Chunkserver Chunkserver

Linux File
System

4. chunk data Linux File Linux File

System System

MapReduce

MapReduce is a programming model for processing and generating large datasets:

e Abstraction: Hides complexity of parallelization, fault-tolerance, data distribution, load
balancing behind a library and run-time layer.

e Scalability: Runs on large clusters of commodity machines.

Programming Model

Conceptually, the programming model behind MapReduce is rooted in the functional
programming paradigm:

1. Map: transforms, filters, or selects input data
2. Reduce: aggregates, combines, collects intermediate results

Rather than performing explicit iteration, we apply functions to elements in patterns
defined by higher-order functions

Example (C++):
vector<int> data {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// Determine the sum of all the even squares of elements in data
int total = 0;
for (auto number: data) {
int square = number*number;
if (square % 2 == 0)
total += square;

}

cout << total << endl;

// Now functionally
auto dbegin = data.begin();
auto dend = data.end();

transform(dbegin, dend, dbegin, [](const int x){ return x*x; });

dend = remove_if(dbegin, dend, [](const int x){ return x % 2 !=0; });
total = accumulate(dbegin, dend, 0, plus<int>());

cout << total << endl;

Example (Python):
Multiple lines
data =[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

squares = map(lambda x: x*x, data)
evens = filter(lambda x: not x % 2, squares)
total = sum(evens)

One line:
sum(filter(lambda x: not x % 2, map(lambda x: x*x, data))

By using higher-order functions such as Map and Reduce, we can take
advantage of data independence and perform the computation in any
order (including in parallel).

Execution Model

User
Program

Wk ok ffork
. . (2)
. @ assign
. L assign reduice.
) o7 map . '
.|
split0 - A
i ; (6) write output
il (5) remote read i file0

split 2 (3) read @ (4) local write
; output
split 3 — file 1

split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

In MapReduce, instead of processing lists, we process collections of key, value pairs:

Input <k, v> Pairs => Mappers => Intermediate <k, v> Pairs => Reducers => Output <k, v> Pairs

1. Map Phase: Each Mapper reads in a split, which is an arbitrary subset of the input (key,
value) pairs, and applies the Map function to each pair to produce intermediate (key,
value) pairs.

2. Partition and Shuffle Phase: All intermediate (key, value) pairs are partitioned such
that all pairs that have the same key are sent ("shuffled") to the same Reducer:

Partition(key) = Hash(key) mod R
where R is the number of reducers.

3. Reduce Phase: Each Reducer collects its corresponding intermediate (key, value) pairs,
sorts them by key, and then applies the Reduce function on each subset that has the

same key, i.e., {(key, value1), (key, value2), ...}, to yield output (key, value) pairs.

4. Merge Phase: Optionally, all the outputs of the Reducers can be merged into a single

file.
Hadoop Tutorial
Example
The overall MapReduce word count process
Input Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2

Deer, 1 = Bear, 1
River, 1
Car, 1
Car, 1 Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 W—b
Deer, 1

Deer, 1
Deer Car Bear Car, 1
Bear, 1 River, 1
River, 1

The canonical MapReduce example is to produce a WordCount on a large corpus of data:

1. Map: For each word in each line, emit the word and the count 1

2. Reduce: For each word, tally up the counts and emit the word and the count

https://developer.yahoo.com/hadoop/tutorial/module4.html

Another use of MapReduce is to produce an Inverted Index (ie. what you might find at the back
of a book so you can find the page where a word appears):

1.

2.

Map: For each word in each line, emit the word and the name of the file
Reduce: For each word, collect all files associated with word and then emit them

C++ Example Code

Discussion

What is the significance of using (key, value) pairs rather than just lists as the data
format?

Why do we sort at the beginning of the Reduce phase?

How is work divided among the Mappers? How is work divided among the Reducers?
Is the division of labor balanced? Why or why not?

In a distributed system, network transfers are often a bottleneck. Looking at the word
count example above, is there an optimization that can be performed after Mapping but

before Reducing to minimize network traffic?

Explain how you would merge the results of the Reducing phase into one file.

https://bitbucket.org/CSE-30331-FA15/cse-34331-fa15-examples/src/master/lecture-6-2/

