
Sequence data structures

find by position find min/max or 
by value

insert at position delete at 
position

delete min/max 
or by value

concatenate

array O(1) O(n) back: O(1)
else: O(n)

back: O(1)
else: O(n)

O(n) O(n)

circular array O(1) O(n) front/back: O(1)
else: O(n)

front/back: O(1)
else: O(n)

O(n) O(n)

linked list front: O(1)
else: O(n)

O(n) front: O(1)
else: O(n)

front: O(1)
else: O(n)

O(n) O(n)

linked list with 
tail pointer

front/back: O(1)
else: O(n)

O(n) front/back: O(1)
else: O(n)

front: O(1)
else: O(n)

O(n) O(1)

doubly linked list front/back: O(1)
else: O(n)

O(n) front/back: O(1)
else: O(n)

front/back: O(1)
else: O(n)

O(n) O(1)

Sorting algorithms

intermediate data 
structure

one and rest half and half

array selection sort: O(n2) quicksort: O(n log n)

sorted array insertion sort: O(n2) merge sort: O(n log n)

binary heap heap sort: O(n log n) –

order-preserving hash 
table

bucket sort –

Graph search algorithms

agenda algorithm

stack depth-first search

queue breath-first search

priority queue Dijkstra’s algorithm

Abstract data types

insert delete

stack back back

queue back front

deque front/back front/back

priority queue anywhere min

set anywhere by value

CSE 30331/34331: Data Structures
(Almost) Everything You Need to Know for the Midterm

Set data structures

find min/max find by value insert delete min/max delete by value create from list union

sorted array O(1) O(log n) O(n) max: O(1)
else: O(n)

O(n) O(n log n) O(n)

sorted linked list min: O(1) 
else: O(n)

O(n) O(n) min: O(1) 
else: O(n)

O(n) O(n log n) O(n)

binary heap min: O(1) 
else: O(n)

O(n) O(log n) min: O(log n) O(n) O(n) O(n)

B-tree
red-black tree

O(log n) O(log n) O(log n) O(log n) O(log n) O(n log n) O(n)

hash table O(n) O(1) O(1) O(n) O(1) O(n) O(n)

�1



Explanation of Tables
Abstract data types
The first column of this table lists all the abstract data types (ADTs) covered in the class. The second column lists what 
kinds of insert operations that ADT supports; the third column lists what kinds of delete operations that ADT supports. 
For example, a stack supports insertion at the back but not anywhere else. “Insert anywhere” means that the ADT has 
an insert operation that doesn’t let you specify the location. “Delete by value” means that the ADT has a delete operation 
that lets you specify which value you want to delete.

The next two tables then describe possible ways of implementing these ADTs.

Sequence data structures
The first column lists all the data structures covered in Unit 1. The second column lists the time complexity of getting the 
value at a particular position in the sequence. The third column, searching for the minimum/maximum value or a 
particular value anywhere in the sequence. The fourth column, inserting a value at a particular position. Similarly the fifth 
and sixth columns. The last column lists the time complexity of concatenating two sequences.

Set data structures
The first column lists all the data structures covered in Units 2–4. The second column lists the time complexity of finding 
the minimum or maximum element in the set. The third column, a particular value in the set. The fourth column, inserting 
a value (anywhere) into the set. The fifth and sixth columns, deleting the minimum/maximum element or a particular 
value in the set. The seventh column (“create from list”) lists the time complexity of inserting n elements into the set all at 
once (which is non-obvious only for binary heaps). The last column lists the time complexity of finding the union of two 
sets.

The next two tables describe the relationships between certain data structures and algorithms.

Sorting algorithms
This table summarizes the sorting algorithms we learned in Unit 2. The first and second columns show the connection 
between various priority queue data structures and the sorting algorithm you would get by pushing all the elements into 
the priority queue and then popping all of them out. The third column is somewhat obscure. It just tries to say that 
quicksort is related to selection sort and merge sort is related to insertion sort in the following way: if you do quicksort by 
splitting the array into 1 and n−1 elements, you get selection sort, and if you do merge sort by splitting the array into 1 
and n−1 elements, you get insertion sort.

Graph algorithms
This table summarizes the shortest-path algorithms covered in Unit 5.

�2


