
Chapter 10

Extensions for Speech and Translation

10.1 Speech

We give only a brief overview of how to do automatic speech recognition using FSTs. For a more detailed
treatment, see the survey by Mohri, Pereira, and Riley (2002).

Given a sample of speech, we can convert it into a sequence of real-valued 39-dimensional vectors,
called the mel-frequency cepstral coefficients:

1. Slice the signal into overlapping frames, typically 25 ms wide and starting every 10 ms.

2. Perform a Fourier transform on each frame, which is the amount of power at each frequency.

3. Compute how much power there is in each of several frequency bands arranged according to the
mel scale, which is supposed to match human perception of pitch.

4. Take the log of each power, which matches human perception of loudness.

5. Take a discrete cosine transform, which removes correlations between the components.

6. Also compute the change of the components over time (∆ct = ct+2 − ct−2), and the change of the
change (∆2ct =∆ct+1 −∆ct−1), for a total of 39 components.

We want to find the most likely sequence of words that this speech came from. To do this, we build a
cascade of FSTs that maps from text to feature vectors:

1. Generate words using a language model, typically an n-gram model.

2. Map words to their pronunciations, which are strings of phones.

3. Divide each phone into subphones, and stretch out each subphone to last for one or more frames.

4. For each frame, map the subphone to a feature vector.

We’ve seen FSAs for n-gram models already. To maps from words to their pronunciations (shown just
for two words), we can use an FST like this:
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dog : d

ϵ : A

ϵ : g

cat : k

ϵ : æ

ϵ : t

ϵ : ϵ

Hand-built dictionaries are available (e.g., the CMU pronunciation dictionary), or a grapheme-to-phoneme
model could be used or even learned automatically.

The next stage divides each phone into subphones and decides the duration of each subphone. Typ-
ically, each phone is divided into three subphones; for example, phone d would be divided into d1, d2,
and d3. The duration of each subphone is one or more time slices. So the FST looks like this (shown just
for two phones):

d : d 1

ϵ : d1

ϵ : d2

ϵ : d2

ϵ : d3

ϵ : d3

ϵ : ϵ

g : g
1

ϵ : g2

ϵ : g1

ϵ : g3

ϵ : g2

ϵ : ϵ

ϵ : g3

ϵ : ϵ

Finally, we map from the sequence of subphone symbols to the observed sequence of feature vectors.
The problem is that the vectors have real-valued components, but we only know how to define FSTs
with a finite output alphabet. So we have to generalize our notation. If we write a : P (B | a) on an arc,
that means that on input a, the FST outputs a symbol B drawn from the distribution P (B | a), and this
distribution can be defined on an arbitrary space. In effect, this is equivalent to an infinite number of
arcs: for each b, an arc a : b with weight P (b | a). Thus (shown just for one phone):

d1 : N (µd1
,Σd1

)

d2 : N (µd2
,Σd2

)

d3 : N (µd3
,Σd3

)

Typically, the last two FSTs (phone to subphone and subphone to feature vectors) are composed and
trained together using EM (Forward-Backward).
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10.2 Word Alignment

10.2.1 Problem

A parallel text is a corpus of text that expresses the same meaning in two (or more) different languages.
Usually we assume that a parallel text is already sentence-aligned, that is, it consists of sentence pairs, each
of which expresses the same meaning in two languages. Conventionally, following Brown et al. (1993),
the two languages are referred to as English and French even when other languages are possible. Here,
we use English and Spanish.

Here is an example parallel text:

1. garcia and associates
garcia y asociados

2. his associates are not strong
sus asociados no son fuertes

3. the groups do not sell zenzanine
los grupos no venden zanzanina

The word alignment problem is to figure out which Spanish words correspond to which English
words. This would be the correct word alignment for our example:

1. garcia and associates

garcia y asociados

2. his associates are not strong

sus asociados no son fuertes

3. the groups do not sell zenzanine

los grupos no venden zanzanina

(Aligning do to venden in 3 would also be correct.)
More formally: let

• f = f1 · · · fm range over Spanish sentences

• e = e1 · · ·eℓ range over English sentences

• a = (a1, . . . , am) range over possible many-to-one alignments, where a j = i means that Spanish
word j is aligned to English word i , and a j = NULL means that Spanish word j is unaligned. Thus
the alignment for sentence (2) above is (1,2,4,3,5,6).

We are given a sequence of (f,e) pairs. We are going to define a model of P (f,a | e) and our job is to
estimate the parameters of the model to maximize the likelihood P (f | e).
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10.2.2 Model 1

IBM Model 1 (Brown et al., 1993) is the first in a series of five seminal models for statistical word align-
ment. The basic generative story goes like this:

1. Choose m with uniform probability ϵ = 1
M , where M is the maximum length of any Spanish sen-

tence in the corpus.

2. Generate an alignment a1, . . . , am , again with uniform probability.

3. Generate Spanish words f1, . . . , fm , each with probability t ( f j | ea j ) or t ( f j | NULL).

There isn’t a one-size-fits-all finite-state machine that computes Model 1 for any sentence pair. In-
stead, for each e, we can make a FSA that generates French sentences f according to the Model 1 proba-
bility P (f | e). It is a cascade of steps 2 and 3 above.

The alignment-generation model can be written as a very simple FSA:

i / 1
ℓ+1

NULL/ 1
ℓ+1

The arc labeled i is actually many arcs, one for each 1 ≤ i ≤ ℓ. Notice that because m is determined
beforehand, this FSA doesn’t need a stop probability.

The Spanish-word-generation model is also very simple:

i : f / t ( f | ei )

The arc labeled i : f is actually many arcs, one for every Spanish word f and every English position
1 ≤ i ≤ ℓ.

Composing the two, we get IBM Model 1.

f / 1
ℓ+1 t ( f | ei )

NULL/ 1
ℓ+1

The arc labeled f is actually many arcs, one for every Spanish word f and every English position 1 ≤ i ≤ ℓ.
This automaton can generate any Spanish string f with any alignment to e, and the probability of the path
is P (f,a | e). Note that although we can generate any Spanish string, the English string e remains fixed.

On intersecting this FSA with f, we get:
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garcia / 1
ℓ+1 t (garcia | garcia)

garcia / 1
ℓ+1 t (garcia | and)

garcia / 1
ℓ+1 t (garcia | associates)

garcia / 1
ℓ+1 t (garcia | NULL)

y / 1
ℓ+1 t (y | garcia)

y / 1
ℓ+1 t (y | and)

y / 1
ℓ+1 t (y | associates)

y / 1
ℓ+1 t (y | NULL)

asociados / 1
ℓ+1 t (asociados | garcia)

asociados / 1
ℓ+1 t (asociados | and)

asociados / 1
ℓ+1 t (asociados | associates)

asociados / 1
ℓ+1 t (asociados | NULL)

Then the t ( f | e) can be estimated using Expectation-Maximization.

1. Initialize t (· | e) to uniform.

2. E-step:

(a) Use the Forward-Backward algorithm to calculate a fractional count for each arc.

(b) For each arc with weight 1
ℓ+1 t ( f | e) and fractional count p, let c( f ,e) ← c( f ,e)+p.

3. M-step: let t ( f | e) ← c( f ,e)∑
f c( f ,e) .

4. Go to 2.

10.2.3 Hidden Markov Model

Model 1 doesn’t care at all about word order. But we would like to capture the fact that if a Spanish word
is translated from an English word, the next Spanish word is probably translated from the next English
word. So we need some kind of dependence between the a j . One easy and efficient way to do this is
to make an alignment dependent on the previous alignment, i.e., a j depends on a j−1 (Vogel, Ney, and
Tillmann, 1996). Just as a bigram model could be represented as an FSA, so can this model. Here we show
the FSA for ℓ= 2.

1 / s(+1)

2 / s(+2)

1 / s(0)

2 / s(0)

2
/

s(+
1)1

/
s(
−1

)

The distribution s(∆i ) gives the probability that, if a Spanish word is translated from English word ei ,
the next Spanish word is translated from English word ei+∆i . We are treating the start of the sentence
as position 0. So, if a = (1,2,4,3,5,6), its probability is s(+1)s(+1)s(+2)s(−1)s(+2)s(+1). We expect the
distribution to peak at +1 and decrease for larger |∆i |.
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The model is deficient since it assigns a nonzero probability to alignments that fall off the edge of the
sentence. We can fix this by renormalizing, but we haven’t bothered to do so for simplicity’s sake. Also
note that there are no NULL alignments. These can be added in but were omitted in the original version
(Vogel, Ney, and Tillmann, 1996) which we follow.

We compose this FSA with the same Spanish-word-generation model that we used before (again,
assuming ℓ= 2):

f / s(+1)t ( f | e 1)

f / s(+2)t ( f | e2 )

f / s(0)t ( f | e1)

f / s(0)t ( f | e2)

f/
s(+

1)t(f|e2 )f/
s(
−1

)t
(f

|e
1

)

Then we compose with f (we don’t show the result here because it would be too complicated). Then
we have to estimate both the t ( f | e) and the s(∆i ). The algorithm goes like this:

1. Initialize t (· | e) and s(·) to uniform.

2. E-step:

(a) Use the Forward-Backward algorithm to calculate a fractional count for each arc.

(b) For each arc with weight s(∆i )t ( f | e) and fractional count p, let

cs (∆i ) ← cs (∆i )+p

ct ( f ,e) ← ct ( f ,e)+p

3. M-step: let

s(∆i ) ← cs (∆i )
∑

∆i cs (∆i )

t ( f | e) ← ct ( f ,e)
∑

f ct ( f ,e)

4. Go to 2.
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