
Chapter 12

Parsing Algorithms

12.1 Introduction

In this chapter, we explore the parsing problem, which encompasses several questions, including:

• Does L(G) contain w?

• What is the highest-weight derivation of w?

• What is the set of all derivations of w?

12.2 Chomsky normal form

Let’s assume that G has a particularly simple form. We say that a CFG is in Chomsky normal form if each
of its productions has one of the following forms:

X ! Y Z

X ! a

It can be shown (see below) that any context-free grammar not generating a language containing ≤ can
be converted into Chomsky normal form, and still generate the same language.

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 78

Our grammar from above can be massaged to be in Chomsky normal form:

S ! NP VP

NP ! DT NN

NP ! time | fruit

NP ! NN NNS

VP ! VBP NP

VP ! flies

VP ! VP PP

PP ! IN NP

DT ! a | an

NN ! time | fruit | arrow | banana

NNS ! flies

VBP ! like

IN ! like

(12.1)

12.3 The CKY algorithm

The CKY algorithm is named after three people who independently invented it: Cocke, Kasami, and
Younger, although it has been rediscovered more times than that.

In its most basic form, the algorithm just decides whether w 2 L(G). It builds a data structure known
as a chart; it is an n £n array. The element chart[i , j ] is a set of nonterminal symbols. If X 2 chart[i , j ],
then that means we have discovered that X )§ wi+1 · · ·w j .

Require: string w = w1 · · ·wn and grammar G = (N ,ß,R,S)
Ensure: w 2 L(G) iff S 2 chart[0,n]

1: initialize chart[i , j ] √; for all 0 ∑ i < j ∑ n
2: for all i √ 1, . . . ,n and (X ! wi ) 2 R do
3: chart[i °1, i ] √ chart[i °1, i ][ {X }
4: end for
5: for `√ 2, . . . ,n do
6: for i √ 0, . . . ,n °` do
7: j √ i +`
8: for k √ i +1, . . . , j °1 do
9: for all (X ! Y Z ) 2 R do

10: if Y 2 chart[i ,k] and Z 2 chart[k, j ] then
11: chart[i , j ] √ chart[i , j ][ {X }
12: end if
13: end for
14: end for
15: end for
16: end for

Question 19. What is the time and space complexity of this algorithm?

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 79

Question 20. Using the grammar (12.1), run the CKY algorithm on the string:

0 time 1 flies 2 like 3 an 4 arrow 5

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 80

12.4 Viterbi CKY

But it is much more useful to find the highest-weight parse. Suppose that our grammar has the following
probabilities:

S
1°! NP VP

NP
0.5°°! DT NN

NP
0.2°°! time

NP
0.2°°! fruit

NP
0.1°°! NN NNS

VP
0.6°°! VBP NP

VP
0.3°°! flies

VP
0.1°°! VP PP

PP
1°! IN NP

DT
0.5°°! a

DT
0.5°°! an

NN
0.25°°! time

NN
0.25°°! fruit

NN
0.25°°! arrow

NN
0.25°°! banana

NNS
1°! flies

VBP
1°! like

IN
1°! like

(12.2)

Then we use a modification of CKY that is analogous to the Viterbi algorithm. First, we modify the
algorithm to find the maximum weight:

Require: string w = w1 · · ·wn and grammar G = (N ,ß,R,S)
Ensure: best[0,n][S] is the maximum weight of a parse of w

1: initialize best[i , j ][X ] √ 0 for all 0 ∑ i < j ∑ n, X 2 N

2: for all i √ 1, . . . ,n and (X
p°! wi ) 2 R do

3: best[i °1, i ][X ] √ max{best[i °1, i ][X ], p}
4: end for
5: for `√ 2, . . . ,n do
6: for i √ 0, . . . ,n °` do
7: j √ i +`
8: for k √ i +1, . . . , j °1 do

9: for all (X
p°! Y Z ) 2 R do

10: p 0 √ p £best[i ,k][Y ]£best[k, j ][Z ]
11: best[i , j ][X ] √ max{best[i , j ][X ], p 0}
12: end for
13: end for
14: end for
15: end for

Question 21. Do you see how to modify the algorithm to compute the total weight of all parses of w?

A slight further modification lets us find the maximum-weight parse itself. Just as in the Viterbi algo-
rithm for FSAs, whenever we update best[i , j ][X ] to a new best weight, we also need to store a back-
pointer that records how we obtained that weight. We will represent back-pointers like this: Xi , j !
Yi ,k Zk, j means that we built an X spanning i , j from a Y spanning i ,k and a Z spanning k, j .

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 81

Require: string w = w1 · · ·wn and grammar G = (N ,ß,R,S)
Ensure: G 0 generates the best parse of w
Ensure: best[0,n][S] is its weight

1: for all 0 ∑ i < j ∑ n, X 2 N do
2: initialize best[i , j ][X ] √ 0
3: initialize back[i , j ][X ] √ nil
4: end for
5: for all i √ 1, . . . ,n and (X

p°! wi ) 2 R do
6: if p > best[i °1, i ][X ] then
7: best[i °1, i ][X ] √ p
8: back[i °1, i ][X ] √ (Xi°1,i ! wi )
9: end if

10: end for
11: for `√ 2, . . . ,n do
12: for i √ 0, . . . ,n °` do
13: j √ i +`
14: for k √ i +1, . . . , j °1 do

15: for all (X
p°! Y Z ) 2 R do

16: p 0 √ p £best[i ,k][Y ]£best[k, j ][Z ]
17: if p 0 > best[i , j ][X ] then
18: best[i , j ][X ] √ p 0

19: back[i , j ][X ] √ (Xi , j ! Yi ,k Zk, j )
20: end if
21: end for
22: end for
23: end for
24: end for
25: G 0 = {back[i , j ][X ] | 0 ∑ i < j ∑ n, X 2 N }

G 0 is then a grammar that generates at most one tree, the best tree for w .

Question 22. Using the grammar (12.2), run the Viterbi CKY algorithm on the same string:

0 time 1 flies 2 like 3 an 4 arrow 5

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 82

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

12.5 Parsing general CFGs

Previously, we learned about PCFGs, and how to find the best PCFG derivation of a string using the Viterbi
algorithm. Now we will extend those algorithms to the general CFG case.

12.5.1 Binarization

It turns out that any CFG (whose language does not contain ≤) can be converted into an equivalent gram-
mar in Chomsky normal form.

To guarantee that k ∑ 2, we must eliminate all rules with right-hand side longer than 2. We will see
below that the grammars we extract from training data may already have this property. But if not, we
need to binarize the grammar. For example, suppose we have the production

NP ! DT JJS NN NN PP (12.3)

which is too long to be in Chomsky normal form. There are many ways to break this down into smaller
rules, but here is one way. We create a bunch of new nonterminal symbols NP(Ø) where Ø is a string of
nonterminal symbols; this stands for a partial NP whose sisters to the left are Ø. Then we replace rule

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 83

(12.3) with:

NP ! DT NP(DT) (12.4)

NP(DT) ! JJS NP(DT,JJS) (12.5)

NP(DT,JJS) ! NN NP(DT,JJS,NN) (12.6)

NP(DT,JJS,NN) ! NN NP(DT,JJS,NN,NN) (12.7)

NP(DT,JJS,NN,NN) ! PP (12.8)

Note that the annotations contain enough information to reverse the binarization. So the binarized
grammar is equivalent to the unbinarized grammar, but has k ∑ 2.

12.5.2 Parsing with unary rules

But we are not done yet. CKY does not just require k ∑ 2, but also forbids rules of any of the following
forms:

A ! ab (12.9)

A ! aB (12.10)

A ! Ab (12.11)

A ! ≤ (12.12)

A ! B (12.13)

The first three cases are very easy to eliminate, but we never see them in grammars induced from the
Penn Treebank. Nullary rules (12.12) are not hard to eliminate (Hopcroft and Ullman, 1979), but the
weighted case can be nasty (Stolcke, 1995). Fortunately, nullary rules aren’t very common in practice, so
we won’t bother with them here.

Unary rules (12.13) are quite common and annoying. Like nullary rules, they are not hard to eliminate
from a CFG (Hopcroft and Ullman, 1979), but in practice, most people don’t try to; instead, they extend
the CKY algorithm to handle them directly. The extension shown below is not the most efficient, but fits
most naturally with the way we have implemented CKY.

Require: string w = w1 · · ·wn and grammar G = (N ,ß,R,S)
Ensure: w 2 L(G) iff S 2 chart[0,n]

1: initialize chart[i , j ] √; for all 0 ∑ i < j ∑ n
2: for all i √ 1, . . . ,n and (X ! wi ) 2 R do
3: chart[i °1, i ] √ chart[i °1, i ][ {X }
4: end for
5: for `√ 2, . . . ,n do
6: for i √ 0, . . . ,n °` do
7: j √ i +`
8: for k √ i +1, . . . , j °1 do
9: for all (X ! Y Z ) 2 R do

10: if Y 2 chart[i ,k] and Z 2 chart[k, j ] then
11: chart[i , j ] √ chart[i , j ][ {X }
12: end if
13: end for

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 84

14: end for
15: again √ true
16: while again do
17: again √ false
18: for all (X ! Y ) 2 R do
19: if X › chart[i , j ] and Y 2 chart[i , j ] then
20: chart[i , j ] √ chart[i , j ][ {X }
21: again √ true
22: end if
23: end for
24: end while
25: end for
26: end for

The new part is lines 15–24 and is analogous to the binary rule case.

Question Why is the while loop on line 16 necessary? What is its maximum number of iterations?

Here’s how to modify the Viterbi CKY algorithm to allow unary rules.

Require: string w = w1 · · ·wn and grammar G = (N ,ß,R,S)
Ensure: G 0 generates the best parse of w
Ensure: best[0,n][S] is its weight

1: for all 0 ∑ i < j ∑ n, X 2 N do
2: initialize best[i , j ][X ] √ 0
3: initialize back[i , j ][X ] √ nil
4: end for
5: for all i √ 1, . . . ,n and (X

p°! wi ) 2 R do
6: if p > best[i °1, i ][X ] then
7: best[i °1, i ][X ] √ p
8: back[i °1, i ][X ] √ (Xi°1,i ! wi )
9: end if

10: end for
11: for `√ 2, . . . ,n do
12: for i √ 0, . . . ,n °` do
13: j √ i +`
14: for k √ i +1, . . . , j °1 do

15: for all (X
p°! Y Z ) 2 R do

16: p 0 √ p £best[i ,k][Y ]£best[k, j ][Z ]
17: if p 0 > best[i , j ][X ] then
18: best[i , j ][X ] √ p 0

CSE 40/60657: Natural Language Processing April 8, 2015



Chapter 12. Parsing Algorithms 85

19: back[i , j ][X ] √ (Xi , j ! Yi ,k Zk, j )
20: end if
21: end for
22: end for
23: again √ true
24: while again do
25: again √ false
26: for all (X

p°! Y ) 2 R do
27: p 0 √ p £best[i , j ][Y ]
28: if p 0 > best[i , j ][X ] then
29: best[i , j ][X ] = p 0

30: back[i , j ][X ] √ (Xi , j ! Yi , j )
31: again √ true
32: end if
33: end for
34: end while
35: end for
36: end for
37: G 0 √ EXTRACT(S,0,n)

If the grammar has unary cycles in it, that is, it is possible to derive X ) . . . )§ X , then certain com-
plications can arise from the fact that a string may have an infinite number of derivations. In particular, if
the weight of the cycle is greater than 1, then the Viterbi CKY algorithm will break. Even if all rule weights
are less than 1, some algorithms require modification; for example, if we want to find the total weight of
all the derivations of a string, we have to perform an infinite summation (Stolcke, 1995). Therefore, it is
fairly common to implement hacks of various kinds to break the cycles. For example, we could modify
the grammar so that it goes round the cycle at most five times.

Question 23. Why doesn’t the Viterbi CKY algorithm break on unary cycles if we assume that all rule
weights are less than 1?

CSE 40/60657: Natural Language Processing April 8, 2015



Bibliography

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Com-
putation. Reading, MA: Addison-Wesley.

Stolcke, Andreas (1995). “An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix
Probabilities”. In: Computational Linguistics 21, pp. 165–201.

CSE 40/60657: Natural Language Processing April 8, 2015


