Chapter 13

Statistical Parsing

Given a corpus of trees, it is easy to extract a CFG and estimate its parameters. Every tree can be thought
of as a CFG derivation, and we just perform relative frequency estimation (count and divide) on them.
That s, let c(A — B) be the number of times that the rule A — f was observed, and then

c(A)=) c(A—p) (13.1)
p
. A—
P(A—- Bl A= C(TA)ﬁ) (13.2)

13.1 Parser evaluation

Evaluation of parsers almost always uses labeled precision and recall or the labelled F1 score Black et al.,
1991. To define this metric, we make use of the notion of a multiset, which is a set where items can occur
more than once. If A and B are multisets, define A(x) to be the number of times that x occurs in A, and
define

JAl=)_ Ax) (13.3)
X
(AN B)(x) = min{A(x), B(x)} (13.4)

We view a tree as a multiset of brackets [X, i, j] for each node of the tree, where X is the label of the
node and w;41 -+~ wj is its span. Note that in Penn Treebank style trees, every word is an only child and
its parent is a part-of-speech tag. The part-of-speech tag nodes (also called preterminal nodes) are not
included in the multiset.

Let ¢ (for test) be the parser output and g (for gold) be the gold-standard tree that we are evaluating
against. Then define the precision p(t, g) and recall g(t, g) to be:

(13.5)

r(t,g) = —— (13.6)

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 87

and the F1 score to be their harmonic mean:

1
Fi(t,8) = m (13.7)
2\ptg " r(g
_2ngl (13.8)
[t +1gl

The typical setup for English parsing is to train the parser on the Penn Treebank, Wall Street Journal
sections 02-21, to do development on section 00 or 22, and to test on section 23. If we train a PCFG
without any modifications, we will get an F1 score of only 73%. State-of-the-art scores are above 90%.

13.2 Markovization

A PCFG captures the dependency between a parent node and all of its children. On the Penn Treebank,
this leads to over 10,000 rules, each with its own probability. In practice, it turns out that this tends to be
both too little and too much.

13.2.1 Vertical markovization

Too see why it can be too little, suppose our Treebank looked like this Johnson, 1998; Klein and Manning,
2003:

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 88

90 times NP

A
AA

DT NN

the man in DT NN

the car

10 times NP

T
AAA

DT NN

the man in DT NN with DT NN

the car
From this we would learn

P(NP — NP PP) =90/310
P(NP — NP PP PP) = 10/310

and whenever the parser is asked to choose between these two trees:

(13.11) NP

T
AN N

TN A

the man in DT NN with DT NN

the car the dog

(13.9)
(13.10)

CSE 40/60657: Natural Language Processing

April 8,2015

Chapter 13. Statistical Parsing 89

(13.12) NP

A
A A
A A T A

DT NN NP with DT NN
the man in DT NN the dog
the car

it will prefer the second one, which was never observed in the training data!

This can be corrected by modifying the node labels to increase their sensitivity to their vertical con-
text, much in the same way that we can increase the context-sensitivity of an n-gram language model
by increasing n. We simply annotate each node with its parent’s label. For example (assuming that the
parent of the upper NP is VP):

(13.13) NP[mom = VP]

/\

NP[mom = NP] PP[mom = NP]

N T~

DT[mom =NP] NN[mom=NP] IN[mom=PP] NP[mom = PP]

the man in DT[mom =NP] NN[mom = NP]

the car

Now, the parser will not be tempted to build a three-level NP (because it would require an NP[mom = NP]
with an NP[mom = NP] child, which is rare). We train the PCFG on these annotated trees, and then after
we parse the test data, we have to remove the annotations before evaluation. This helps the accuracy of
the parser considerably (to about 77% F1).

13.3 Binarization and horizontal markovization

On the other hand, our PCFG also captures too much dependency. Suppose the Treebank contains the
tree fragment

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing

90

(13.14) NP
DT JJS NN NN ppP

LN

the tallest steel building IN NP

in NNP

America

but never contains

(13.15) NP

ANN

DT JJS NN PP

Then the parser will fail trying to parse:

(13.16) NP
DT JJS NN pp

N

the tallest building IN NP

in NNP

America

The problem is that if we allow long rules, then there are many possible long rules, which our models
says are all independent. But we believe that there is some relationship between them. The solution is to
break down the long rules into smaller rules, just as we did to reduce parsing complexity. Here, it’s easier
to binarize the trees instead of binarizing the grammar. For example, to binarize (13.14), we introduce

new NP nodes, and annotate each one with the children that have been generated so far:

CSE 40/60657: Natural Language Processing

April 8,2015

Chapter 13. Statistical Parsing 91

(13.17) NP

N

DT NP[prev=DT]

T

the JJS NP[prev=DT]JJS]

T

tallest NN NP[prev=DT]JJS,NN]

‘ /\

steel NN NP[prev=DTJJS,NN,NN]

building PP

N

IN NP

in NNP

America

Note that there is enough information in the annotations to reverse the binarization. So much informa-
tion, in fact, that we still can’t parse (13.16). We can again apply an idea from language modeling, this
time in the horizontal direction: make the generation of each child depend only on the previous (n—1)
children Miller et al., 1996; Collins, 1999; Klein and Manning, 2003. For example, if n = 2:

(13.18) NP

TN

DT NP[prev=DT]

R

the JJS NP[prev=]]S]

‘ A

tallest NN NP[prev=NN]

T

steel NN NP[prev=NN]

building PP

IN NP

in NNP

America

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 92

Now we can parse (13.16), and the parser accuracy should be a little bit better.

13.4 Using linguistic knowledge

Previously we saw how to increase the amount of vertical context dependency in a PCFG by changing
it, effectively, from a bigram model to a trigram model, and how to decrease the amount of horizontal
context dependency by changing it, effectively, from a co-gram model to a bigram model. We can try to
use linguistic knowledge to make these context dependencies more intelligent.

13.4.1 Lexicalization

In the vertical direction, a common technique is lexicalization (sometimes called head-lexicalization to
distinguish it from another concept with the same name). In English parsing, PP attachment is one of
the most difficult ambiguities to resolve, as illustrated by the well-known sentence:

(13.19) S
/\
NP VP
N
PRP VBD NP
I N
I saw NP PP
/NN
DT NN IN NP
B ZAN
a man with DT NN
|
a telescope
(13.20) S
/\
NP VP
‘ A
PRP

VP PP
I VBD NP IN NP

saw DT NN with DT NN

a man a telescope

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 93

Although there is a strong general preference for low attachment (13.19), the words involved may change
this preference. For example, after would have a definite preference for attaching to VP.

(13.21) S

/\

NP VP

‘ /\

PRP VP PP
I VBD NP IN NP

fed DT NN after NNP

the mogwai midnight

Last time, we annotated each node with the label of its parent; now, we go in the opposite direction,
annotating each node with the label of one of its leaves. Which one? We choose the linguistically “most
important” one, known as its head word, using some heuristics (e.g., the head of a VP is the verb; the
head of an NP is the final noun).

For example, tree (13.21) would become:

(13.22) S[head = saw]
/\
NP[head =1] VP[head = fed]
/\
PRP[head =1] VP|head = fed] PP[head = after]
/\
1 VBD[head = fed] NP[head = mogwai] IN[head = after] NP[head = midnight]
|
fed DT[head = the] NN[head = mogwail after NN{[head = midnight]
| |
the mogwai midnight

What did this buy us? We are going to learn a high probability for rules like

VP[head = w] — VP[head = w] PP[head = after] (13.23)
and low probability for rules like

NP[head = w] — NP[head = w] PP[head = after] (13.24)

so that we can learn that PPs headed by after prefer to attach to VPs instead of NPs.
If we binarize, it is convenient to binarize so that the head is generated last (lowest). Thus:

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 94

(13.25) NP
) NN PP

N

little house IN NP

VAN

on DT NNP

the prairie

(13.26) NP

/\

I NP[left =]

| T

little NP[left =]], right = PP] PP

/N

NN IN NP

| VAN

house on DT NNP

the prairie

13.4.2 Subcategorization

In the horizontal direction, a common technique is to use subcategorization. The basic idea is that some
phrases (called arguments) are required and others (called adjuncts) are optional:

(13.27) Godzilla obliterated the city
(13.28) 2 Godzilla obliterated

The verb obliterated normally takes a direct object, making the second sentence odd. On the other hand,
in the sentences

(13.29) Godezilla exists

(13.30) * Godzilla exists the monster

the verb exists never takes a direct object. By contrast, adjuncts can occur much more freely:
(13.31) Godzilla exists today

(13.32) Godzilla obliterated the city today

This can affect parsing decisions. For example,

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 95

(13.33) Isaw her duck
(13.34) Iobliterated her duck

The first sentence is ambiguous for humans because saw can take either an NP or an S as an argument.
The second sentence is unambiguous for humans, but ambiguous for computers unless they learn that
obliterated must take an NP argument, not an S argument.

Last time, we made the generation of a child node depend on one previous child. Now, we would
like to use this same mechanism to control the number of arguments, depending on the verb. We can do
this by making the generation of a child node depend on all of the previous arguments, and none of the
previous adjuncts. I've left off some annotations to save space:

(13.35) S
NP VP
NNP VBD NP NP

| /N

Godzilla obliterated DT NN NN

the city today

(13.36) S[head = obliterated]
/\
NP VP[head = obliterated]
‘ /\
NNP VP|[head = obliterated] NP
Godzilla VP[head = obliterated, right = NP] NP[head = city, arg] NN
| N |
VBD|[head = obliterated] DT NNlhead = city] today
|]
obliterated the city

We marked [yp the city] with an argfeature to indicate that it is an argument, not an adjunct. Moreover,
the right feature, and the left feature if there were one, only keeps track of the previous arguments, not
adjuncts.

13.5 Smoothing

With the complex nonterminals we have been creating, it may become hard to reliably estimate rule
probabilities from data. The solution is to apply smoothing, as in language modeling. Witten-Bell smooth-

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 96

ing is a fairly common choice in parsing. For example, to estimate the probability of
VP[head = obliterated] — VP[head = obliterated, right = NP] NP[head = city, arg]
we might interpolate its relative-frequency estimate with that of
VP[head = w] — VP[head = w, right = NP] NP[head = city, arg]

where we have replaced the word obliterated with a placeholder w to make the rule probability easier to
estimate.

If we test our parser on unseen data, it is inevitable that it will encounter unseen words. If we don’t do
anything about it, the parser will simply reject any string that has an unknown word, which is obviously
bad.

The simplest thing to do is to simulate unknown words in the training data. That is, in the training
data, replace every word that occurs only once (or < k times) with a special symbol <unk>. Then train the
PCFG as usual. Then, in the test data, replace all unknown words with <unk>. It’s also fine to use multiple
unknown symbols. For example, we can replace words ending in -ing with <unk-ing>.

A more sophisticated approach would be to apply some of the ideas that we saw in language model-
ing.

13.6 Beam search

The Viterbi CKY algorithm can be slow, especially if modifications to the grammar increase the nonter-
minal alphabet a lot. We can use beam search to speed up the search if we are willing to allow potential
search errors.

After the completion of each chart cell best[i, j], do the following:

: forall X € N do

score[X] < best[i, j1[X] x h(X)
: end for

: choose minscore

: forall X e Ndo

if score[X] < minscore then
end if

delete best([i, j1[X]

delete backli, j1[X]

: end for

L PN DD Ry

—_
(=]

The function h(X) is called a heuristic function and is meant to estimate the relative probability of
getting from S at the root down to X. The typical thing to do is to let h(X) be the frequency of X in the
training data.

There are two common ways of choosing minscore (line 4):

* minscore= (m)?xscore[X]) x 3, where 0 < < 1 (typical values: 1073 t0 107°)

* minscore is the score of the b’'th best member of score (typical values of b: 10-100)

It is also fine to set minscore to the larger of these two values.

CSE 40/60657: Natural Language Processing April 8, 2015

Chapter 13. Statistical Parsing 97

Question The time complexity of CKY is normally 0 (n®|N|®), because we have to loopoveri,j, k, X,Y,
and Z. If we add beam search, what will the time complexity be in terms of n and b? Assume b < |N]|.

CSE 40/60657: Natural Language Processing April 8, 2015

Bibliography

Black, E. et al. (1991). “A procedure for quantitatively comparing the syntactic coverage of English gram-
mars”. In: Proc. DARPA Speech and Natural Language Workshop, pp. 306-311.

Collins, Michael (1999). “Head-Driven Statistical Models for Natural Language Parsing”. PhD thesis. Uni-
versity of Pennsylvania.

Johnson, Mark (1998). “PCFG models of linguistic tree representations”. In: Computational Linguistics
24, pp. 613-632.

Klein, Dan and Christopher D. Manning (2003). “Accurate Unlexicalized Parsing”. In: Proc. ACL, pp. 423—
430.

Miller, Scott et al. (1996). “A Fully Statistical Approach to Natural Language Interfaces”. In: Proc. ACL,
pp. 55-61.

CSE 40/60657: Natural Language Processing April 8, 2015

