
Chapter 15

Synchronous CFGs

Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings
instead of single strings. They are useful in many situations where one might want to specify a recursive
relationship between two languages. Originally, they were developed in the late 1960s for programming-
language compilation (Aho and Ullman, 1969). In natural language processing, they have been used for
machine translation (Wu, 1997; Yamada and Knight, 2001; Chiang, 2005) and (less commonly, perhaps)
semantic interpretation.

The term synchronous CFG is recent and far from universal. They were originally known as syntax-
directed transduction grammars (Lewis and Stearns, 1968) or syntax-directed translation schemata (Aho
and Ullman, 1969). Inversion transduction grammars (Wu, 1997) are a special case of synchronous CFGs.

15.1 Motivation

Earlier we used FSTs to perform many kinds of string transformations, but there are many kinds of trans-
formations that they can’t perform. Even something as simple as reversing the input string is beyond
FST’s power.

Question 27. Informally, what is the reason that there is no FST that can output the reverse of its input
string?

For a linguistic example, consider the following English sentence and its (admittedly somewhat un-
natural) equivalent in Japanese (with English glosses):

(15.1) the boy stated that the student said that the teacher danced

shoonen-ga
the boy

gakusei-ga
the student

sensei-ga
the teacher

odotta
danced

to
that

itta
said

to
that

hanasita
stated

This kind of reordering is beyond the power of FSTs, but a synchronous CFG can do this.

15.2 Definition

In a synchronous CFG, the productions have two right-hand sides—call them the input rhs and the out-
put rhs—that are related in a certain way. Below is an example synchronous CFG for a fragment of English

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 111

and Japanese:

S →〈NP 1 VP 2 ,NP 1 VP 2 〉 (15.2)

VP →〈VB 1 NP 2 ,NP 2 VB 1 〉 (15.3)

NP →〈I,watashi wa〉 (15.4)

NP →〈the box,hako wo〉 (15.5)

VB →〈open,akemasu〉 (15.6)

The boxed numbers i link up nonterminal symbols in the input rhs with nonterminal symbols in the
output rhs: 1 links to 1 , 2 with 2 , and so on. Linked nonterminals must match (X with X), and the
linking must be a one-to-one correspondence.

How does this grammar work? Just as we start in a CFG with a start symbol and repeatedly rewrite
nonterminal symbols using the productions, so in a synchronous CFG, we start with a pair of linked start
symbols (I just chose the number 10 arbitrarily),

〈S 10 ,S 10 〉

and repeatedly rewrite pairs of nonterminal symbols using the productions—with two wrinkles. First,
when we apply a production, we renumber the boxed indices consistently to fresh indices that aren’t in
our working string pair. Thus, applying production (15.2), we get

⇒〈NP 11 VP 12 ,NP 11 VP 12 〉

Second, we are only allowed to rewrite linked nonterminal symbols. Thus we can apply production (15.3)
like so:

⇒〈NP 11 VB 13 NP 14 ,NP 11 NP 14 VB 13 〉
But now if we want to apply production (15.4), we can’t apply it to NP 11 on one side and NP 14 on the
other, like this:

̸⇒ 〈I VB 13 NP 14 ,NP 11 watashi wa VB 13 〉
But we can apply it to any linked nonterminals, like so:

⇒〈I VB 13 NP 14 ,watashi wa NP 14 VB 13 〉
⇒ 〈I open NP 14 ,watashi wa NP 14 akemasu〉
⇒ 〈I open the box,watashi wa hako wo akemasu〉

And now we have an English string and Japanese string which are translations of each other!
We can also view synchronous CFG derivations as pairs of trees, just as CFG derivations can be viewed

as trees: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 10

VP 12

NP 14

boxthe

VB 13

open

NP 11

I

,

S 10

VP 12

VB 13

akemasu

NP 14

wohako

NP 11

wawatashi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15.7)

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 112

By this point, we often don’t care about the boxed numbers and therefore drop them.
Here is a more complicated example, a grammar deriving sentence pair (15.1):

S →〈NP 1 VP 2 ,NP 1 VP 2 〉
VP →〈VB 1 ,VB 1 〉
VP →〈VB 1 SBAR 2 ,SBAR 2 VB 1 〉

SBAR →〈IN 1 S 2 ,S 2 IN 1 〉
IN →〈that, to〉

NP →〈the boy,shoonen-ga〉
NP →〈the student,gakusei-ga〉
NP →〈the teacher,sensei-ga〉
VB →〈danced,odotta〉
VB →〈said, itta〉
VB →〈stated,hanasita〉

(15.8)

Question 28. Show how to derive sentence pair (15.1).

Question 29. How would you write a synchronous CFG that outputs the reverse of its input string?

We can add states to a synchronous CFG just like we did for CFGs. We introduce the following nota-
tional convention: if β is a string of terminals and r indexed nonterminals, then β[q1, . . . , qr] adds state
qi to the nonterminal indexed by i .

15.3 Weighted synchronous CFGs

In a weighted synchronous CFG, a weight is attached to each production. The weight of a whole derivation
is just the product of the weights of the productions used in the derivation. Thus a weighted synchronous
CFG generates a weighted set of pairs of derivations.

We can (but don’t necessarily have to) think of a weighted synchronous CFG as a stochastic process,
in at least two different ways. First, by analogy with PCFG, each production A →〈α,α′〉 could have prob-
ability P (α,α′ | A), so that the probability of the whole derivation is the joint probability of the input and
output trees. Or, by analogy with FSTs, each production could have probability P (α′ | A,α), in which case
the probability of the whole derivation would be the conditional probability of the output tree given the
input tree.

For example, suppose we want to translate French into English. We could learn a weighted syn-
chronous CFG that translates from English trees Te into French trees T f and computes P (T f | Te). Then
we would like to combine this grammar with a language model P (Te) so that we can compute:

arg max
Te

P (Te | T f) = arg max
Te

P (T f ,Te) (15.9)

= arg max
Te

P (T f | Te)P (Te) (15.10)

But suppose we are given only a French string, not a French tree, as input, and want only an English

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 113

string, not an English tree, as output. Then:

arg max
e

P (e | f) = arg max
e

P (f ,e) (15.11)

= arg max
e

∑

T f

∑

Te

P (T f ,Te) (15.12)

= arg max
e

∑

T f

∑

Te

P (T f | Te)P (Te) (15.13)

The summations are over trees that yield f and e, respectively. It is tractable to compute both summa-
tions for a fixed f ,e, but maximizing over e is intractable. Therefore the standard practice is to use the
Viterbi approximation:

= arg max
T f ,Te

P (T f | Te)P (Te) (15.14)

where again the maximization over T f and Te is over trees that yield f and e, respectively. We will see
how to do this maximization below.

This P (Te) could be modeled by a PCFG. However, n-gram language models continue to be far more
effective than tree language models. So it is common to use an n-gram language model instead, even
though it is a string language model, and assume that P (Te) ≈ P (e).

15.4 Binarization

Define the rank of a right-hand side to be the number of nonterminals in it: for example, NP VP has rank
two. Now define the rank of a CFG or synchronous CFG to be the maximum rank of any of its right-hand
sides.

Recall that any (non-synchronous) CFG can be converted into a (weakly) equivalent CFG with rank
two or less (Chomsky normal form). Is this true for synchronous CFG? It turns out that any synchronous
CFG of rank three can be converted into a synchronous CFG of rank two. For example, the production

A →〈B 1 C 2 D 3 ,D 3 B 1 C 2 〉

can be binarized into

A →〈A′
4 D 3 ,D 3 A′

4 〉
A′ → 〈B 1 C 2 ,B 1 C 2 〉

Note that we did not sever any links in doing so.

Question 30. Show that any synchronous CFG production of rank three can be converted into a set of
productions of rank two. Assume that the production doesn’t have any terminal symbols.

But there are synchronous CFGs of rank four that can’t be binarized—namely, any synchronous CFG
containing a production with one of the following forms:

A →〈B 1 C 2 D 3 E 4 ,D 3 B 1 E 4 C 2 〉
A →〈B 1 C 2 D 3 E 4 ,C 2 E 4 B 1 D 3 〉

(15.15)

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 114

Question 31. Show that the first form can’t be binarized in such a way that preserves all the links.

In general, let r -SCFG stand for the set of string relations generated by synchronous CFGs of rank r .
Then:

1-SCFG! 2-SCFG = 3-SCFG! 4-SCFG! . . . (15.16)

despite the fact that non-synchronous CFGs of rank 2 and higher are all weakly equivalent (Aho and
Ullman, 1969). There is an efficient algorithm for minimizing the rank of a synchronous CFG (Zhang and
Gildea, 2007).

15.5 Translation

Translation, analogous to application of FSTs, is the problem of finding all possible output strings for
a given input string. If the input side of the grammar is in Chomsky normal form, we can use a simple
variant of CKY to do translation.

Consider the following synchronous CFG:

S
1−→〈NP 1 VP 2 ,NP 1 VP 2 〉

VP
1−→〈VB 1 NP 2 ,NP 2 VB 1 〉

VB
1−→〈see,veo〉

VB
1−→〈love,amo〉

NP
0.3−−→〈I,yo〉

NP
0.7−−→〈I,ϵ〉

NP
0.1−−→〈you,te〉

NP
0.9−−→〈you, la〉

NP
1−→〈her, la〉

(15.17)

Question 32. Run the Viterbi CKY algorithm (just probabilities, no back-pointers) using the input side
of the grammar on the input string I see her.

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 115

Remember that in CFG parsing, we represented back-pointers as CFG rules, augmenting nontermi-
nal symbols with spans i , j to specify which cells a pointer points to. Similarly, in synchronous CFG
translation, we represent back-pointers as synchronous CFG rules.

Question 33. Using the same grammar and input string as before, write down the back-pointers for the
two missing cells:

NP : NP0,1 →〈I,ϵ〉 $

VB : VB1,2 →〈see,veo〉 VP : VP1,3 →〈VB1,2 1 NP2,3 2 ,NP2,3 2 VB1,2 1 〉

What is the best translation?

If we maintain sets of back-pointers instead of just the best back-pointer, then we get a representation
of all possible translations of the input string.

Question 34. Using the same grammar and input string as before, write down the sets of all possible
back-pointers for the two missing cells:

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 116

NP :

{
NP0,1 →〈I,yo〉
NP0,1 →〈I,ϵ〉

}

$

VB :
{
VB1,2 →〈see,veo〉

}
VP :

{
VP1,3 →〈VB1,2 1 NP2,3 2 ,NP2,3 2 VB1,2 1 〉

}

How many translations are there, and what are they?

15.6 Composition (optional)

Recall that finite-state transducers are composable: if R and R ′ are definable by finite-state transducers,
then so is R ◦R ′. Is this true for synchronous CFGs too?

We can think of a synchronous CFG as defining a relation on trees or a relation on strings. If we think
of synchronous CFGs as defining tree relations, they are composable just like FSTs. This is what we would
need, for example, when combining a synchronous CFG translation model with a CFG language model.
The composition construction is quite similar to that for FSTs, but we don’t discuss it here.

However, if we think of synchronous CFGs as string relations, they behave very differently: if R and
R ′ are string relations definable by synchronous CFGs, then R ◦R ′ will not necessarily be.

Question 35. Give an example of two synchronous CFGs that define string relations that compose to
form a string relation that can’t be defined by a synchronous CFG. Hint: Remember that {ai b j c j } and
{a j b j ck } are context-free languages but intersect to form a non-context-free language.

But just as it was possible to intersect a CFG with a FSA, it is possible to compose a synchronous CFG
with a FST, or vice-versa. The construction to do this is similar to intersecting a (non-synchronous) CFG
with a FSA.

Consider the following synchronous CFG G that translates from French to English, but translates
the French determiner une using a pseudoword a(n), and a FST M that changes a(n) into a or an as
appropriate.

NP →〈DT 1 NN 2 ,DT 1 NN 2 〉
DT →〈une,a(n)〉
NN →〈flèche,arrow〉
NN →〈banane,banana〉

(15.18)

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 117

(15.19) q0

qa

qan

a(n):a

a(n):an

arrow:arrow
banana:banana

banana:banana

arrow:arrow

We want to compose M ◦G , that is, to feed the output of G into the input of M . Assume that M has
no input ϵ-transitions. As in intersection, we are going to annotate the nonterminal symbols of G to
simulate the action of M . Each nonterminal gets a pair of states indicating where M could be before and
after reading the output yield of the symbol.

We consider each rule of the grammar one by one. First, consider the production DT → 〈une,a(n)〉.
Suppose that M is in state q0. Upon reading the output yield of this rule, it could either output a and
move to state qa, or output an and move to state qan. So we make two new rules,

DTq0,qa →〈une,a〉
DTq0,qan →〈une,an〉

But what if M starts in state qa or state qan? In that case, M would reject the string, so we don’t make any
new rules for these cases. By similar reasoning, we make rules

NNq0,q0 →〈flèche,arrow〉
NNqan,q0 →〈flèche,arrow〉
NNq0,q0 →〈banane,banana〉
NNqa,q0 →〈banane,banana〉

Now consider the production NP → DT NN. Imagine that M is in state q0 and reads the yield of DT.
What state will it be in after? Based on the annotated nonterminals created so far, it could either move to
state qa or qan. In either case, upon reading NN, it will end up back in state q0. So we make two rules,

NPq0,q0 → DTq0,qa NNqa,q0

NPq0,q0 → DTq0,qan NNqan,q0

As before, we loop through all the rules repeatedly until the set of annotated nonterminals stops
growing. In this case, we are done.

Finally, make a new start symbol S′, and write rules connecting S′ to the start symbol of G and the
initial/final states of M (one for each final state):

S′ → 〈NPq0,q0
1 ,NPq0,q0

1 〉 (15.20)

Composing G ◦M , that is, feeding the output of M into the input of G , is analogous. In that case we
would assume that M has no output ϵ-transitions.

Just as intersection gave us a more abstract way of thinking about parsing, so composition gives us a
more abstract way of thinking about translation. We saw how we can use CKY to build a synchronous CFG
that represents all possible translations of an input string. This is none other than the composition of the

CSE 40/60657: Natural Language Processing April 22, 2015

Chapter 15. Synchronous CFGs 118

input string and the grammar. That is, given an input string f , form the trivial FST M f that maps f to
itself and nothing else, and compose G◦M f . If G is rank-two, then the complexity of translation is exactly
the same as the complexity of parsing. If G has rank greater than two, then translation-as-composition
will be slower than parsing.

15.7 Translation with a language model (optional)

Suppose we want to do translation with a weighted synchronous CFG but also want to use a g -gram
language model, such that the score of a derivation is the score according to the synchronous CFG multi-
plied by the language model score. We can do this using the tools we have established so far. Let M f be as
before, and let MLM be our g -gram language model, represented as a FST. Then we form the composition
MLM ◦G ◦M f .

Thus, each nonterminal A gets annotated to become Ai , j
q,r , where:

• i , j are positions of f , resulting from composition with M f , and

• q,r are states of MLM, which each encapsulates a (g −1)-gram context of output symbols.

Usually this means that A generates the input span fi+1 · · · f j with some output translation, and q en-
capsulates the (g − 1) words preceding the translation and r encapsulates the last (g − 1) words of the
translation. If we are parsing bottom-up, this means that we start by translating individual words of f
and then gradually build up larger and larger translations of spans of f . But for each input span that we
translate, we constantly have to guess all possible values of q , that is, all the possible (g−1)-gram contexts
that might precede the translation.

In practice, this is not going to be very efficient. What most MT systems use is another composition
algorithm (Wu, 1996) that does not require so much guesswork. Instead of annotating each nonterminal
Ai , j with a pair of states q,r , it annotates it with the first (g −1) and last (g −1) output translations of Ai , j .
Most systems also use beam search, and an algorithm called cube pruning (Chiang, 2007) that further
speeds up the beam search, again exploiting the structure of the language model.

CSE 40/60657: Natural Language Processing April 22, 2015

Bibliography

Aho, A. V. and J. D. Ullman (1969). “Syntax Directed Translations and the Pushdown Assembler”. In: J.
Comp. Sys. Sci. 3, pp. 37–56.

Chiang, David (2005). “A Hierarchical Phrase-Based Model for Statistical Machine Translation”. In: Proc.
ACL, pp. 263–270.

— (2007). “Hierarchical Phrase-Based Translation”. In: Computational Linguistics 33.2, pp. 201–228.
Lewis P. M., II and R. E. Stearns (1968). “Syntax-Directed Transduction”. In: Journal of the ACM 15, pp. 465–

488.
Satta, Giorgio and Enoch Peserico (2005). “Some Computational Complexity Results for Synchronous

Context-Free Grammars”. In: Proc. HLT-EMNLP, pp. 803–810.
Wu, Dekai (1996). “A Polynomial-Time Algorithm for Statistical Machine Translation”. In: Proc. ACL, pp. 152–

158.
— (1997). “Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora”. In:

Computational Linguistics 23, pp. 377–404.
Yamada, Kenji and Kevin Knight (2001). “A Syntax-based Statistical Translation Model”. In: Proc. ACL,

pp. 523–530.
Zhang, Hao and Daniel Gildea (2007). “Factorization of Synchronous Context-Free Grammars in Linear

Time”. In: Workshop on Syntax and Structure in Statistical Translation.

CSE 40/60657: Natural Language Processing April 22, 2015

