
Chapter 3

Text Clustering

3.1 Introduction

Let’s go back to the naïve Bayes model and consider the case where some or all of the classes ki are
unobserved. For example, if we have 1,000 e-mails labeled as spam or ham, and 1 million more unlabeled
e-mails, maybe we can learn a better classifier by combining both labeled and unlabeled data. Maybe
from the labeled data we learn that “award” often implies spam, and from the unlabeled data we learn
that “award” often occurs in the same documents as “deposit,” then we can infer that “deposit,” too, is
associated with spam.

If all of the ki are unobserved, then there’s no way that the computer can learn to label emails as spam
or ham. The best that we can do is tell the computer that there are two kinds of emails, and it should try
to find some way of classifying them into class 1 and class 2. Then, just maybe, class 1 will be ham and
class 2 will be spam, or class 1 will be spam and class 2 will be ham. Then again, maybe the computer
will find some other possibly meaningful way of classifying the emails instead. We can also choose more
than two classes and see what happens. This is known as text clustering. Some of the most interesting
NLP problems are unsupervised learning problems, although unsupervised learning also often fails.

3.2 Expectation-Maximization: “hard” version

Assume that all of the ki are unobserved. We have to choose a number of classes in advance. Then we
want to maximize the likelihood, that is, the probability of the observed data. Since we only observe
words without classes, the likelihood looks different from before:

L =
∏

i
P (di ) (3.1)

=
∏

i

∑

k
p(k)

∏

w∈di

p(w | k). (3.2)

The bad news is this does not have a closed-form solution, and we have to use an iterative method. While
we could use a generic method like gradient ascent, it’s far more common to use a specialized method
called expectation-maximization (Dempster, Laird, and Rubin, 1977).

We start with the “hard” (as opposed to “soft”) version. The basic idea is pretty intuitive. If we have
labels, then we know how train the model (this is just like training in the supervised case). And if we have

CSE 40/60657: Natural Language Processing January 30, 2015



Chapter 3. Text Clustering 19

a model, we know how to predict the labels (this is just like testing in the supervised case). So, we can
start by initializing the model parameters to random values; then guess labels for all the documents, then
use those labels to retrain the model, and repeat.

initialize parameters p(k) and p(w | k) randomly
repeat

for each i do
predict k∗

i = arg maxk P (k | di )
end for
estimate the parameters from the di and k∗

i
until done

It seems that one of three things could happen: nothing, or the model will get worse and worse as noise
takes over, or somehow the model will get better.

If you consider the partially supervised case (where some of the documents are labeled and some
are not labeled), it’s easier to see how it might actually get better. Suppose, as in the example from the
beginning, that we’ve seen emails labeled as spam that contain the word “award” but never the word
“deposit.” But we’ve seen unlabeled emails containing both words; when we guess the label for those
emails, they’re likely to be labeled as spam. If they are, then when we retrain the model, we’ll learn that
“deposit” is mildly associated with spam, which is good.

In the fully unsupervised case, it’s a little harder to see, but let’s work out a simple example.

award notification
enron canada
enron america
award payment

Initialize the model randomly:

p(1) = 0.5 p(2) = 0.5

p(america | 1) = 0.1 p(america | 2) = 0.2

p(award | 1) = 0.1 p(award | 2) = 0.1

p(canada | 1) = 0.1 p(canada | 2) = 0.2

p(enron | 1) = 0.2 p(enron | 2) = 0.2

p(notification | 1) = 0.4 p(notification | 2) = 0.2

p(payment | 1) = 0.1 p(payment | 2) = 0.1

Guess a class for each example:

P (1,d) P (2,d) k∗

award notification 0.02 0.01 1
enron canada 0.01 0.02 2
enron america 0.01 0.02 2
award payment 0.005 0.005 1 (arbitrary)
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For the last document, there was a tie, which we broke arbitrarily. Retrain the model:

p(1) = 0.5 p(2) = 0.5

p(america | 1) = 0 p(america | 2) = 0.25

p(award | 1) = 0.5 p(award | 2) = 0

p(canada | 1) = 0 p(canada | 2) = 0.25

p(enron | 1) = 0 p(enron | 2) = 0.5

p(notification | 1) = 0.25 p(notification | 2) = 0

p(payment | 1) = 0.25 p(payment | 2) = 0

Guess a class for each example:

P (1,d) P (2,d) k∗

award notification 0.0625 0 1
enron canada 0 0.0625 2
enron america 0 0.0625 2
award payment 0.0625 0 1

And it’s not hard to see that nothing changes after this. The algorithm clustered the documents by notic-
ing that two documents had the word “award” in common and two documents had the word “enron” in
common.

But what if we had broken that tie in the other direction? Retrain the model:

p(1) = 0.25 p(2) = 0.75

p(america | 1) = 0 p(america | 2) = 0.167

p(award | 1) = 0.5 p(award | 2) = 0.167

p(canada | 1) = 0 p(canada | 2) = 0.167

p(enron | 1) = 0 p(enron | 2) = 0.333

p(notification | 1) = 0.5 p(notification | 2) = 0

p(payment | 1) = 0 p(payment | 2) = 0.167

Guess a class for each example:

P (d ,1) P (d ,2) k∗

award notification 0.0625 0 1
enron canada 0 0.0417 2
enron america 0 0.0417 2
award payment 0 0.0208 2

So hard EM is able to discover some things, but is also kind of brittle.

3.3 Expectation-Maximization: real version

The real version of EM has a slight difference that makes it possible to actually prove that the likelihood
(3.1) gets better, or is at a local maximum.
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Before, we used the model to predict the best label for each document, by using the model’s best
guess for each. But its guesses aren’t certain. For a document d , it only gives probabilities P (1 | d) and
P (2 | d). So, it’s more reasonable to say that we observed d a fraction of a time in class 1, and a fraction of
a time in class 2.

We do this for all the documents and add up all the counts to get expected counts, which may be
fractional. Then, just like before, we train the model from those counts. It doesn’t matter that the counts
are fractional; we just count and divide like before.

Let’s try this with our example, with the same random initialization as before. Instead of guessing the
best class for each document, we compute the distribution over classes:

P (1,d) P (2,d) P (1 | d) P (2 | d)
award notification 0.02 0.01 0.667 0.333
enron canada 0.01 0.02 0.333 0.667
enron america 0.01 0.02 0.333 0.667
award payment 0.005 0.005 0.5 0.5

Note that we didn’t have to do any arbitrary tie-breaking. Retrain the model:

p(1) = 0.458 p(2) = 0.542

p(america | 1) = 0.0909 p(america | 2) = 0.154

p(award | 1) = 0.318 p(award | 2) = 0.192

p(canada | 1) = 0.0909 p(canada | 2) = 0.154

p(enron | 1) = 0.182 p(enron | 2) = 0.308

p(notification | 1) = 0.182 p(notification | 2) = 0.0768

p(payment | 1) = 0.136 p(payment | 2) = 0.115

And so on. The computations are tedious to do by hand, but hopefully you can see where this is going—
eventually the words “award”, “notification”, and “payment” will dominate class 1, and the words “enron”,
“america”, and “canada” will dominate class 2.

The algorithm looks like this:
initialize parameters p(k) and p(w | k) randomly
repeat

◃ E step:
for each i , k do

compute P (k | di ) = P (k,di )
∑

k ′ P (k,di )
E [c(k)] ← E [c(k)]+P (k | di )
for each w ∈ di do

E [c(k, w)] ← E [c(k, w)]+P (k | di ) · c(w ∈ di )
end for

end for
◃ M step:

p(k) = E [c(k)]
n

p(w | k) = E [c(k, w)]
E [c(k)]

until done
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This version is guaranteed to make L increase or, if at a local maximum, stay the same. See Section 3.6
for why.

In the initialization step, it’s very important to set the parameters randomly.

Question 8. What happens if we initialize the parameters uniformly?

Question 9. What happens if the number of classes is greater than or equal to the number of documents?

3.4 Details

Number of iterations Theoretically we should keep performing iterations of EM until the likelihood
stops increasing. In practice, it’s extremely common just to set a fixed number of iterations.

Random restarts Because EM is only guaranteed to converge to a local maximum, if we run it again we
might get a different result. So to try to get the best result, we might run EM many times and choose the
one with the best likelihood.

Smoothing In the supervised case, we used add-one or add-δ smoothing. We can use it here too, dur-
ing the M step. However, the likelihood is no longer guaranteed to increase at every iteration; it could
decrease. There’s another objective function that is guaranteed to increase, but it’s not so common to
explicitly compute it.

3.5 Experiment

We ran the unsupervised naïve Bayes clustering algorithm on the blog data from before, using two classes
and 30 iterations.

Whatever the algorithm learns, it isn’t gender:

class male female total
0 921 933 1854
1 436 292 728

In both classes, the most frequent words are just the most frequent words in English; to try to find the
most distinctive words, we ranked words by the formula p(w | k)/(c(w)+10). (The +10 is in there so that
we don’t have the opposite problem of the very rarest words floating to the top.)

class words
0 upset personally closer excited laughing silly absolutely enjoying cry honest
1 founded member buried decades underneath builder luggage attended northern aspects

It certainly seems as though the clusterer has learned to group the blog posts into more personal posts
(class 0) and more objective posts (class 1), although looking at the actual posts with their classes, one
doesn’t get this impression.

When we try add-one smoothing, a very different result emerges: a mere four documents in class 0,
and the rest in class 1. Those four documents are written in: English with weird characters, Malay/Indonesian,
Portuguese, and French.
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Figure 3.1: Jensen’s inequality: the log of the average is greater than the average of the logs.

3.6 Optional: Proof of Correctness of EM

The goal of EM is to find the parameter values that maximize the likelihood,

logL =
∑

i
logP (di ) (3.3)

=
∑

i
log

∑

k
P (k,di ) (3.4)

=
∑

i
log

∑

k

Qi (k)
Qi (k)

P (k,di ) (3.5)

≥
∑

i

∑

k
Qi (k) log

P (k,di )
Qi (k)

. (3.6)

The last step follows from Jensen’s inequality, which is pictured in Figure 3.1. So let

F =
∑

i

∑

k
Qi (k) log

P (k,di )
Qi (k)

≤ logL. (3.7)

Now logL and F are functions of the parameters, p(k) and p(w | k), and the auxiliary distributions,
Qi . We can either hold the parameters constant and optimize the Qi , or we can hold the Qi constant and
optimize the parameters.
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Figure 3.2: The EM algorithm tries to maximize the log-likelihood (upper curve) with respect to the model
parameters. In the E step, we compute a lower bound (lower curve) and maximize it, which is guaranteed
to improve (but not maximize) the log-likelihood.

E step Hold the parameters constant and optimize the Qi . Above, we showed using Jensen’s inequality
that F is less than or equal to logL. How much less?

logL−F =
∑

i
logP (di )−

∑

i

∑

k
Qi (k) log

P (k,di )
Qi (k)

(3.8)

=
∑

i

∑

k
Qi (k)

(
logP (di )− log

P (k,di )
Qi (k)

)
(3.9)

=
∑

i

∑

k
Qi (k) log

Qi (k)
P (k | di )

, (3.10)

which is known as the Kullback-Leibler divergence of P (k | di ) from Qi (k), a measure of distance between
two distributions. It is always nonnegative and is zero if and only if the two distributions are equal. So
we set

Qi (k) = P (k | di ), (3.11)

which makes F = logL. So F is not only a lower bound of L, but it now touches L at the current parameter
values (see Figure 3.2). This means that if we can adjust the parameters to improve F , we are guaranteed
to improve L also.

CSE 40/60657: Natural Language Processing January 30, 2015



Chapter 3. Text Clustering 25

M step Hold the Qi constant and optimize the parameters. We can rewrite the lower bound (3.7) as

F =
∑

i

∑

k
Qi (k) log

P (k,di )
Qi (k)

(3.12)

=
∑

i

∑

k
Qi (k) logP (k,di )−

∑

i

∑

k
Qi (k) logQi (k) (3.13)

=
∑

i

∑

k
Qi (k) logP (k,di )+

∑

i
H [Qi (k)]. (3.14)

The first term is just the likelihood of the observed data as though, for each document di , we had ob-
served di with class k, Qi (k) times. (The second term is the entropy of the Qi , and doesn’t concern us
here except that it’s independent of the parameters.) So we do maximum likelihood estimation using the
Qi (k) to hallucinate the classes. That is, just count and divide. As argued above, if we can improve F ,
then we will improve the likelihood L as well. Further work would be needed to show that if F is already
at a local maximum, then L is also at a local maximum.

References

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum likelihood from incomplete data via the
EM algorithm”. In: Journal of the Royal Statistical Society, Series B 39.1, pp. 1–38.

CSE 40/60657: Natural Language Processing January 30, 2015


