Chapter 4

Topic Modeling

4.1 Introduction

Counting words can be a pretty good way of quantifying what a document is about, but not perfect. Suppose that we are trying to categorize documents into different genres. If a document contains the word "laser" or "robot" or other similar words, that is a pretty good sign that it's an engineering article or a science-fiction story. Suppose further that many of these technology-related words just occur one time – say, "photon" occurs only in an engineering article and "ramjet" appears only in a science-fiction story. That wouldn't be very good evidence that documents mentioning "photon" are engineering and documents mentioning "ramjet" are science-fiction. It would be more reasonable for a model to learn that these are all technology-related words, and that technology-related words are indicative of both engineering and science fiction. That is, all these words belong to the *topic* of technology, and both engineering and science fiction use words in the technology topic. How might we learn such topics automatically? It turns out that these topics aren't all that helpful for classification; nevertheless, topics are interesting in their own right.

4.2 Naïve Bayes with topics

Let's modify the NBC as follows:

$$P(d) = p(k) \prod_{w \in d} \sum_{t} p(t \mid k) p(w \mid t).$$
(4.1)

What's new is the introduction of the variable t (topic), which is drawn from a finite set of predetermined size. We are given training data consisting of documents d_i and classes k_i , but we are not given the topics of the words in the d_i . The topics are hidden variables.

Notice the similarities and differences between this model and the unsupervised naïve Bayes classifier. In both cases, there is something observed and something hidden. But in the unsupervised case, the hidden variable generates the observed variable, whereas in this new model, the hidden variable is both generated by an observed variable and also generates an observed variable. Generally speaking, this kind of approach is a lot more effective in practice.

4.2.1 Training

The class distribution p(k) is estimated by counting and dividing:

$$p(k) = \frac{c(k)}{\sum_k c(k)}.$$
(4.2)

The rest of the model is trained using EM. In the E step, we compute, for each document d_i and word $w \in d_i$,

$$P(t \mid k_i, w) = \frac{p(t \mid k_i)p(w \mid t)}{\sum_{t'} p(t' \mid k_i)p(w \mid t')}.$$
(4.3)

Then, for each topic t,

$$E[c(k_i, t)] \leftarrow E[c(k_i, t)] + P(t \mid k_i, w)$$

$$(4.4)$$

$$E[c(t,w)] \leftarrow E[c(t,w)] + P(t \mid k_i, w).$$

$$(4.5)$$

The M step is just count and divide as usual:

$$p(t \mid k) = \frac{E[c(k, t)]}{\sum_{t'} E[c(k, t')]} = E[c(k, t)]$$
(4.6)

$$p(w \mid t) = \frac{E[c(t, w)]}{\sum_{t'} E[c(t', w)]}.$$
(4.7)

4.2.2 Experiment

We ran this model on the blog dataset, using 2 topics, 100 iterations, and $add-10^{-6}$ smoothing (add-1 didn't work at all), and got an accuracy of 61.6%, which is no improvement over the original model (65.1%).

But what is more interesting is the topics learned by the model.

t	$P(t \mid m)$	$P(t \mid f)$	words
0	0.04	0.05	write ever together friends days recently took
1	0.03	0.06	sweet sugar wonderful loved dog n child
2	0.04	0.06	weekend wait favorite can't women pretty took
3	0.01	0.09	amelia prints lunch lovely en wedding raw
4	0.10	0.00	gay java users vacuum copyright eu lardo
5	0.06	0.03	war companies version engine box form number
6	0.00	0.14	sudan darfur vous slaw etsy dans deedee
7	0.00	0.12	une darfur garlic deedee etsy harriet sudan
8	0.05	0.04	seems ice power paper front thanks later
9	0.12	0.00	topps não linecook avrdude drillard liverpool ironpython
10	0.05	0.04	topics ways thats they've computer they're slowly
11	0.06	0.03	clear trend low question added themselves easily
12	0.05	0.04	quickly cut 2008 enough level care story
13	0.05	0.04	play search each sounds which goal include
14	0.13	0.00	drillard python ironpython topps wifi google's balloons
15	0.05	0.04	statement below less technical starting wrong these
16	0.03	0.07	herself sun dog coffee kids images tea
17	0.04	0.05	exhausted home until girl me positive house
18	0.07	0.02	stage film reference states system telephone google
19	0.00	0.10	le sauce du ladies à lunch et

Some of the topics are fairly coherent, and you can see that some topics are heavily favored by male bloggers and some topics are favored by female bloggers. In the next section, we'll leave text classification behind and focus our attention on discovering topics.

4.3 Probabilistic LSA

We can think of a document represented as a bag of words as a vector, where each component of the vector is a different word type. In many applications, this vector representation is useful in its own right. For example, we can compute the similarity between two documents using the cosine of the angle between the two document vectors.

As argued above, however, words might be too fine-grained a way of quantifying what a document is about. So what if we use vectors where each component of the vector is a different *topic*? This is the idea behind *probabilistic latent semantic analysis* (PLSA) or *probabilistic latent semantic indexing* (PLSI) (Hofmann, 1999). The only difference between PLSA and the NBC with topics is that in PLSA, every document is in its own class. Then, the probabilities $p(t | k_i)$ can be thought of as a vector representation of document d_i .

Training PLSA is identical to above. But after training a PLSA model, there isn't any inference step. The end product of PLSA training is the parameters themselves. We ran PLSA (20 topics, 100 iterations, $add-10^{-6}$ smoothing). We used the same half-baked formula as before to find the most interesting words in each topic, and they were:

class	words		
0	deedee kohl eric fatty adhd earthquake spud peppa beetner jeans		
1	woke tomorrow mom bed snow birthday ride went sleep randa		
2	garden seed gardening gardeners lambing burpee seeds sheep jacob katahdin		
3	slaw não é uma para reservation um o nsobject ser		
4	mangalitsa quiz nutrition lardo kotak skin vegan wax band's organizational		
5	balloons baking rice butter flour sugar psi tiramisu cream		
6	drillard kombu reform republicans democrats congress sen obama directx mona		
7	les linecook le une dans à vous et pas		
8	divorce weight charter overweight bimal haw exercises webkit dating muscles		
9	darfur sudan sudanese rebels khartoum jungle al-nur rebel marra barrel		
10	printmaking prints ds yourself stable jailbird teaching sasha math forgive		
11	liverpool dreamer conversations benitez gage arc reds horror arsenal liverpool's		
12	harriet { } geographers amelia font-size plone zope jsf hvar		
13	# avrdude avr reddit pololu vikki orangutan hex kindle avr-gcc		
14	arruda habenula ponzi brasilia heap dsn tile gems hop dominion		
15	ironpython mobile microsoft lumber user marketing developers web users applications		
16	baseball topps tournament mcgriff sticker fred knitting sox stickers dodgers		
17	sous-vide choir low-temperature choral low-temp temperature mp3 albums album pokey		
18	n ur ~ abt ll tat wat coz jus gal		
19	israel hudson hezbollah borscht iran enrichment git github rake integrity		

Some topics pick up foreign words, as we saw before with unsupervised naïve Bayes (3: Portuguese; 7: French; 18: SMS English), and some topics are fairly specific subjects (2: gardening; 5: baking; 6: American politics; 9: Sudan; 11: soccer; 15: programming; 16: baseball; 17: cooking and music; 19: Middle East politics and programming). Maybe you can see some others.

4.4 Optional: Latent Dirichlet Allocation

No one uses PLSA anymore. *Latent Dirichlet Allocation* (Blei, Ng, and Jordan, 2003) is a further development of PLSA that is by far the most widely known and used topic model. LDA is quite math-heavy and we don't give a full description here, but just a little bit of the basic idea.

In Section 1.3.2, we introduced the notion of a *prior* distribution:

$$\underbrace{P(\theta \mid \text{data})}_{\text{posterior}} = \underbrace{\frac{P(\theta) P(\text{data} \mid \theta)}{P(\text{data})}}_{\text{evidence}},$$
(4.8)

and we just assumed that the prior was uniform. But we can choose other distributions too. The easiest choice of prior, other than uniform, is the (symmetric) *Dirichlet distribution*:

$$\operatorname{Dir}(\theta; \alpha) \propto \prod_{i} \theta_{i}^{\alpha-1}.$$
 (4.9)

The parameter α is called the *concentration*.

Now we have a number of options. First, we can try to find the best model (θ) just like before. Since we are now taking the prior into account, we're not doing maximum likelihood estimation anymore; we're

doing *maximum a posteriori (MAP) estimation*. It's not too hard to see that the resulting estimate is exactly what the MLE estimate would have been if there were pseudocounts of $(\alpha - 1)$ for each outcome. In other words, MAP estimation with a Dirichlet prior with concentration α is equivalent to MLE estimation with add- $(\alpha - 1)$ smoothing.

But another way of thinking about it is, if we're only interested in the topics, and not θ , then we shouldn't try to estimate θ . Instead, we should integrate over all possible values of θ :

$$P(\text{topics} | \text{data}) = \frac{P(\text{topics}, \text{data})}{P(\text{data})}$$
(4.10)

$$= \frac{\int P(\text{topics}, \text{data}, \theta) \, d\theta}{\int P(\text{data}, \theta) \, d\theta}$$
(4.11)

That looks bad, and in all but the simplest cases, it is bad, but that doesn't stop people from trying to do it anyway.

Asuncion et al. (2009) provide a good overview and comparison of both PLSA and LDA. The LDA model looks like this:

$$P(\text{data} \mid \alpha, \beta) = \underbrace{\prod_{t} P(\phi_t \mid \beta) \prod_{i} P(\theta_i \mid \alpha)}_{\text{prior}} \underbrace{\prod_{w \in d_i} \sum_{t} p(t \mid i, \theta) p(w \mid t, \phi)}_{\text{likelihood}}.$$
(4.12)

The part labeled "likelihood" is more or less the same as PLSA. The part labeled "prior" has two parts; $P(\phi_t | \beta)$ is a Dirichlet prior on the word distributions p(w | t), and $P(\theta_i | \alpha)$ is a Dirichlet prior on the topic distributions p(t | i).

From here, we can use one of several different approximation methods to proceed. One of these (Variational Bayes or mean-field approximation) is operationally quite similar to EM. For further information, see the references listed below.

References

Asuncion, Arthur et al. (2009). "On Smoothing and Inference for Topic Models". In: *Proc. UAI*, pp. 27–34.
Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). "Latent Dirichlet Allocation". In: *J. Machine Learning Research* 3, pp. 993–1022.

Hofmann, Thomas (1999). "Probabilistic Latent Semantic Analysis". In: Uncertainty in Artificial Intelligence (UAI), pp. 289–296.