
Chapter 9

Linear Regression

9.1 Introduction

In this class, we have looked at a variety of di↵erent models and learning
methods, such as finite state machines, sequence models, and classification
methods. However, in all of the cases that we have looked at so far, the
unobserved variables we have been trying to predict have been finite and
discrete. When we looked at Naive Bayes, we tried to predict if something
was in a positive or a negative class. When we looked at Hidden Markov
Models and Conditional Random Fields, we tried to figure out the part-of-
speech tags of individual words. These methods have been attempting to
predict which class a particular latent variable belongs to. For Naive Bayes,
we motivated out problem with a decision between two classes. Though that
number is arbitrary and you could easily add a third class called neutral, or
have a problem that naturally has dozens of classes. For our part-of-speech
sequence tagging in English, we often choose from a set of 36 tags. The
common thread is that in all of these methods, we are trying to choose a set
number of classes.

We now move on to look at what happens when we care about predicting
a value that is not from a discrete set of possibilities, but rather, is contin-
uous. For instance, if we are given an essay written in English, rather than
predicting a letter grade, could we instead predict the percent score? Or,
given a movie review, could we predict the average number of stars users
rate it, rather than just saying if the review is positive or negative?

1

2 CHAPTER 9. LINEAR REGRESSION

9.2 Linear Regression

Linear regression is a powerful tool used for predicting continuous vari-
able outputs. In general, to predict an output that is continuous, the goal is
to find a function that transforms an input into an output. Linear regression
is simply the method that finds a solution to this problem by finding a linear
function.

Generally, given an input x, we are trying to find a function, f(x), that
predicts an output y. This is the same way to formulate many of the learning
methods that we have discussed in this class. We would like to find f(x) =
y for some observed data x that predicts unknown data y. In methods
discussed previously, like Naive Bayes, y is often a class, such as 0 or 1, and
cannot take any other values. For linear regression, we still would like to
find a function, but now y can take on a range of values.

9.2.1 Supervised Learning

The majority of the models that we have discussed in this class are
supervised, and linear regression is no di↵erent. Supervised learning models
are simply methods that are trained using a data set where the values we
are trying to predict (y) are known. After training on data where the values
are known, the model tries to predict values for data that is unknown. In
the classification tasks we have looked at (Naive Bayes, Logistic Regression,
the Perceptron, and Topic Modeling) all of them are Supervised Learning
methods except for Topic Modeling. In your homework, you have always
been given supervised learning problems where the data contains a training
file. You then report your predicted output compared to the the gold-
standard labels in your testing file. Linear Regression is no di↵erent. Again,
it is a method for predicting unseen values on a test set, having been given
known values in a training set. The di↵erence is that the output values are
continuous are our learned function is linear.

9.3 Linear Models

Formally, we define Linear Regression as predicting a value ŷ 2 R from
m di↵erent features x 2 Rm. We would like to learn a function, f(x) = y

that is in a linear form. Specifically, we are interested in finding:

ŷ = �0 + x

|�

9.3. LINEAR MODELS 3

Given training n training examples hxi, yii for 1 i n, where each x

has m features, our goal is to estimate the parameters h�0,�i.

9.3.1 Parameter Estimation

The goal in linear regression is to find a line that generalizes our data
well. In other words, we would like to find h�0,�i that minimize the error
in our training set. We do this by minimizing the sum of the squared errors:

ˆ✓ = arg
✓=

min
h�0,�i

1

2n

nX

i=1

(yi � (�0 + xi
|�))2

The intuition here is that we would like to minimize the di↵erence be-
tween yi and the value predicted by �0+xi

|�. In other words, xi is linearly
transformed by � and �0 to give a predicted value for yi. Across all n train-
ing examples, we want the sum of the di↵erence between our predicted and
actual values to be at a minimum.

We need to estimate the values of our �. To do this, we take the cost
function we just defined and apply the gradient descent algorithm to our
problem. This requires taking a partial derivative with respect to each of
our m number of �’s. After some algebraic manipulation we are left with the
LMS or Least Mean Squares update rule. For more information on gradient
descent and deriving the update rules, the text book “Pattern Recognition
and Machine Learning” has some nice explanations beyond the scope of this
lecture (Bishop 2009).

4 CHAPTER 9. LINEAR REGRESSION

9.3.2 Features

In our definition, we said that we would like to find y given m features.
We must define a set number of features and the assumption in linear re-
gression is that they are independent. Linear regression then finds a linear
combination of these features that best predicts our training data. We have
defined our general function to be:

ŷ = �0 + x

|�

For the case where m = 1, or in other words, we only have one feature,
our function is merely:

ŷ = �0 + x1�1

This is simply the function for a line y = mx + b where m = �1 and
b = �0. Simply put we are mapping a single dimensional input to another
dimension (x to y). We defined x 2 Rm and for the case where m = 1, we
are simply defining x to take a real value.

For the slightly more di�cult case where m = 2, we are now mapping
values from a 2-dimensional space into another dimension. In other words,
with 2 features for each data point, our function reduces to:

ŷ = �0 + x1�1 + x2�2

This is also a line (hence the term linear regression). However, this is now
in 3-dimensional space. In general, we are mapping from an m-dimensional
space to a single dimensional, continuous value space.

NLP Features

In some form or another, many of you will be familiar with linear re-
gression, even if that is from a high school science class where you fit a line
to some data points in an experiment. However, most of you will be famil-
iar with this problem from an application di↵erent from Natural Language
Processing, particularly one where your x values are real numbers, in a con-
tinuous space themselves. To make use of linear regression in NLP, we must
also make sure that our values are real numbers. That is why we defined
x 2 Rm.

Mapping our features to real values is actually not a di�cult problem,
and many features we are interested in are already real numbers. For in-
stance, getting computers to automatically grade essays is a topic of in-
creasing interest, especially for standardized tests. We may hypothesize

9.3. LINEAR MODELS 5

(correctly) that the length of the essay is a good predictor for the score it
receives. Counting the number of words in an essay gives us a real number
that we can use as a feature. Additionally, we may consider average word
length to be an adequate proxy for vocabulary size - or even just use the
number of unique words in the essay. Again, these are already real valued
variables.

However, we may also care about other features that are not inherently
numbers, for instance part-of-speech tags or certain words. In this case, we
can simply give a value of 1 for a specific part-of-speech tag and 0 for all other
possible tags. Or you could use the probabilistic output of a part-of-speech
tagger and have values between 0 and 1 for all of the tags. Regardless,
the only thing that matters is that all of our features are defined as real
numbers.

Interpretation of Feature Weights

How do we interpret the impact that our features have on our model? For
instance, let’s revisit the essay scoring task where we have decided to choose
2 features and let’s say they are essay length (word count) and number of
spelling mistakes (count of words not in a dictionary). Remember that our
function is:

ŷ = �0 + x1�1 + x2�2

Here, x1 will be essay length and x2 will be spelling mistakes (or vice-
versa). After we have fit a model, we will have values for �0, �1, and �2. �0
is simply an o↵set term. This is to ensure that our y values are in the correct
range. �1 tells us how important the x1 feature is. In this example, let’s
assume that essays are scored from 1-5. If �1 is positive, it means that we
are adding to our score. Each additional word in an essay will add �1 more
to our score. Let’s assume that misspellings hurt your score. Thus, �2 will
be negative. Each additional misspelled word would detract from your score.
You can think of the predicted score, y, as being a linear combination of an
o↵set (to make sure we are getting a score near the range we want), extra
weight for additional word in an essay, and a penalty for each additional
misspelled word.

Classification

Some of you may have noticed that there are no bounds on the line
equation we have defined. So, when we talk about scoring an essay from 1-5

6 CHAPTER 9. LINEAR REGRESSION

or a movie review from 0-10, we could possibly get values that are negative
or even above our range. That is just an issue we need to be aware of.
As a simple post-processing step we can clip the value using min and max
functions to make sure we stay in the appropriate ranges. However, in
general, if our training data is representative of our testing data, it should
only be an issue for a very small number of cases.

Along these lines, even though linear regression predicts a real valued
output, we can still use it in some classification tasks. If there is any or-
dinality among the classes, we can use linear regression and then map the
output to a class. For instance, let’s say that we have training essays that
are given grades of A, B, C, and D. We can define A to be scores of 90-100,
B as 80-89, C as 70-79, and D as 60-69. We then take our training data and
take the midpoints of these ranges, so any A essay would be 95. Assuming
our data is distributed rather evenly, or that grades average to the mid-
dle of the range (the teacher thought the work was A material on average
for A grades, not that all A’s were just borderline B’s), we can use this as
our training data. We have mapped classes (grades) into numerical scores.
We can then use linear regression to predict values for testing data, with a
simple post-processing step of mapping the numerical score back to a grade
letter. In general, you can do this with any sort of data that is ordinal,
regardless of if it is a classification task, and depending on your problem, it
may actually yield better results than some classification methods.

9.4 Overfitting

In general, when we are trying to learn models, we need to worry about
overfitting in our data. Recall that overfitting is when we make our model fit
our training data so perfectly that it does not generalize well to our testing
data. Most real world data sets are noisy. If our trained model fits the
data too well, we have modeled our parameters as if there was no noise,
so that our model will not fit our testing data as well. There are multiple
di↵erent ways to deal with the overfitting problem and regularization is one
very common method of doing so.

When learning a model from data, we always have to be careful about
overfitting, but the problem is particularly prevalent in Natural Language
Processing. We have formally defined this problem such that we have m dif-
ferent features for our x values. If m gets too large relative to the n training
examples we have, we will necessarily overfit our data as each parameter we
learn for x will tend towards fitting just one of our n examples perfectly.

9.4. OVERFITTING 7

So, we should make sure to always choose m << n.
The reason the potential to overfit is so prevalent in Natural Language

Processing is due to how we often choose features. For instance, in many of
the methods that we have looked at so far, we choose a vocabulary size and
treat each word as an independent feature. It is not uncommon to have tens
of thousands of unique words in even a modest sized training corpus. If we
assign each word a unique feature, our features (m) can easily outgrow the
number of training examples (n). Regardless of any other ways we try to
prevent overfitting, such as regularization, we must be aware of our feature
set size and choose an appropriate feature set initially.

9.4.1 Regularization

We have talked about regularization earlier in this class when we dis-
cussed Logistic Regression. Regularization attempts to prevent overfitting
our training data, when learning a model, by adding an additional penalty
term to our objective function. This added term acts orthogonally to the
first term in our objective function which is modeled on the data. There are
whole classes of regularizers, but in general, they aim to impose penalties on
our parameters. Often these have the goal of driving as many of our param-
eters to 0 (or as close to it as possible) without degrading our performance
on our training data.

To implement regularization, when defining our objective function for
parameter estimation, we include a regularization term. Generally, we give
it a weight � which is either given (often through trial and error) or tuned,

8 CHAPTER 9. LINEAR REGRESSION

often with a held out set of data or cross validation. We choose a regulariza-
tion term based on some desired properties. l2 regularization is one of the
most commonly used regularization methods. l1 is also frequently chosen as
a regularizer due to its property of driving many of the parameters to 0.

l2 Regularization

l2 regularization is simply the Euclidean distance between the origin to
a point in our m dimensional space. The value of each of our parameters
is squared, summed together, and finally the square root is taken. This
can easily be interpreted as the distance metric commonly taught in grade
school. Here’s our objective function modified with the addition of an l2

regularizer.

ˆ✓ = arg
✓=

min
h�0,�i

1

2n

nX

i=1

(yi � (�0 + xi
|�))2 +

�

2

vuut
mX

j=1

�

2
j

l1 Regularization

l1 regularization is the Taxicab or Manhattan distance. It is the distance
if you can only move along a single axis at a time. Think of it as a taxi
in Manhattan that must drive down an avenue and then down a street
rather than going diagonal through a block. This regularizer has the nice
property of making many of our parameters go to 0. In linear regression,
we have made the assumption that our features are independent. One of
the intuitions behind l1 regularization is that if two features are actually
dependent, one of them will be driven to zero. Again, here is our updated
objective function with l1 regularization.

ˆ✓ = arg
✓=

min
h�0,�i

1

2n

nX

i=1

(yi � (�0 + xi
|�))2 + �

mX

j=1

|�j |

References

Bishop, Christopher M. (2009). “Pattern Recognition and Machine
Learning” 8th edition. Springer Publishing.

	Linear Regression
	Introduction
	Linear Regression
	Supervised Learning

	Linear Models
	Parameter Estimation
	Features

	Overfitting
	Regularization

