Chapter 2

Text Classification

2.1 The Bag of Words

We normally view text as a sequence of words, or we can impose additional structure on it like syntax. Or,
we can dissolve some structure, namely, the order of the words. This gives a bag of words, which simply
counts how many times each word occurs in a sentence (or document).

the cat sat on the mat — {cat, mat, on, sat, the, the}

Why? First, this representation is computationally extremely easy to work with. Second, this represen-
tation melts a text down into bits of meaning and serves as a crude way of capturing what the text is
“about.” Crude, but often effective.

Tokenization We assume that all the sentences/documents have been tokenized so that the word bound-
aries are unambiguous. A commonly used English tokenizer is part of Stanford CoreNLP! and LDC has a
simple rule-based tokenizer.? Both are implemented/wrapped in Python by NLTK.?

Stemming It is also common in bag-of-word approaches to do morphological stemming, that is, re-
moving affixes like -ed, -ing, etc. A classic stemmer for English is the Porter stemmer,* and another is the
Lancaster (Paice/Husk) stemmer.> Both are implemented/wrapped in Python by NLTK.®

Stop Words Finally, it’s also common to remove high-frequency but low-content words, like (Manning,
Raghavan, and Schiitze, 2008, p. 26):

a an and are as at be by for from has he in
is itits of on that the to was were will with

Ihttp://nlp.stanford.edu/software/corenlp. shtml
2http://www.cis.upenn.edu/~treebank/tokenizer.sed
Shttp://www.nltk.org/api/nltk.tokenize.html
“http://tartarus.org/martin/PorterStemmer/
Shttp://www.comp.lancs.ac.uk/computing/research/stemming/index.htm
Shttp://www.nltk.org/api/nltk.stem.html

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 10

2.2 C(lassification Problem

Suppose we have a collection of documents in different classes, and we want to learn to classify new
documents. For example:

* We have a collection of e-mails that are labeled either as “spam” or “ham” and we want to learn to
classify new e-mails.

* We have some texts whose author is known (e.g., Alexander Hamilton, James Madison, and John
Jay) and want to classify anonymous texts (the Federalist Papers).

* We have a database of product reviews together with star ratings, and we want to be able to predict
star ratings based on reviews alone.

* We have samples of (transcribed) speech from children diagnosed as autistic or not autistic, and
we want to automatically diagnose other children using their speech.

* We have tweets that are known to be in various languages and want to automatically identify the
language of new tweets.

Question 1. What are some other possible applications?

We'll continue working with the example of spam filtering, but just remember that this is only one of
many possible applications. This is a fairly easy problem, but occasionally difficult even for humans. For
example:

From: fas@nsf.gov
Subject: Payment
To: chiang@isi.edu

DFM has approved your requested payment and has asked the U.S. Treasury to
issue a payment to you within the next 4 working days. This payment is
being sent directly to the Bank or Financial Institution identified by
you for this purpose. If you are an NSF employee, this payment is being
sent directly to the bank/financial institution where your bi-weekly pay
is being deposited.

This payment for 560.00 is 1099 reportable if it totals $600 or more
for the year (i.e. You will receive an IRS 1099-Misc form from
NSF)P131318.

Head, Accounts Payable Section.

More formally, we are given documents d;,...,d, together with their correct classes ki,...,k,. We
want to learn a model P(k | d), where k is a class and d is a document, and given a new document d, we
want to be able to find, with high accuracy,

k* =argmaxP(k| d). 2.1
k

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 11

2.3 Naive Bayes

Question 2. What problem would you run into if you used the model

c(k,d) .

P(k|d) = o

What might you do to repair the model?

This route turns out to be difficult (though we will return to it later when we do logistic regression).
Instead of thinking about how to classify a document, let’s think about how the document came to be.
First, someone decided to write an e-mail; he was either a spammer or a “hammer.” Then, this person
authored a document. More formally:

argmaxP (k| d) =argmaxP(d)P(k|d) (2.2)
k k
=arg maxP(k,d) 2.3
k
=argmaxP(k)P(d | k). (2.4)
k

The advantage of thinking about it this way is that it is much easier to write down a model for P(d | k)
than for P(k | d).

2.3.1 Model

We'll consider just the simplest, which is called a naive Bayes classifier and looks like this:

P(k,d)=pk) [] pw! k), (2.5)

wed

where the p(k) and p(w | k) are the parameters of the model. (Let’s adopt the convention that P(something)
and p(something) both denote the probability of something, but P(something) might be defined in terms
of other probabilities, whereas p(something) is a parameter of the model that needs to be estimated.)

Naive Bayes is called naive because it naively assumes that all the words in a document are indepen-
dent of each other. All it captures is that spammers are more likely to use certain words and hammers are
more likely to use certain words.

It is possible to count other things besides words. For example, if we're trying to classify a document
as English or French, then the presence of an € is a pretty good sign that it’s in French. So character
probabilities like p(é | k) might be useful in addition to word probabilities. Or, if we're trying to predict
the positivity or negativity of a product review, then the occurrence of the word bad might be good sign
of a negative review, unless it is immediately preceded by the word not. So probabilities of bigrams like
p(not bad | k) are important. Note that if we do this, however, the distribution P(k, d) no longer sums to
one, because there’s no such thing as a document that contains the words {dog} but the characters {c, a, t}.
So, if we only sum over feasible documents d, then P(k, d) sums to less than one, that is, it is deficient,
which is in general not considered a good thing. This is even more naive, but might work okay in practice.

Question 3. What are some other features that might be helpful?

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 12

2.3.2 Training

Training the model, or estimating the parameters p(k) and p(w | k), is easy. It’s just:

c(k)
k) =
P Yrck) 26
c(k, w) (2.6)
pwlk)= —Zw' e’

This is known as relative frequency estimation (or “count and divide”). It’s so intuitive that it may seem
odd to give it a name, but it’s worth dwelling a bit on why we estimate probabilities this way.

Consider just p(k). Suppose we have just two theories, or models, about how prevalent spam is.
Model 1, or m;, says that 10% of e-mails are spam, whereas Model 2, or m,, says that 90% of e-mails are
spam.

p(spam | my) = 35 p(spam | my) = 5
pham | my) = {5 pham | m;) = 15

Before looking at the data, suppose that we think these two models are equally valid.
pmy) =% p(mz) =%

Then, suppose we look at some data and see that, out of 10 e-mails, 7 are spam and 3 are ham. Now we
want to know which model is better, 717 or my?

p(my)P(data| my) p(my) P(data | my)

P data) = P data) =
(m | data) P(data) (m2 | data) P(data)
7 3 7 3
_3(5) (5%) _ 100 (%)
P(data) P(data)
B 93 ~ 97
" 2-1019. p(data) " 2-1010. p(data)

Since P(m; | data) is bigger, we can conclude that m; is the better model.
Now suppose that we compare not two models, but an infinite number of models,

P(spam|0) =6
Ptham|0)=1-0

for all 8 € [0, 1]. The same reasoning still holds: we want to find the model that maximizes

prior likelihood
P(0) P(data| 6)

P(@|data) = ———. (2.7)
N——— P(data)
posterior ——
evidence

Note that the denominator is independent of 8, and if we assume that the prior P(6) is uniform, then the
only factor that matters is the likelihood. We therefore call this maximum likelihood estimation.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 13

Going back to the full naive Bayes model: we want to maximize the likelihood, which is

L=T]P(k;dy) (2.8)
=[1pt) [] pw! k). 2.9)
i wEd,‘

And this maximization problem has a closed-form solution, namely (2.6). See Section 2.3.6 for more
details on how to derive that.

2.3.3 Classification

Once we've trained the model, finding the most probable class of a new document is also easy:

k* =argmaxP(k| d) (2.10)
k
=argmaxP(k,d) (2.11)
k
=argmaxp(k) [p(w|k). (2.12)
k wed

2.3.4 Smoothing

What happens if we encounter a word we’'ve never seen before? Then we would have p(w | k) = 0, and
therefore P(k,d) = 0, for all k. The presence of a single unknown word zeros out the whole document
probability and makes it impossible to choose a class.

The standard solution is smoothing. We'll talk about the simplest smoothing method now, and more
advanced smoothing methods later (when we talk about language models). In add-one smoothing, in-
vented by Laplace in the 18th century, we add one to the count of every event, including unseen events.
Thus we would estimate p(w | k) as:

p(wlk):M (2.13)
Y clk,w)+|V|
where |V| is the size of the vocabulary, including unseen words. But what if we don’t know how many
unseen words there are? A typical (though not entirely correct) thing to do is to set | V]| to the number of
seen word types, plus one for a generic unseen word.
We can also add any value 6 > 0 to the counts instead of one:

clk,w)+6d
Ywclk,w)+|VI§

pw| k)= (2.14)
The increment that we add (whether 1 or §) is known as a pseudocount. Typically, § would be set by trial
and error. If you have a good reason to, you can also add a different pseudocount to different word types.

These methods are not hacks; they can all be thought of as different choices of the prior probability
that we saw in Equation (2.7).

Question 4. If our training data is:

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 14

ham spam spam
please pass on to we deliver to please update
your groups your door within your account
24 hours details with
citibank

and we train with add-one smoothing, what are P(spam | d) and P(ham | d) for the document below?

please forward to
your groups

2.3.5 Experiment

Let’s tackle a more difficult classification task than spam filtering: Given a blog post, can you predict
whether the author is male or female? A dataset is provided by Mukherjee and Liu (2010), consisting of
3227 posts.”

We split the data into two parts, training and test data. We train the model on the training data,
then test the model on the test data by classifying the documents and measuring the percent accuracy.
We could have also set aside a third part, called development data, as a proxy for the test data while we
are fiddling with the model. This way, we don't artificially inflate our score on the test data by lucky
modifications. Here, we used 80% for training data and 20% for testing. Here’s the first male-authored
blog post:

long time no see . like always i was rewriting it from scratch a couple of times

but nevertheless it’s still java and now it uses metropolis sampling to help that

poor path tracing converge . btw . i did mlt on yesterday evening after 2 beers

(it had to be ballmer peak8) . altough the implementation is still very fresh it
easily outperforms standard path tracing , what is to be seen especially when difficult
caustics are involved . i’ve implemented spectral rendering too , it was very easy
actually , cause all computations on wavelengths are linear just like rgb . but then

i realised that even if it does feel more physically correct to do so , whats the

point ? 3d applications are operating in rgb color space , and because i cant represent
a rgb color as spectrum interchangeably i have to approximate it , so as long as i’m
not running a physical simulation or something i don’t see the benefits (please correct
me if i’m wrong) , thus i abandoned that

And the first female-authored blog post:

liam is nothing like natalie . natalie never went through draws or cabinets . she

was always so good . 1liam is a bit more adventurous . and he always picks the cabinets
that are the hardest to put back together . hubby just started nutrisystem and he

has his own little section of the kitchen . well , liam doesn’t like the order of

it all and trashes my set up at least 10 times a day . yes , i1 need to buy one of

those locks for the doors . we have one for the chemicals . but none on the food .

my mistake for sure ! in the meantime , i better document it because before i know

it this boy will be in college and i will be missing cleaning up after him . yeah .
that’s not me . but i still decided that i wanted to start doing yoga . 1i’ve been
thinking about it for quite some time . so , this weekend i bought a pair of work

"http://wuw.cs.uic.edu/~1iub/FBS/sentiment-analysis.html
8http://xked. com/323/

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 15

Figure 2.1: Relative frequency estimation. (a) We need to maximize the likelihood subject to the sum-to-
one constraint (red line). (b) There is a value of A that makes the Lagrangian have a maximum that does
satisfy the sum-to-one constraint (red line).

out shorts and a tank and off i went . the only class that was close to me was birkham
yoga , the hot one . the 100 degree sweaty room one . i . almost . died . the

yoga itself was wonderful . i will continue that for sure . but the heat of that

room was unbearable . the best part is , the teacher specifically came up to me and
said ,

When we train the naive Bayes classifier on the training data (with add-one smoothing) and test it
on the test data, we get an accuracy of 65.1%. Note that we could have gotten 50% accuracy simply by
guessing randomly. So our performance is better than random, but not all that much better.

What happens if we count both words and bigrams (pairs of consecutive words)? When counting
bigrams, we add a fake word <s> at the beginning and a fake word </s> at the end. This gives an accuracy
0f66.5%.

2.3.6 Optional: Deriving relative frequency estimation

Here’s how to derive the relative frequency estimate, taking p(k) as an example. We want to maximize the
likelihood L, or, equivalently, the log-likelihood

logL =) c(k)logp(k) (2.15)
k
subject to the constraint
Y plk)=1. (2.16)
k

We can't just set the partial derivatives to zero because, although the surface defined by log L will be flat at
its maximum along the line defined by (2.16), it will in general be sloped in the direction perpendicular to

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 16

the line (see Figure 2.1). So we create a new function %, called the Lagrangian, that can level the surface
out:

f:Zc(k)logp(k)—A(Zp(k)—1). (2.17)
k k
This is our original objective function plus a new term. This term is zero along the line defined by (2.16),
and sloped in the direction perpendicular to the line, with a slope determined by the Lagrange multi-
plier, A. At the maximum we are seeking, there is some value of 1 that makes all the partial derivatives
with respect to the parameters p(k) zero.

The partial derivatives of £ are:

A c(k)

== _, 2.18
op(k) p(k) (219
0L
T (; p(k) - 1). (2.19)

Note that the partial derivative with respect to A is zero just in case the constraint (2.16) is satisfied. So
the maximum we are seeking is the point where all the partial derivatives are zero. If we set them to zero
and solve for the p(k), we get:

c(k)
k) = .
PR =5

Further work (!) would be needed to verify that this is in fact the global maximum.

(2.20)

2.4 Logistic regression

If you were a naive Bayes classifier, training would be like reading a bunch of texts belonging to different
classes, and testing would be like reading a new text and asking yourself how plausible this text would
be as an example of each of the classes. Now we're going to look at discriminative classifiers; if you were
a discriminative classifier, training would be like reading a bunch of texts, guessing the classes of all of
them, and then being told if you were right or wrong.

Above, we said that it would be harder to define a model for P(k | d) — called a discriminative model
as opposed to generative. It’s harder, but by no means impossible. The advantage is that discrimina-
tive models are more closely matched to the task. Ultimately, we want to predict the best class given a
document (P(k | d)). Generative models learn more than this; they learn P(k, d), which means that they
also try to learn which documents are more likely than others. In particular, they may get confused be-
cause they think that the features (words) of a document are independent, when in truth they are very
interdependent. But discriminative models, because they don't care which documents are more likely
than others, might do better. Ng and Jordan (2002) carry out a thorough theoretical and experimental
comparison of a naive Bayes classifier with its discriminative counterpart.

2.4.1 Definition

The discriminative version of the naive Bayes classifier is called logistic regression:

P(k|d)=

1
7@ P (Mk) +) Alk, w)) (2.21)

wed

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 17

where Z(d) is a factor that makes the distributions sum to one:

Z(d)=) exp (/l(k)+ Y ALk, w)). (2.22)
k

wed

The A(k) and A(k, w) are the parameters of the model. They're analogous to logp(k) and logp(w | k),
respectively, but they're a little harder to think about for two reasons. First, the A’s aren’t probabilities;
they can be positive or negative, and they can be bigger or smaller than one. Second, there’s no formula
analogous to (2.6) that tells us how to compute the A’s. Instead, we’ll find them using numerical methods.
Basically, each parameter (A(k) or A(k, w)) is a knob that goes from —oco to +oo; they start out zero and
we adjust them to make the model fit the data.

Sometimes, this type of model is also called log-linear (because if you take the log of it, it’s linear) or
maximume-entropy (because of another way of deriving the model which we don’t cover here).

2.4.2 C(lassification

Finding the most probable class of a new document is just as easy as before, because we can ignore the
normalization factor:

k* =argmaxP(k|d) (2.23)

k

= arg max exp | A(k) + Ak, w) (2.24)

gk Z@ P (wze:d)

= arg maxexp (/l(k) +) Ak, w)) (2.25)

k wed
or we can even drop the exp:

= arg max (ﬂt(k) +) Ak, w)) . (2.26)

k wed

2.4.3 Training

However, training, or estimating the parameters A(k, w), is more difficult than before. To simplify nota-
tion — nothing deep here, just trying to make the equations simpler — let’s hallucinate a word “<bias>”
that occurs once in every document. This makes A(k) and A(k,<bias>) redundant, and we can safely
drop A(k) from the model without changing it. So, from here on, we will not write A1(k) anymore.

The likelihood, which we wish to maximize, is

L=[]P(k;|dy) (2.27)
i
1
= U Z@) exp w;di Aki, w). (2.28)

Because this number is so small (among other reasons), we actually want to maximize the log-likelihood,
log L. In any case, there isn't a closed-form solution; instead, we have to use numerical optimization.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 18

There are lots of methods that we can use to do this. We're going to do the easiest (but still very
practical) method, stochastic gradient ascent.” It is also known as the method of steepest ascent. Imagine
that the log-likelihood is an infinite, many-dimensional surface. Each point on the surface corresponds
to a setting of the A’s, and the altitude of the point is the log-likelihood for that setting of the 1’s. We want
to find the highest point on the surface. We start at an arbitrary location (say, with all the 1’s set to zero)
and then repeatedly move a little bit in the steepest uphill direction.

Let A be the vector of all the parameters of the model, and log L(A) is the objective function, or the
function we're maximizing. Gradient ascent looks like this:

initialize parameters A to zero
repeat
A —2A+nV(logL(A))
until done
The function V(logL) is the gradient of log L and gives the direction, at A, that goes uphill the steepest.
The learning raten > 0 controls how far we move at each step.

Question 5. What happens if) is too small? too big?

To guarantee convergence, 1) should decrease over time (for example, n = 1/1), but it’s also common in
practice to leave it fixed.
In stochastic gradient ascent, we break up the objective function into parts, one for each document.
Thus
logL(A) =) logP (ki | d;). (2.29)
1

Then the optimization looks like this:
initialize parameters A to zero
repeat
for each i do
A —A+nV(logP(k; | d;)
end for
until done
This usually requires less memory and is easier to implement.
The above algorithm can implemented using an automatic differentiation package. Alternatively, we

Ifwe're minimizing a function, then we use stochastic gradient descent, and this is the name that the method is more commonly
known by.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 19

can implement the gradient ourselves. It is the vector of all the partial derivatives, #k,w)log L:

0 0
3t w) 8L = L e, wy o8P ki 1) (2.30)
o
=2 5w | & Atki,w) -logZ(d; 2.31
2 51k w) (w%i (ki w?) ~log Z(dy) (2.31)
o
:Z(a(kyki)C(WEdi)—m]ogZ(di)) (2.32)

Ok, ki)c(we d;) — Z(d,-)) (2.33)

Z(d;) 0A(k, w)

1
=Z(
:Z(6(k,ki)c(w€d,-)— ! 9 Yexp Y A(k’,w’)) (2.34)

- Z(d;) oAk, w) G w'ed;

expY ,eq Ak, w') 0

=Y 6k, k)c(wed;) - P WZE(‘I{]’Z') I w)c(wedl-)) (2.35)

i 1)
1

=) P(k_—ld_)P(ki | di) (5(k, k;) = P(k | dy)) c(w € d;) (2.36)
i i i

= cwed) Gk, ki)~ Pk dp). (2.37)
i

The first term is just the number of times that w has been seen in documents with class k. The second is
the model’s expected number of times that w is seen in documents with class k, without actually looking
at the correct class labels k;.
Some more calculus would demonstrate that the likeilhood is a concave function, so that the only
local maximum is the global maximum, which is very good news for optimizing this function.
So the optimization algorithm looks like this:!'°
initialize parameters A(k, w) to zero
repeat
for each i do
for each w in d (including duplicates) do
Alk;, w) — Alki, w) +n
for each k do
Ak, w) — Ak, w)—n-P(k| d;)
end for
end for
end for
until done

2.4.4 Regularization (smoothing)

Smoothing was important for the naive Bayes classifier, and the most visible reason why was unknown
words. Unknown words aren’t as much of a problem for logistic regression, but smoothing can still help.

10An earlier version of this pseudocode had w loop over all the word types in the vocabulary, and the updates to the A’s were
multiplied by c¢(w € d). The notation is now more consistent with the rest of this chapter.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

Chapter 2. Text Classification 20

Question 6. How do naive Bayes and logistic regression react to unknown words differently? Why is it
not as much of a problem for logistic regression?

The general problem that both methods face is overfitting: learning the training data so well that it
fails to generalize to new data. Suppose that a word w is seen only once in the training data; it’s not a
particularly spammy or hammy word, but it happens to occur in a spam document. So logistic regression
will learn a very high weight for A(spam, w), but it really shouldn’t.

The solution is to add a regularization term to the objective function that encourages weights to be
small. Let’s call this new objective function F:

Fy=-2 Y Atk,w)*+ logL(A) (2.38)
2 w ——

. ! ~ log-likelihood
regularization

-¢ Y Atk w)* +log [
2 k,w

i

1
Z@) exp wgdi/l(k,, w)|. (2.39)
If we think of the weights A as a vector, the regularization term is proportional to the square of the norm of
the vector. More precisely, the Euclidean norm, also known as the ¢, norm. So this kind of regularization
is called ¢, regularization.

This is very easy to implement: just inside the for i loop, before anything else, add
for each k, w do
Ak, w) = Alk,w)-(1-n-C)
end for

2.4.5 Experiment

We trained a logistic regression classifier on the same gender-classification task as before. We used 30
iterations, a learning rate of n = 0.01, and ¢, regularization with C = 0.1. We tried just the standard bag of
words (unigram) and we also added bigram features.

method unigram bigram
naive Bayes 65.1 66.5
logistic regression 66.7 69.3

So logistic regression wins, and we can see that it is more able to take advantage of the bigram features.

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to Information
Retrieval. Cambridge University Press. URL: http://www-nlp.stanford.edu/IR-book/.

Mukherjee, Arjun and Bing Liu (2010). “Improving Gender Classification of Blog Authors”. In: EMNLP,
pp. 207-217.

Ng, Andrew Y. and Michael I. Jordan (2002). “On Discriminative vs. Generative classifiers: A comparison
of logistic regression and naive Bayes”. In: Advances in Neural Information Processing Systems. Vol. 14,
pp. 841-848.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 20, 2016)

