
Chapter 6

Sequence Labeling

6.1 Problem

Let’s turn to a new task: given a sequence of words, we want to find the best way to assign a label to each
of the words.

Part-of-speech tagging Given a sentence, assign a part-of-speech (POS) tag (noun, verb, etc.) to each
word. Many words have a unique POS tag, but some words are ambiguous: for example, short can be
an adjective (short vowel), a noun (direct a short), an adverb (to throw a ball short) or a verb (to short an
appliance). Figuring out which POS is the correct one depends on the context, including the POS tags of
the neighboring words.

Word sense disambiguation Given a dictionary which gives one or more word senses to each word (for
example, a bank can either be a financial institution or the sloped ground next to a river), and given a
sentence, guess the sense of each word in the sentence.

Named entity detection Given a sentence, identify all the proper names (Notre Dame, Apple, etc.) and
classify them as persons, organizations, places, etc. The typical way to set this up as a sequence-labeling
problem is called BIO tagging. Each word is labeled B (beginning) if it is the first word in a named entity,
I (inside) if it is a subsequent word in a named entity, and O (outside) otherwise. Other encodings are
possible as well.

Word segmentation Given a representation of a sentence without any word boundaries, reconstruct
the word boundaries. In some languages, like Chinese, words are written without any spaces in between
them. (Indeed, it can be difficult to settle on the definition of a “word” in such languages.) This situation
also occurs with any spoken language.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 44

6.2 Hidden Markov Models

6.2.1 Definition

As with the naïve Bayes classifier, instead of thinking directly about finding the most probable tagging of
the sequence, we think about how the sequence might have come to be. Let w = w1 · · ·wn be a sequence
of words and let t = t1 · · · tn be a sequence of tags.

arg max
t

P (t | w) = arg max
t

P (t,w) (6.1)

P (t,w) = P (t)P (w | t). (6.2)

The first term, P (t), can be described using a weighted FSA, just like a language model except over tags
instead of words. For example, a bigram model:

P (t) = p(t1 | <s>)×
(

n∏
i=2

p(ti | ti−1)

)
×p(</s> | tn). (6.3)

The second term is even easier:

P (w | t) =
n∏

i=1
p(wi | ti). (6.4)

This is a hidden Markov model (HMM). If we’re given labeled data, like

I saw her duck
PRP VBD PRP$ NN

then the HMM is easy to train. But what we don’t know how to do is classify (or decode): given w, what’s
the most probable t? Below, we’ll see how to do that, not just for HMMs but for a much broader class of
models.

6.2.2 Decoding

Suppose that our HMM has the parameters shown in Table 6.1.
Now, given the sentence “I saw her duck,” we can construct a FSA that generates all possible POS tag

sequences for this sentence. We’ll just improvise it for now, and then see how to construct it methodically
later. See Figure 6.1.

Note that this FSA is acyclic; a single run can never visit the same state twice, so it accepts strings of
bounded length. Indeed, all the strings it accepts are exactly four symbols long. Given an acyclic FSA
M , our goal is to find the highest-weight path through M . We can do this efficiently using the Viterbi
algorithm, originally invented for decoding error-correcting codes.

The Viterbi algorithm is a classic example of dynamic programming. We need to visit the states of M
in topological order, that is, so that all the transitions go from earlier states to later states in the ordering.
For the example above, the states are all named qi ,σ; we visit them in order of increasing i . For each state
q , we want to compute the weight of the best path from the start state to q . This is easy, because we’ve
already computed the best path to all of the states that come before q . We also want to record which
incoming transition is on that path. The algorithm goes like this:

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 45

P (t ′ | t) : P (w | t) :

t
t ′ <s> NN PRP PRP$ VB/VBD/VBP

NN 0 0.1 0 1 0.1
PRP 0.8 0 0 0 0.6

PRP$ 0.2 0 0 0 0.2
VB 0 0.1 0.2 0 0

VBD 0 0.5 0.3 0 0
VBP 0 0 0.3 0 0
</s> 0 0.3 0.2 0 0.1

p(I | PRP) = 0.5

p(her | PRP) = 0.5

p(her | PRP$) = 1

p(saw | VBD) = 1

p(saw | VBP) = 1

p(duck | NN) = 1

p(duck | VB) = 1

Table 6.1: Example parameters of an HMM.

q0,<s> q1,PRP

q2,VBD

q2,VBP

q3,PRP

q3,PRP$

q4,NN

q4,VB

q5,</s>
PRP/0.4

VBD/0.3

VBP/0.3

PRP/0.3

PRP$/0.2

PRP/0
.3

PRP$/0.2

NN/0

VB/0.2

N
N

/1

VB/0

</s>/0.3

</
s>

/0.1

Figure 6.1: Weighted finite automaton for all taggings of sentence “I saw her duck.”

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 46

viterbi[q0] ← 1
viterbi[q] ← 0 for q ̸= q0

for each state q ′ in topological order do
for each incoming transition q → q ′ with weight p do

if viterbi[q]×p > viterbi[q ′] then
viterbi[q ′] ← viterbi[q]×p
pointer[q ′] ← q

end if
end for

end for

Then the maximum weight is viterbi[q f], where q f is the final state.

Question 8. How do you use the pointers to reconstruct the best path?

6.3 Finite-State Transducers

HMMs are used for a huge number of problems, not just in NLP and speech but also in computational
biology and other fields. But they can get tricky to think about if the dependencies we want to model
get complicated. For example, in the Chinese word segmentation problem, it would be terrible to use an
HMM with just two tags B (beginning of word) and I (inside of word). It’s critical for a tag to depend on
the previous words, not just the previous tag. You can do it by modifying the tag set, but maybe we want
a more flexible solution.

In the last chapter, we saw how weighted finite-state automata provide a flexible way to define proba-
bility models over strings. But here, we need to do more than just assign probabilities to strings; we need
to be able to transform them into other strings. To do that, we need finite-state transducers.

6.3.1 Definition

A finite-state transducer is like a finite-state automaton, but has both an input alphabet Σ and an output
alphabet Σ′. The transitions look like this:

q r
a : a′ / p

where a ∈Σ, a′ ∈Σ′, and p is the weight.
We start with a restricted definition; a more general definition will come later.

Definition 2. A finite state transducer (FST) is a tuple 〈Q,Σ,Σ′,δ, s,F 〉, where:

• Q is a finite set of states

• Σ and Σ′ are finite alphabets

• δ is a set of transitions of the form q
a:a′
−−→ r , where

– q,r ∈Q

– a ∈Σ

– a′ ∈Σ′

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 47

• s ∈Q is the start state

• F ⊆Q is the set of final states

Whereas a FSA defines a set of strings, a FST defines a relation on strings (that is, a set of pairs of
strings). A string pair 〈w, w ′〉 belongs to this relation if there is a sequence of states q0, . . . , qn such that for

all i , there is a transition qi−1
wi :w ′

i−−−−→ qi . The above definition defines FSTs that are deterministic in the
sense that given an input/output string pair, there’s at most one way for the FST to accept it. But given
just an input string, there is in general more than one output string that the FST can generate.

A weighted FST adds a weight to each transition. (Formally, we can redefine δ as a mapping Q ×Σ×
Σ′×Q →R.) The weight of an accepting path through a FST is the product of the weights of the transitions
along the path.

A probabilistic FST further has the property that for each state q and input symbol a, the weights
of all of the transitions leaving q with input symbol a sum to one. Then the weights of all the accepting
paths for a given input string sum to one. That is, the WFST defines a conditional probability distribution
P (w ′ | w).

So a probabilistic FST is a way to define P (w | t). The simplest FST only has one state and many
transitions. We’ll write an example as a list of transitions instead of as a graph:

q
PRP:I/0.5−−−−−−→ q q

PRP:her/0.5−−−−−−−−→ q

q
PRP$:her/1−−−−−−−→ q

q
VBD:saw/1−−−−−−−→ q

q
VBP:saw/1−−−−−−−→ q

q
NN:duck/1−−−−−−−→ q

q
VB:duck/1−−−−−−−→ q

q
</s>:</s>/1−−−−−−−−−→ q

Another very simple FST that we’ll make use of is the identity FST corresponding to an FSA M , which

just maps every string in L(M) to itself. We do this by replacing every transition q
a−→ r with q

a:a−−→ r .
For example, the bigram model P (t ′ | t) that we saw above can be written as a FSA, and that FSA can be
turned into its identity FST, which looks like this:

q<s>
PRP:PRP/0.8−−−−−−−−→ qPRP q<s>

PRP$:PRP$/0.2−−−−−−−−−−→ qPRP$

qNN
NN:NN/0.1−−−−−−−→ qNN qNN

VB:VB/0.1−−−−−−−→ qVB* qNN
VBD:VBD/0.5−−−−−−−−−→ qVB* qNN

</s>:</s>/0.3−−−−−−−−−−→ q</s>

qPRP
VB:VB/0.2−−−−−−−→ qVB* qPRP

VBD:VBD/0.3−−−−−−−−−→ qVB*

qPRP
VBP:VBP/0.3−−−−−−−−→ qVB* qPRP

</s>:</s>/0.2−−−−−−−−−−→ q</s>

qPRP$
NN:NN/1−−−−−−→ qNN

qVB*
NN:NN/0.1−−−−−−−→ qNN qVB*

PRP:PRP/0.6−−−−−−−−→ qPRP

qVB*
PRP$:PRP$/0.2−−−−−−−−−−→ qPRP$ qVB*

</s>:</s>/0.1−−−−−−−−−−→ q</s>

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 48

where we’ve written VB* as shorthand for any of VBD, VBP, or VB. All other probabilities should be as-
sumed to be zero. As a graph, it looks like this:

<s> PRP$ PRP VB* NN </s>

PRP :PRP /0.8

PRP$:PRP$ /0.2

NN :NN /0.1

VB :VB /0.1
VBD :VBD /0.5

</s>:</s>/0.3

VB :VB /0.2
VBD :VBD /0.3
VBP :VBP /0.3

</s>:</s>/0.2

NN :NN /1

NN :NN /0.1

PRP :PRP /0.6

PRP$:PRP$ /0.2

</s>:</s>/0.1

6.3.2 Composition

We have a probabilistic FSA, call it M1, that generates sequences of POS tags (a bigram model). And we
have a probabilistic FST, call it M2 that changes POS tags into words. Now, we’d like to combine them
into a single machine that generates words together with their POS tags.

We’re going to do this using FST composition. First, change M1 into its identity FST: it reads in a POS
tag sequence and writes out the exact same sequence. Then, we want to feed its output to the input of
M2. In general, we want to take any two FSTs M1 and M2 and make a new FST M that is equivalent to
feeding the output of M1 to the input of M2 – this is the composition of M1 and M2.

If you are familiar with intersection of FSAs, this construction is quite similar. Given FSTs M1 and M2,
we want a FST M that accepts the relation {〈u, w〉 | ∃v s.t. 〈u, v〉 ∈ L(M1), 〈v, w〉 ∈ L(M2)}.

The construction is as follows: The states of M are pairs of states from M1 and M2. For brevity, we
write state 〈q1, q2〉 as q1q2. The start state is s1s2, and the final states are F1×F2. Then, for each transition

q1
a:b−−→ r1 in M1 and q2

b:c−−→ r2 in M2, make a new transition q1q2
a:c−−→ r1r2. If the two old transitions have

weights, the new transition gets the product of their weights. If we create duplicate transitions, merge
them and sum their weights.

For example, suppose that M1 is the FST version of the bigram model P (t ′ | t) from above, and M2 is

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 49

the one-state FST that we wrote for P (w | t). Since M2 has only one state, M has the same states as M1.

q<s>
PRP:I/0.4−−−−−−→ qPRP q<s>

PRP:her/0.4−−−−−−−−→ qPRP q<s>
PRP$:her/0.2−−−−−−−−−→ qPRP$

qNN
NN:duck/0.1−−−−−−−−→ qNN qNN

VB:duck/0.1−−−−−−−−→ qVB qNN
VBD:saw/0.3−−−−−−−−→ qVBD qNN

</s>:</s>/0.3−−−−−−−−−−→ q</s>

qPRP
VB:duck/0.2−−−−−−−−→ qVB qPRP

VBD:saw/0.3−−−−−−−−→ qVBD

qPRP
VBP:saw/0.3−−−−−−−−→ qVBP qPRP

</s>:</s>/0.2−−−−−−−−−−→ q</s>

qPRP$
NN:duck/1−−−−−−−→ qNN

qVB*
NN:duck/0.1−−−−−−−−→ qNN qVB*

PRP:I/0.3−−−−−−→ qPRP qVB*
PRP:her/0.3−−−−−−−−→ qPRP

qVB*
PRP$:her/0.2−−−−−−−−−→ qPRP$ qVB*

</s>:</s>/0.1−−−−−−−−−−→ q</s>

As a graph:

<s> PRP$ PRP VB* NN </s>

PRP :I /0.4
PRP :her /0.4

PRP$:her /0.2

NN :duck /0.1

VB :duck /0.1
VBD :saw /0.5

</s>:</s>/0.3

VB :duck /0.2
VBD :saw /0.3
VBP :saw /0.3

</s>:</s>/0.2

NN :duck /1

NN :duck /0.1

PRP :I /0.3
PRP :her /0.3

PRP$:her /0.2

</s>:</s>/0.1

One more step! Given a string w , construct an FST Mw that accepts only the string w as input and
outputs the same string.

q0 q1
I:I

q2
saw:saw

q3
her:her

q4
duck:duck

q5
</s>:</s>

Now, if we compose Mw with the HMM, we get a new FST that outputs only the string w accepts as input
all and only the possible tag sequences of w . Finally, if we ignore the output labels (the words) and look
at the input labels (the tags), we have exactly the FSA that we constructed in Section 6.2.2.

6.4 Conditional random fields

Recall that we moved from naïve Bayes to logistic regression for a few reasons:

• To model P (k | d) directly instead of modeling P (k,d), which seems like more work.

• To allow adding arbitrary features without messing up the model.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 50

We can make an analogous move from hidden Markov models to conditional random fields (Lafferty,
McCallum, and Pereira, 2001). CRFs model P (t | w) directly instead of P (t,w), and they allow adding
arbitrary features. They consistently outperform HMMs for sequence labeling tasks, and generally do as
well or better than other methods. The downside of CRFs is that, like logistic regression, they have to be
trained using numerical optimization, which is a lot slower than HMMs.

6.4.1 Definition

The model is defined as:

P (t | w) = exp s(t,w)∑
t̄

exp s(t̄,w)
(6.5)

s(t,w) =λ(<s>, t1)+µ(t1, w1)+
(

n∑
i=2

λ(ti−1, ti)+µ(ti , wi)

)
+λ(tn ,</s>). (6.6)

where t̄ ranges over all possible tag sequences of length n. (See below for how to compute this sum
efficiently.)

There are two kinds of weights: λ(t , t ′) for every tag/tag pair, and µ(t , w) for every tag/word pair. As
with logistic regression, there’s no formula for the weights; you initialize them to all zeros and optimize
them using (stochastic) gradient ascent.

6.4.2 As finite transducers

Recall that we wrote an HMM as a finite transducer, where the edges looked like

t ′ t
t ′ : w / p(t ′ | t)p(w | t ′)

We can write a CRF as a finite transducer too:

t ′ t
t ′ : w / expλ(t , t ′)expµ(t ′, w)

If we run this transducer on tags t and words w, then the weight of the path is exp s(t,w), which is the
numerator of (6.5). How do we compute the denominator?

6.4.3 Summing over all tag sequences

The denominator in equation (6.5) is a summation over all possible tag sequences t̄ – that’s a lot of tag
sequences! The way that we perform the summation is similar to how the Viterbi algorithm finds the
maximum over all possible tag sequences. The only difference is that when a state has multiple incoming
edges, we add the weights instead of taking their maximum.

forward[q0] ← 1
forward[q] ← 0 for q ̸= q0

for each state q ′ in topological order do
for each incoming transition q → q ′ with weight p do

forward[q ′] ← forward[q ′]+ forward[q]×p
end for

end for

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Chapter 6. Sequence Labeling 51

6.4.4 Training

As always, we want to maximize the log-likelihood:

logL = ∑
t,w in data

logP (t | w) (6.7)

We do this using stochastic gradient descent, looping over all the sentences, and for each sentence w with
correct tags t, take a step uphill on logP (t | w). The gradient can be computed by automatic differentia-
tion.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

Bibliography

Lafferty, John, Andrew McCallum, and Fernando Pereira (2001). “Conditional Random Fields: Probabilis-
tic Models for Segmenting and Labeling Sequence Data”. In: ICML, pp. 282–289.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 27, 2016)

