
Chapter 8

Word Alignment

8.1 Problem

A parallel text is a corpus of text that expresses the same meaning in two (or more) different languages.
Usually we assume that a parallel text is already sentence-aligned, that is, it consists of sentence pairs, each
of which expresses the same meaning in two languages. Conventionally, following Brown et al. (1993),
the two languages are referred to as English and French even when other languages are possible. Here,
we use English and Spanish.

Here is an example parallel text:

1. garcia and associates
garcia y asociados

2. his associates are not strong
sus asociados no son fuertes

3. the groups do not sell zenzanine
los grupos no venden zanzanina

The word alignment problem is to figure out which Spanish words correspond to which English
words. This would be the correct word alignment for our example:

1. garcia and associates

garcia y asociados

2. his associates are not strong

sus asociados no son fuertes

3. the groups do not sell zenzanine

los grupos no venden zanzanina

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

Chapter 8. Word Alignment 59

(Aligning do to venden in 3 would also be correct.)
More formally: let

• f = f1 · · · fm range over Spanish sentences

• e = e1 · · ·eℓ range over English sentences

• a = (a1, . . . , am) range over possible many-to-one alignments, where a j = i means that Spanish
word j is aligned to English word i , and a j = NULL means that Spanish word j is unaligned. Thus
the alignment for sentence (2) above is (1,2,4,3,5,6).

We are given a sequence of (f,e) pairs. We are going to define a model of P (f,a | e).
All the IBM models (Brown et al., 1993) and their offspring can be broken into three parts:

P (f,a | e) = 1

M
×P (a | e,m)×

m∏
j=1

{
t (f j | NULL) if a j = NULL

t (f j | ea j) otherwise

The three factors correspond to three steps:

1. Choose m, the length of the Spanish sentence, with uniform probability 1
M , where M is some max-

imum length. (It doesn’t matter what M is as long as it’s bigger than any actual Spanish sentence in
the data).

2. Generate an alignment a1, . . . , am . You can think of this part as a sequence labeling problem, where
we are trying to label the Spanish words, and the labels are drawn from {1, . . . ,ℓ,NULL}, where ℓ is
the length of the English sentence.

3. Generate Spanish words f1, . . . , fm , each with probability t (f j | ea j) or t (f j | NULL). (Here, t (f | e) is
a conditional probability distribution, but it’s conventional to call it t to avoid overloading p.)

The models differ only in step 2.
In order to train these models, we want to maximize the log-likelihood,

logP (f | e) =∑
a

P (f,a | e).

In general, the summation over all possible alignments a is intractable. This is the main technical chal-
lenge.

8.2 IBM Model 1

IBM Model 1 is the simplest of the five IBM models. In this model, we have

P (a | e,m) =
m∏

j=1

1

ℓ+1
. (8.1)

This submodel has no parameters. It just says that for each Spanish word, we choose a corresponding
English word (or NULL) with uniform probability.

As noted above, to train this model, we need to compute the log-likelihood, which involves a sum-
mation over all possible alignments a. We can do this using the tools we’ve already learned, if we can

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

Chapter 8. Word Alignment 60

write the model as a weighted finite automaton. So, given e, we can make a WFA that generates Spanish
sentences f.

Step 1 is not important and we can safely ignore it.
Step 2, the alignment-generation model, can be written as a very simple WFA:

i / 1
ℓ+1

NULL/ 1
ℓ+1

The arc labeled i is actually many arcs, one for each 1 ≤ i ≤ ℓ. This automaton just emits a sequence of
English word positions with uniform probability. Notice that because m is determined beforehand, this
automaton doesn’t need a stop probability.

Step 3, the Spanish-word-generation model, is also very simple:

i : f / t (f | ei)

The arc labeled i : f is actually many arcs, one for every Spanish word f and every English position
1 ≤ i ≤ ℓ.

Composing the two, we get IBM Model 1, which is still pretty simple:

f / 1
ℓ+1 t (f | ei)

NULL/ 1
ℓ+1

The arc labeled f is actually many arcs, one for every Spanish word f and every English position 1 ≤
i ≤ ℓ. Every path through this automaton corresponds to an alignment a and a Spanish string f, and the
probability of the path is P (f,a | e). Note that although we can generate any Spanish string, the English
string e remains fixed. If we were to sum the probabilities of all the paths, they would sum to one.

Now we intersect this WFA with f = “garcia y asociados” because we’re only interested in the paths
that generate f, so we can compute P (f | e). That gives:

garcia / 1
ℓ+1 t (garcia | garcia)

garcia / 1
ℓ+1 t (garcia | and)

garcia / 1
ℓ+1 t (garcia | associates)

garcia / 1
ℓ+1 t (garcia | NULL)

y / 1
ℓ+1 t (y | garcia)

y / 1
ℓ+1 t (y | and)

y / 1
ℓ+1 t (y | associates)

y / 1
ℓ+1 t (y | NULL)

asociados / 1
ℓ+1 t (asociados | garcia)

asociados / 1
ℓ+1 t (asociados | and)

asociados / 1
ℓ+1 t (asociados | associates)

asociados / 1
ℓ+1 t (asociados | NULL)

Then, P (f | e) is the sum of all the probabilities of this automaton. We can compute this using the
Forward algorithm. Specialized for Model 1, it looks like this:

forward[0] ← 1

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

Chapter 8. Word Alignment 61

for j ← 1, . . .m do
forward[j] ← 0
for i ← 1, . . .ℓ do

forward[j] ← forward[j]+ forward[j −1]× 1
ℓ+1 t (f j | ei)

end for
forward[j] ← forward[j]+ forward[j −1]× 1

ℓ+1 t (f j | NULL)
end for

Then P (f | e) = forward[m].
Now, to train the model by stochastic gradient ascent, we express the probabilities t (f | e) in terms of

unconstrained variables λ(f | e):

t (f | e) = expλ(f | e)∑
f ′ expλ(f ′ | e)

(8.2)

And the pseudocode for the optimization is:

randomly initialize λ(f | e) for all f ,e
repeat

LL ← 0 ▷ log-likelihood logL
for training examples f,e do

compute logP (f | e)
LL ← LL+ logP (f | e)

compute ∂ logP (f|e)
∂λ(f |e) at the current point

λ(f | e) ←λ(f | e)+η · ∂ logP (f|e)
∂λ(f |e)

end for
print LL ▷ should increase

until done

In the rest of the chapter, we give just a brief overview of some more advanced alignment models.

8.3 IBM Model 2

Model 1 doesn’t care at all about word order. We would like to capture the fact that if a Spanish word
is translated from an English word, the next Spanish word is probably translated from the next English
word. So we need some kind of dependence between the a j . Model 2 is a small step in that direction. It
replaces the uniform alignment model with:

P (a | e,m) =
m∏

j=1
δ(a j | j ,ℓ,m) (8.3)

where δ(a j | j ,ℓ,m) is a probability distribution.
As a WFA, the alignment-generation model looks like:

i /δ(i | j ,ℓ,m)

NULL/δ(NULL | j ,ℓ,m)

The arc labeled i is actually many arcs, one for each 1 ≤ i ≤ ℓ.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

Chapter 8. Word Alignment 62

8.4 Hidden Markov Model

Even though Model 2 captures something about word order, it still doesn’t know anything about the re-
lationships between adjacent alignments. It is closer in spirit to the bag-of-words models we started the
semester with than the sequence models we’ve been looking at more recently.

One easy and efficient way to improve the model is to make an alignment dependent on the previous
alignment, i.e., a j depends on a j−1 (Vogel, Ney, and Tillmann, 1996). Just as a bigram model could be
represented as a WFA, so can this model. Here we show the automaton for ℓ= 2.

1 / s(+1)

2 / s(+2)

1 / s(0)

2 / s(0)

2
/

s(+
1)1

/
s(
−1

)

The distribution s(∆i) gives the probability that, if a Spanish word is translated from English word ei ,
the next Spanish word is translated from English word ei+∆i . We are treating the start of the sentence
as position 0. So, if a = (1,2,4,3,5,6), its probability is s(+1)s(+1)s(+2)s(−1)s(+2)s(+1). We expect the
distribution to peak at +1 and decrease for larger |∆i |.

The model is deficient since it assigns a nonzero probability to alignments that fall off the edge of the
sentence. We can fix this by renormalizing, but we haven’t bothered to do so for simplicity’s sake. Also
note that there are no NULL alignments. These can be added in but were omitted in the original version
(Vogel, Ney, and Tillmann, 1996), which we follow here.

We compose this WFA with the same Spanish-word-generation model that we used before (again,
assuming ℓ= 2):

f / s(+1)t (f | e 1)

f / s(+2)t (f | e2)

f / s(0)t (f | e1)

f / s(0)t (f | e2)

f/
s(+

1)t(f|e
2)f/

s(
−1

)t
(f

|e
1

)

Then we compose with f (we don’t show the result here because it would be too complicated). Then
we have to estimate both the t (f | e) and the s(∆i).

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

Bibliography

Brown, Peter F. et al. (1993). “The Mathematics of Statistical Machine Translation: Parameter Estimation”.
In: Computational Linguistics 19, pp. 263–311.

Vogel, Stephan, Hermann Ney, and Christoph Tillmann (1996). “HMM-Based Word Alignment in Statis-
tical Translation”. In: Proc. COLING, pp. 836–841.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 6, 2016)

