
Final Exam: Study Guide

CSE 30151 Spring 2016

2016/05/06

The exam will be on Friday, May 6, 10:30am to 12:30pm, in 126 DeBartolo Hall (same
as lectures). It will be open book and open paper notes. No computers, smartphones, or
any other Turing-equivalent machines are allowed. Regrettably, I can’t think of any way to
allow the use of notes taken on an electronic tablet that is fair to all students.

Format

The exam is worth 120 points, or 20% of your grade. It covers the entire course, but not
any of these special topics: neural networks and finite automata, human language and
context-free grammars, human intelligence and Turing machines, cryptography.

The main part of the exam will present you with five languages, one from each of the
following classes:

I. Regular

II. Context-free but not regular

III. In P but not context-free

IV. NP-complete

V. Turing-recognizable but not decidable.

For each language, you’ll identify which class it belongs to (2 points each) and justify your
answer. Your justifications should have the following forms:

• Regular

– A DFA, NFA, or regular expression (10 points; like HW2 Q1, HW4 Q2a, HW4
Q3a, Exercise 1.6j, 1.18e)

• Context-free but not regular

– A PDA or CFG (10 points; like HW5 Q1–2, Exercise 2.4ad, 2.6ac, 2.7ac)

1



CSE 30151 Spring 2016 Final Exam

– A proof of non-regularity (10 points; like HW 4 Q2b, Q3b, Problem 1.29ac,
1.46b)

• In P but not context-free

– An implementation-level description of a TM and a brief time complexity anal-
ysis (10 points; like HW7 Q1–2, Exercise 3.8a)

– A proof of non-context-freeness (10 points; like HW6 Q1, Problem 2.30bc)

• NP-complete (like Problem 7.22, 7.31, HW9 Q4, but easier)

– A high-level description of a NTM or verifier (5 points)

– A polynomial-time reduction from another NP-complete problem and a proof
that it works (15 points)

• Turing-recognizable but not decidable (like HW8 Q3, Problems 5.10, 5.11)

– A high-level description of a TM (5 points)

– A reduction from another undecidable language and a proof that it works (15
points)

The remaining 20 points will be for a question or questions related to Turing machines and
the Church-Turing thesis.

Sample questions

Here’s an example of five languages that you should be able to classify as (I) regular, (II)
context-free but not regular, (III) in P but not context-free, (IV) NP-complete, or (V)
Turing-recognizable but not decidable.

1. Classify:

A = {x=y+z | x, y, z are binary natural numbers and x = y + z is true}

2. A 0-1 integer program is a system of inequalities of the form:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

where the aij and bi are integers, and the xj are variables. A solution to the 0-1 IP
is a setting of each of the xj to either 0 or 1 such that all of the inequalities hold.

Classify: The set B of all (encodings of) 0-1 integer programs that have solutions.

2



CSE 30151 Spring 2016 Final Exam

3. Classify: The set C of all (encodings of) Turing machines that, on empty input, halt
with nothing but the string 42 on the tape.

4. Classify:
D = {x | x is a binary natural number divisible by 3}

5. Let Σ = {1,+,−, ∗, /}. We say that a string w ∈ Σ∗ is an RPN expression if typing
the symbols of w into an RPN calculator results in no stack underflows and a stack
with a single number. For example, 11+ is an RPN expression, but 1+ is not (stack
underflow) and 111+ is not (results in more than one number on stack).

Classify: the language E of all RPN expressions.

Sample (partial) solutions

1. This language is in P but not context-free. (In HW4 Q2b you showed that it was not
regular, but it’s also not context-free.)

2. This language is NP-complete.

• An NTM can solve the system of inequalities by nondeterministically trying all
possible settings of the xj . For each setting, checking whether all the inequalities
hold can be done in O(mn) time. So this language is in NP.

• We want to show that if we could solve a 0-1 IP in polynomial time, then we
could solve 3-SAT in polynomial time.

So, given a formula φ in 3-CNF, we want to convert it to a 0-1 IP. The formula
φ is of the form

φ = (φ11 ∨ φ12 ∨ φ13) ∧ · · · ∧ (φm1 ∨ φm2 ∨ φm3),

where each φik is either xj or xj for some j. The m clauses of φ become m
inequalities: ∨ becomes +, xj becomes yj , and xj becomes (1− yj), resulting in
an arithmetic expression which we require to be ≥ 1. For example, the formula

(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

becomes the 0-1 IP

y1 + y1 + y2 ≥ 1

(1− y1) + (1− y2) + (1− y2) ≥ 1

(1− y1) + y2 + y2 ≥ 1.

A little bit of algebra can put this system of inequalities into the form in the
definition of 0-1 IP. All this can be done in O(m) time.

3



CSE 30151 Spring 2016 Final Exam

Now, if we know a solution to this 0-1 IP, then we can come up with a satisfying
assignment for φ very easily: if yj = 0, then xj is false, and if yj = 1, then xj is
true. In each of the inequalities, at least one of the addends must be nonzero,
which means that in each clause of φ, at least one of the literals must be true,
so φ is satisfied.

But if the 0-1 IP has no solution, then φ is unsatisfiable. For if there were a
setting of the xj that satisfied φ, then we could come up with a solution for
the 0-1 IP: if xj is false, then yj = 0, and if xj is true, then yj = 1. In each of
the clauses, at least one of the literals must be true, which means that in each
inequality of the 0-1 IP, at least one of the addends must be nonzero, so the 0-1
IP is solved.

3. This language is Turing-recognizable but not decidable – it’s only trivially different
from ATM.

• It is recognizable by the TM that, on input 〈M〉, does:

(a) Simulate M with the empty string as input.

(b) If it halts and the tape reads 42, accept. Otherwise, reject.

• Suppose C were decidable by a TM R. For any TM M and string w, we can
construct a TM M ′ that does:

(a) Run M on w.

(b) If M accepts w, clear the tape, write 42, and accept.

(c) Otherwise, clear the tape and accept.

Then we could construct a TM S that, on input 〈M,w〉, does:

(a) Construct a TM M ′ as described above.

(b) Run R on M ′.

(c) If R accepts M ′, accept.

(d) Otherwise, reject.

If M accepts w, then M ′ prints 42, so R accepts M ′, so S accepts 〈M,w〉. On
the other hand, if M rejects w or loops, then M ′ prints nothing or loops, so R
rejects M ′, so S rejects 〈M,w〉. Thus, S decides ATM. But this contradicts the
fact that ATM is undecidable. Therefore, C is undecidable.

4. This is a regular language (HW2 Q1).

5. This language is context-free but not regular.

4


