Homework 1: Strings and languages

CSE 30151 Spring 2016

Due: 2016/01/19 11:59pm

Instructions

- You can prepare your solutions however you like (by hand, LaTeX, Jupyter/IPython notebook, etc.), but you must submit them as a single PDF file.
 - Scan written solutions in the library or using a smartphone (e.g., CamScanner).
 - Convert a Jupyter/IPython notebook using one of these commands:

jupyter nbconvert netid-hw1.ipynb --to pdf ipython nbconvert netid-hw1.ipynb --to pdf

- Please give every PDF file a unique name.
 - If you're making a complete submission, name your PDF file netid-hw1.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name your PDF file netid-hw1-1234.pdf, where 1234 is replaced with the problems you are submitting at this time.
 - If you use the same name twice, only the most recent version will be graded!
- Submit your PDF file in Sakai. Don't forget to click the Submit (or Resubmit) button!

Problems

Each problem is worth 7 points. The remaining 2 points (on this and all future homeworks) are for legibility and clarity. (Hint: One way to ensure legibility is to use LaTeX!)

- 1. Languages. How might each of the following be represented as a formal language? Write what the alphabet would be. Show how to encode an instance as a string, either in words or by giving an example.
 - (a) All base-10 positive integers that are multiples of 7.

- (b) All grammatical sentences of English.
- (c) All legal games of chess.
- 2. Language classes. Let FINITE be the class of all finite languages, and let

$$coFINITE = \{L \mid L^C \in FINITE\},\$$

where, for any language L over Σ , $L^C = \Sigma^* \setminus L$.

- (a) If $L \in \text{coFINITE}$, how might you represent L in memory, and given a string w, how would you decide whether $w \in L$?
- (b) Are there any languages in FINITE \cap coFINITE? If so, give an example; if not, explain why not.
- (c) Are there any languages *not* in FINITE \cup coFINITE? If so, give an example; if not, explain why not.
- 3. The regular operations. Assume that L, L_1 , L_2 are languages. For each of the following statements, state whether it is true or false. If true, write a short proof; if false, give a counterexample.
 - (a) $L \circ (L_1 \cup L_2) = LL_1 \cup LL_2$
 - (b) $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$
 - (c) $(L_1L_2)^* = L_1^*L_2^*$

4. The reverse operation

- (a) Write a formal definition of the reverse operation. Informally, if w is a string, w^R is the string with all the symbols of w in reverse order. The definition should have the same structure as the definition of a string (see notes).
- (b) Prove that $(w^R)^R = w$.
- (c) Prove that if L is a language, $(L^R)^R = L$.