Homework 8: Undecidable languages

CSE 30151 Spring 2016

Due 2016/04,/12

Instructions

Please note that you will lose one point if you don’t follow these instructions.

e You can prepare your solutions however you like, but you must submit them as a
single PDF file.

e Please name your PDF netid-hw8.pdf, where netid is replaced with your NetID, or
netid-hw8-1234.pdf, where 1234 is replaced with the problems you are submitting.

e If you use the same name twice, only the most recent version will be graded!

e Submit your PDF file in Sakai. Don’t forget to click the Submit (or Resubmit) button!

Problems

1. The Power of 10. Look at The Power of 10 (http://bit.ly/powof10), a set of
rules for writing mission-critical code developed at JPL. Use a diagonalization ar-
gument to show that there exists a decidable language L that cannot be decided
by a program that complies with these rules. Note: Please ignore the exception
that reads: “This rule does not, of course, apply to iterations that are meant to
be nonterminating—for example, in a process scheduler. In those special cases, the
reverse rule is applied: It should be possible for a checking tool to prove statically
that the iteration cannot terminate.” You need to design L and write your argument
in three parts:

(a) Describe L by writing a program (in pseudocode) that decides it. Assume that
your program includes the following two functions, which you don’t have to
write:

e check(m): returns true if the string m is the source code of a program that is
syntactically correct and complies with The Power of 10; otherwise, returns
false.



CSE 30151 Spring 2016 Homework 8

e run(m, w): runs the program whose source code is the string m on the input
string w, and returns true if m accepts w; otherwise, returns false.

(b) Explain why your program always halts.

(c) Show that there does not exist a program that complies with The Power of 10
and decides the same language that your program does.

2. Bounds checking. [Problem 5.14] Show that it is undecidable whether a Turing
machine M, on input w, ever attempts to move its head past the left end of the
tape. Your answer should be a reduction from another undecidable problem (don’t
use Rice’s Theorem).

3. More bounds checking. Show that it is decidable whether a Turing machine M,
on input w, ever attempts to move its head past the right end of the input string w.
Your answer should be a construction of a TM — a high-level description is enough.

4. Rice’s Theorem. Let P be any nontrivial property of Turing-recognizable lan-
guages: that is, P is a subclass of the class of Turing-recognizable languages that
is neither empty nor equal to the class of all Turing-recognizable languages.

Rice’s theorem [Problem 5.28] says that it is undecidable, given a Turing machine
M, whether the language M recognizes has property P.

Once you understand the statement of Rice’s theorem, then the following problems
should be easy (don’t overthink them):
(a) [Problem 5.30c] Use Rice’s Theorem to prove that it is undecidable whether a
Turing machine M accepts the language ¥*.
(b) [Problem 5.29] Show that both conditions in Rice’s Theorem are necessary, by:

e showing that the two trivial properties are decidable;

e giving an example of a property of Turing machines — as opposed to the
languages they recognize — that is decidable.



