PDA-to-CFG notes

CSE 30151 Spring 2016
February 2016

Recap

We have already seen how Context Free Grammars (CFGs) and Pushdown Automata (PDAs) are
two sides of the same coin, but operate on a different level:

e a CFG generates a string by constructing a tree, as it applies its rules.
e a PDA has to go from left-to-right in order to accept a string

Example
L={0"1",n >0}

The CFG G is:
S—0S51]e

Figure 1 compares the CFG derivation of the string 000111 with the run of the equivalent PDA
(Sipser, Figure 2.15).

Converting a PDA to a CFG

Prerequisites for the PDA P = (Q,%,T, 6, qo, {qaccept }):
1. Single accept state
2. Empties stack before accepting

3. Each transition either pushes one symbol to the stack, or pops one symbol off the stack, but
not both or none.

We construct a CFG G that has the following rules:
1. Vp € Q put rule 4,, = ¢
2. V¥p,q,7 € Q put rule A,q = Ap Ay
3. Vp,r,s,q € Q put rule A,; = aA, ;b if

e (r,u) € §(p,a,¢e) and
e (g,¢) € 6(s,b,u).

CSE 30151 Spring 2016 Notes 2/25/2016

S g,e—$ g,$—e¢
q2 q3
$ $
0 S 1 0,e =0 1,0 > ¢
q2 q3
0$ 0%
0 S 1 0,e =0 1,0 —¢
q2 q3
00% 00$
0 € 1 0,e =0 1,0 —¢
q2
000%$
CFG derivation PDA run

Figure 1: Side-by-side comparison of CFG derivation and PDA run for string 000111. In the PDA
run, the stack is shown under each state.

CSE 30151 Spring 2016 Notes 2/25/2016

4. The start variable is Agq,.ccp:

Example (from PDA in fig 2.15)

ss—>$
—> 0,e =+ 0

1,0 —¢
4—.:3 1,0 —¢
,$—¢
The produced CFG will be:
All — £
A22 — £
A33 — £
A44 — €

A = A A | AiAgy | AisAsy | AsAg
Ao = A1 Ara | A12Ags | AisAss | A1aAse
Az = A11 A | A1oAgs | AizAss | A1aAas

Ago — A Ao | Agp Ao | AyzAso | AssAgo
Az — Apn Az | Agp Aoz | AuzAsz | AsaAus
Agg — ApnAry | Ao Aoy | AyzAsy | AgaAys
Ao — 0Ap1 | 04231

Ay — €Aoze

S — A14
Example (The Dyck language)
Ge—(
Q g,e—$ }1\ e,$—e¢ Q
—\Z %/
), (—e

The produced CFG (after eliminating unreachable non-terminals) will be:
A13 — EAQQ&‘
Aoy = AgpAgo | €| (A22)
S — Alg

