
Course Project 1

Nondeterministic Finite Automata

CSE 30151 Spring 2017

Version of 2017/01/26
Due 2017/02/09 at 11:55pm

We’ve studied the theory of nondeterministic finite automata, and now it’s time to
implement them. The interesting challenge is that NFAs are nondeterministic, but real
computers are deterministic – how do we simulate nondeterminism?

One option is backtracking: when two transitions are possible, try one, and if it fails,
try the other. But this will lead to a O(2n) time algorithm (where n is the input length).
The theory provides another option: convert the NFA to an equivalent DFA. That gives
a O(n) algorithm, but the conversion could take O(2|Q|) time and space (where |Q| is the
number of states).

It turns out that a O(|Q|n) time solution is possible, and this is the solution you’ll
implement in this project.1 It has three steps. First, read in NFA M and string w, and con-
struct an automaton Mw that recognizes the language {w}. Second, intersect M and Mw.
Third, check whether the intersection is empty. Then M accepts w iff L(M ∩Mw) 6= ∅.

Getting started

You should have been given access on GitHub to a repository called theory-project-team ,
with team replaced by your team’s name. Please clone this repository to wherever you plan
to work on the project:

git clone https://github.com/ND-CSE-30151-SP17/theory-project-team

cd theory-project-team

If you’re the first team member to do this, your repository is empty. In that case, run the
commands:

git pull https://github.com/ND-CSE-30151-SP17/theory-project-skeleton

git push

1It’s not the space-optimal solution, but it factors in a way that will come in handy later.

1

CSE 30151 Spring 2017 Course Project 1

If one of your teammates already did this, there’s no need for you to repeat it. Whenever
we make an update to theory-project-skeleton, we’ll send out an announcement, and
one of you will need to repeat the pull/push (resolving any merge conflicts if necessary) to
get the update.

Now your directory should include the following files (among others):

bin.{linux,macos}/

compare_nfa

singleton_nfa

empty_nfa

intersect_nfa

run_nfa

examples/

empty1.nfa

empty2.nfa

nonempty1.nfa

sipser-n1.nfa

sipser-n2.nfa

sipser-n3.nfa

sipser-n4.nfa

tests/

test-cp1.sh

cp1/

• The bin.linux and bin.macos contain binaries for Linux and Mac, respectively.
You’ll need to do either ln -s bin.linux bin or ln -s bin.macos bin in order to
run the test scripts successfully. The binaries are either reference implementations
for the tools you will implement, or tools used by the test scripts.

• The examples directory contains examples of NFAs that you will use for testing. See
below for a description of the file format.

• The tests directory contains test scripts; tests/test-cp1.sh runs the tests for
CP1. Your code needs to pass all tests in order to get full credit.

• Please place the programs that you write into the cp1/ subdirectory.

1 Data structure

Design a data structure for representing a NFA M . See the emptiness and intersection
operations below to get an idea of how it will be used. These operations are simplest if the
data structure supports the following operations:

2

CSE 30151 Spring 2017 Course Project 1

• Add a new transition q
a−→ r. It should be an error if q or r is not a state or a is not

in the alphabet.

• Iterate over all states.

• Iterate over all input symbols.

• Iterate over transitions out of state q.

• Iterate over transitions on input symbol a.

2 Reading and writing

Write a function to read an NFA from a file (see examples/*.nfa for examples):

• Argument: name of file containing definition of NFA M

• Return: (a data structure representing) M

(From now on, I’m going to stop writing “a data structure representing” and hopefully no
confusion will result.) Write a function to write an NFA to a file:

• Argument: NFA M and name of file to write to

• Effect: Definition of M is written to file

The NFA definition should have the following format.

• Line 1 lists all the states in Q, separated by whitespace.

• Line 2 lists all the alphabet symbols in Σ, separated by whitespace.

• Line 3 is the start state, s.

• Line 4 lists all the accept states in F , separated by whitespace.

• The rest of the lines list the transitions, one transition per line. Each line has three
fields, separated by whitespace:

– a state q

– a symbol a ∈ Σ, or a = & for the empty string2

– a state in δ(q, a).

A // anywhere in a line introduces a comment that extends to the end of the line.3

For example, the following NFA (N1 in the book):

2An ampersand is a stylized et, and ε is a Greek e, so it kind of makes sense.
3The more common # isn’t ideal because this character is often used as an alphabet symbol.

3

CSE 30151 Spring 2017 Course Project 1

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

would be specified by the file (examples/sipser-n1.nfa):

q1 q2 q3 q4 // states

0 1 // alphabet

q1 // start

q4 // accept

q1 0 q1

q1 1 q1

q1 1 q2

q2 0 q3

q2 & q3 // & for epsilon

q3 1 q4

q4 0 q4

q4 1 q4

3 Singleton

Note: Parts 3, 4 and 5 can be written and tested independently.

Write a function that constructs an automaton that accepts a single string.

• Argument: string w

• Return: NFA M such that L(M) = {w}

If |w| = n, this automaton has (n+ 1) states q0, . . . , qn, with q0 the start state and qn the
only accept state, and

δ(qi, a) =

{
{qi+1} if a = wi+1

∅ otherwise.

For example, if w = 010, then the corresponding automaton would be

q0 q1 q2 q3
0 1 0

Write a program called singleton nfa to test your function:

./singleton nfa w

should write the NFA that recognizes {w} to stdout. Test your program by running
test-cp1.sh.

4

CSE 30151 Spring 2017 Course Project 1

4 Emptiness

Write a function that tests whether an NFA recognizes the empty language.

• Argument: NFA M

• Return: true ff L(M) = ∅; false otherwise

Use breadth-first search to check whether there is any path from the start state to an
accept state, and return true iff there is none. (Why shouldn’t you use depth-first search?)

Write a program called empty nfa to test your function:

./empty nfa nfafile

should exit with status 0 if the NFA recognizes the empty language, and 1 otherwise. Test
your program by running test-cp1.sh.

5 Intersection

Write a function to compute the intersection of two NFAs.

• Arguments: NFAs M1,M2

• Return: NFA M such that L(M) = L(M1) ∩ L(M2)

The construction for DFAs is given a brief mention in the book (page 46, footnote 3).
For NFAs with epsilon transitions, it goes like this. Given

M1 = (Q1,Σ1, δ1, s1, F1)

M2 = (Q2,Σ2, δ2, s2, F2)

let

M = (Q,Σ, δ, s, F)

where

Q = Q1 ×Q2

Σ = Σ1 ∩ Σ2

s = (s1, s2)

F = F1 × F2

and δ is defined as follows:

5

CSE 30151 Spring 2017 Course Project 1

• For all q1, q2 ∈ Q, a ∈ Σ, if r1 ∈ δ1(q1, a) and r2 ∈ δ2(q2, a), then (r1, r2) ∈
δ((q1, q2), a).

• For all q1, q2, if r1 ∈ δ1(q1, ε), then (r1, q2) ∈ δ((q1, q2), ε).

• For all q1, q2, if r2 ∈ δ2(q2, ε), then (q1, r2) ∈ δ((q1, q2), ε).

• Nothing else is in δ.

Write a program called intersect nfa to test your function:

./intersect nfa nfafile nfafile

should read two NFAs and write their intersection to stdout. Test your program by running
test-cp1.sh.

6 Put it all together

Put all of the above pieces together to write a function:

• Arguments: NFA M , string w

• Return: true iff M accepts w.

Package your function in a command-line tool called run nfa:

./run nfa nfafile

where nfafile is a file defining an NFA. The program should read lines from stdin and
write to stdout just the lines that are accepted by the NFA. Test your program by running
test-cp1.sh.

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will
clone your repository, run make in subdirectory cp1, and then run tests/test-cp1.sh.
You’re advised to try all of the above steps and ensure that all tests pass.

To submit your work, please push your repository to Github and then create a new
release with tag cp1. If you need to re-submit, create another release with a new tag
starting with cp1, like cp1.1.

6

CSE 30151 Spring 2017 Course Project 1

Rubric

Data structure 3
Reader 3
Writer 3
Singleton 3
Emptiness 6
Intersection 6
Main program 6

Total 30

7

