Course Project 1
Nondeterministic Finite Automata

CSE 30151 Spring 2017

Version of 2017/01/26
Due 2017/02/09 at 11:55pm

We've studied the theory of nondeterministic finite automata, and now it’s time to
implement them. The interesting challenge is that NFAs are nondeterministic, but real
computers are deterministic — how do we simulate nondeterminism?

One option is backtracking: when two transitions are possible, try one, and if it fails,
try the other. But this will lead to a O(2") time algorithm (where n is the input length).
The theory provides another option: convert the NFA to an equivalent DFA. That gives
a O(n) algorithm, but the conversion could take O(2!!) time and space (where |Q| is the
number of states).

It turns out that a O(|Q|n) time solution is possible, and this is the solution you’ll
implement in this project.! It has three steps. First, read in NFA M and string w, and con-
struct an automaton M, that recognizes the language {w}. Second, intersect M and M,,.
Third, check whether the intersection is empty. Then M accepts w iff L(M N M,,) # 0.

Getting started

You should have been given access on GitHub to a repository called theory-project-team,
with team replaced by your team’s name. Please clone this repository to wherever you plan
to work on the project:

git clone https://github.com/ND-CSE-30151-SP17/theory-project-team
cd theory-project-team

If you're the first team member to do this, your repository is empty. In that case, run the
commands:

git pull https://github.com/ND-CSE-30151-SP17/theory-project-skeleton
git push

'Tt’s not the space-optimal solution, but it factors in a way that will come in handy later.

CSE 30151 Spring 2017 Course Project 1

If one of your teammates already did this, there’s no need for you to repeat it. Whenever
we make an update to theory-project-skeleton, we’ll send out an announcement, and
one of you will need to repeat the pull/push (resolving any merge conflicts if necessary) to
get the update.

Now your directory should include the following files (among others):

bin.{linux,macos}/
compare_nfa
singleton_nfa
empty_nfa
intersect_nfa
run_nfa
examples/
emptyl.nfa
empty2.nfa
nonemptyl.nfa
sipser—nl.nfa
sipser-n2.nfa
sipser-n3.nfa
sipser-n4.nfa
tests/
test-cpl.sh
cpl/

e The bin.linux and bin.macos contain binaries for Linux and Mac, respectively.
You’ll need to do either In -s bin.linux bin or 1n -s bin.macos bin in order to
run the test scripts successfully. The binaries are either reference implementations
for the tools you will implement, or tools used by the test scripts.

e The examples directory contains examples of NFAs that you will use for testing. See
below for a description of the file format.

e The tests directory contains test scripts; tests/test-cpl.sh runs the tests for
CP1. Your code needs to pass all tests in order to get full credit.

e Please place the programs that you write into the cp1/ subdirectory.

1 Data structure

Design a data structure for representing a NFA M. See the emptiness and intersection
operations below to get an idea of how it will be used. These operations are simplest if the
data structure supports the following operations:

CSE 30151 Spring 2017 Course Project 1

e Add a new transition ¢ — r. It should be an error if ¢ or r is not a state or a is not
in the alphabet.

Iterate over all states.

Iterate over all input symbols.

Iterate over transitions out of state q.

Iterate over transitions on input symbol a.

2 Reading and writing

Write a function to read an NFA from a file (see examples/*.nfa for examples):
e Argument: name of file containing definition of NFA M
e Return: (a data structure representing) M

(From now on, I'm going to stop writing “a data structure representing” and hopefully no
confusion will result.) Write a function to write an NFA to a file:

e Argument: NFA M and name of file to write to
o Effect: Definition of M is written to file
The NFA definition should have the following format.

e Line 1 lists all the states in @), separated by whitespace.

Line 2 lists all the alphabet symbols in ¥, separated by whitespace.

Line 3 is the start state, s.

Line 4 lists all the accept states in F', separated by whitespace.

The rest of the lines list the transitions, one transition per line. Each line has three
fields, separated by whitespace:

— a state ¢
— asymbol a € ¥, or a = & for the empty string?
— a state in 6(q, a).

A // anywhere in a line introduces a comment that extends to the end of the line.?
For example, the following NFA (N; in the book):

2An ampersand is a stylized et, and ¢ is a Greek e, so it kind of makes sense.
3The more common # isn’t ideal because this character is often used as an alphabet symbol.

CSE 30151 Spring 2017 Course Project 1

0,1 0,1

1 0,¢ 1
O OO

would be specified by the file (examples/sipser-nl.nfa):

ql 92 g3 g4 // states

01 // alphabet
ql // start
q4 // accept
ql 0 q1

ql 1 q1

ql 1 g2

g2 0 g3

g2 & q3 // & for epsilon
q3 1 g4

q4 0 q4

q4 1 g4

3 Singleton
Note: Parts 3, 4 and 5 can be written and tested independently.

Write a function that constructs an automaton that accepts a single string.
e Argument: string w
e Return: NFA M such that L(M) = {w}

If |w| = n, this automaton has (n + 1) states qo, .. ., qn, with g the start state and ¢, the
only accept state, and

otherwise.

For example, if w = 010, then the corresponding automaton would be

(% 0 @ 1 @ 0

Write a program called singleton nfa to test your function:

./singleton.nfa w

should write the NFA that recognizes {w} to stdout. Test your program by running
test-cpl.sh.

CSE 30151 Spring 2017 Course Project 1

4 Emptiness

Write a function that tests whether an NFA recognizes the empty language.
e Argument: NFA M
e Return: true ff L(M) = 0; false otherwise

Use breadth-first search to check whether there is any path from the start state to an
accept state, and return true iff there is none. (Why shouldn’t you use depth-first search?)
Write a program called empty nfa to test your function:

./empty nfa nfafile

should exit with status 0 if the NFA recognizes the empty language, and 1 otherwise. Test
your program by running test-cpl.sh.

5 Intersection

Write a function to compute the intersection of two NFAs.
o Arguments: NFAs My, Mo
e Return: NFA M such that L(M) = L(M;) N L(M>)

The construction for DFAs is given a brief mention in the book (page 46, footnote 3).
For NFAs with epsilon transitions, it goes like this. Given

Ml == (thladlvslaFl)
M2 = (Q27227627827F2)

let
M=(Q,%,d,s,F)
where
Q=0Q1xQ2
Y=X1NXs
s = (s1, $2)
F = F1 X F2

and 9§ is defined as follows:

CSE 30151 Spring 2017 Course Project 1

e For all q1,q2 € @, a € X, if r1 € 41(q1,a) and ro € d2(q2,a), then (ri,7m2) €
((q1,q2),a).

e For all g1, ¢y, if 11 € 61(q1,), then (r1,42) € 6((q1, ¢2), €).
e For all q1, g, if 2 € d2(q2,€), then (q1,72) € 6((q1,2),¢€).
e Nothing else is in 6.
Write a program called intersect_nfa to test your function:
./intersect_nfa nfafile nfafile

should read two NFAs and write their intersection to stdout. Test your program by running
test-cpl.sh.

6 Put it all together

Put all of the above pieces together to write a function:
e Arguments: NFA M, string w
e Return: true iff M accepts w.
Package your function in a command-line tool called run nfa:
./run_nfa nfafile

where nfafile is a file defining an NFA. The program should read lines from stdin and
write to stdout just the lines that are accepted by the NFA. Test your program by running
test-cpl.sh.

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will
clone your repository, run make in subdirectory cpl, and then run tests/test-cpl.sh.
You're advised to try all of the above steps and ensure that all tests pass.

To submit your work, please push your repository to Github and then create a new
release with tag cpl. If you need to re-submit, create another release with a new tag
starting with cp1, like cp1.1.

CSE 30151 Spring 2017

Course Project 1

Rubric

Data structure
Reader

Writer
Singleton
Emptiness
Intersection
Main program

Sy O O W W W Ww

Total

30

