
Course Project 2

Regular Expressions

CSE 30151 Spring 2017

Version of February 16, 2017

In this project, you’ll write a regular expression matcher similar to grep, called mere (for match
and echo using regular expression). This has three major steps: first, parse a regular expression into
regular operations; second, execute the regular operations to create a NFA; third, run the NFA
on input strings. Because we use a linear-time NFA recognition algorithm, our regular expression
matcher will actually be much faster than one written using Perl or Python’s regular expression
engine. (Most implementations of grep, as well as Google RE2, are linear like ours.)

You will need a correct solution for CP1 to complete this project. If your CP1 doesn’t
work correctly (or you just weren’t happy with it), you may use the official solution or another
team’s solution, as long as you properly cite your source.

Getting started

We’ve made some minor updates, so please have one team member run the commands

git pull https://github.com/ND-CSE-30151-SP17/theory-project-skeleton

git push

and then other team members should run git pull. The project repository should then include
the following files:

bin/

compare_nfa

parse_re

union_nfa

concat_nfa

star_nfa

mere

examples/

sipser-n{1,2,3,4}.nfa

tests/

test-cp2.sh

time-cp2.sh

cp2/

Please place the programs that you write into the cp2/ subdirectory.

1

CSE 30151 Spring 2017 Course Project 2

1 Parser

Note: Parts 1 and the subparts of 2 and 3 can all be written and tested independently.

In this first part, we’ll write a parser for regular expressions. Our regular expressions allow union
(|), concatenation, Kleene star (*), and empty set (@). Parentheses are used for grouping. The
grammar is as follows. The start nonterminal S is Union, and we write terminal symbols inside
boxes.

Union→ Union|Concat

Union→ Concat

Concat→ Concat Unary if not followed by | or) or end of string

Concat→ ε otherwise

Unary→ Primary*

Unary→ Primary

Primary→ a for a not in @ () * |

Primary→ @

Primary→ (Union)

A parser for CFG for a programming language essentially converts the CFG into a deterministic
pushdown automaton (DPDA) and runs the DPDA on programs. There are several ways of doing
this conversion. This is a complex topic that you can learn more about by taking Compilers. Here,
we’ll take the simplest route, a recursive-descent parser (which many of you implemented in Data
Structures for a fragment of Scheme). The pseudocode is shown in Algorithm 1. The top-level
function is parseRegexp. For each nonterminal symbol X, there is a function, parseX, which tries
to read in a string that matches X. For example, if the regular expression is ab, the trace of the
parser is shown in Figure 1.

“If this is a pushdown automaton,” you must be asking, “where is the stack?” The call stack
itself is being used as the stack: every time we call a function, we push a return address, and every
time a function returns, the return address is popped. So the stack alphabet is the set of return
addresses, of which there is clearly a finite number.

Each of these functions returns the semantics of the (sub)expression that it reads in. The
functions emptyset, epsilon, and symbol create semantic objects, and the functions union, concat,
star build semantic objects from smaller semantic objects. Eventually, the semantics of a regular
expression will be an NFA equivalent to the regular expression.

But initially, to facilitate unit testing, the semantics will just be a string containing the regular
expression written in prefix notation (kind of like Scheme). For example, the regular expression
(ab|a)* should become the string:

star(union(concat(symbol(a),symbol(b)),symbol(a)))

So, for testing purposes, these functions should do the following:

emptyset()

• Arguments: none

2

CSE 30151 Spring 2017 Course Project 2

line input
parseRegexp() ab

2: M ← parseUnion() ab

8: M ← parseConcat() ab

17: M ← parseUnary() ab

22: M ← parsePrimary() ab

38: read a b

39: return symbol(a) b

22: M ← symbol(a) b

29: return symbol(a) b

17: M ← symbol(a) b

19: M ← concat(symbol(a),ParseUnary()) b

22: M ← parsePrimary() b

38: read b ε
39: return symbol(b) ε
22: M ← symbol(b) ε
29: return symbol(b) ε
19: M ← concat(symbol(a), symbol(b)) ε
20: return concat(symbol(a), symbol(b)) ε
8: M ← concat(symbol(a), symbol(b)) ε

12: return concat(symbol(a), symbol(b)) ε
2: M ← concat(symbol(a), symbol(b)) ε
4: return concat(symbol(a), symbol(b)) ε

concat(symbol(a), symbol(b)) ε

Figure 1: Trace of parser (Algorithm 1) for example regular expression ab. Computed values that
have been substituted into the code are shown in blue.

3

CSE 30151 Spring 2017 Course Project 2

Algorithm 1 Pseudocode for recursive-descent parser.

1: function parseRegexp()
2: M ← parseUnion()
3: if no next token then
4: return M
5: else
6: error

7: function parseUnion()
8: M ← parseConcat()

9: while next token is | do

10: read |

11: M ← union(M, parseConcat())

12: return M

13: function parseConcat()

14: if no next token, or next token is | or) then

15: return epsilon()
16: else
17: M ← ParseUnary()

18: while next token exists and is not | or) do

19: M ← concat(M,ParseUnary())

20: return M

21: function parseUnary()
22: M ← parsePrimary()

23: if next token is * then

24: read *

25: return star(M)
26: else
27: return M

28: function parsePrimary()

29: if next token is (then

30: read (

31: M ← parseUnion()

32: read)

33: return M
34: else if next token is @ then

35: read @

36: return emptyset()

37: else if next token is not in () * | then
38: read a
39: return symbol(a)
40: else
41: error

4

CSE 30151 Spring 2017 Course Project 2

• Returns: string "emptyset()"

epsilon()

• Arguments: none

• Returns: string "epsilon()"

symbol(a)

• Argument: alphabet symbol a ∈ Σ

• Returns: string "symbol(a)"

union(M1,M2)

• Arguments: strings M1,M2

• Returns: string "union(M1,M2)"

concat(M1,M2)

• Arguments: strings M1,M2

• Returns: string "concat(M1,M2)"

star(M)

• Arguments: string M

• Returns: string "star(M)"

Write a program called parse re to test your parser:

parse re regexp

should output the prefix-notation version of regexp. Test your program by running test-cp2.sh.

2 Easy operations

Write functions that construct the following NFAs.

emptyset()

• Arguments: none

• Returns: NFA recognizing the empty language ∅

epsilon()

• Arguments: none

• Returns: NFA recognizing the language {ε}

symbol(a)

• Argument: Alphabet symbol a ∈ Σ

• Returns: NFA recognizing the language {a}

These operations are trivial to implement, and we won’t bother writing tests for them.

5

CSE 30151 Spring 2017 Course Project 2

3 Regular operations

Write functions that perform the regular operations, using the constructions given in the book:

union(M1,M2)

• Arguments: NFAs M1,M2

• Returns: NFA recognizing language L(M1) ∪ L(M2)

concat(M1,M2)

• Arguments: NFAs M1,M2

• Returns: NFA recognizing language L(M1)L(M2)

star(M)

• Argument: NFA M

• Returns: NFA recognizing language L(M)∗

Optional: The book’s construction creates a lot of ε-transitions, and in later projects, these
ε-transitions will proliferate. For greater efficiency, you could try using the construction in Ap-
pendix A, which creates no ε-transitions. (However, note that if you do this, then the tests for
union_nfa, concat_nfa, and star_nfa will fail; please contact the instructor if you choose this
option.)

Write three programs, called union nfa, concat nfa, and star nfa, to test your operations.
Each takes one or two command-line arguments, each of which is the name of a file containing a
NFA, in the same format you used in CP1, and each writes a NFA to stdout in the same format.

union nfa nfafile1 nfafile2 Writes union of NFAs to stdout
concat nfa nfafile1 nfafile2 Writes concatenation of NFAs to stdout
star nfa nfafile Writes Kleene star of NFA to stdout

Test your programs by running test-cp2.sh.

4 Putting it together

Write a function that puts all the above functions and your NFA simulator from CP1 together:

• Arguments: regular expression α, string w

• Return: true if α matches w, false otherwise.

Put your function into a command-line tool called mere:

mere regexp

where regexp is a regular expression. The program should read zero or more lines from stdin
and write to stdout just the lines that match the regular expression. Unlike grep, the regular
expression should match the entire line, not just part of the line. Test your program by running
tests/test-cp2.sh.

6

CSE 30151 Spring 2017 Course Project 2

5 Testing performance

Now run tests/time-cp2.sh. This script, for n = 1, . . . , 20, creates the regular expression

(a|) · · · (a|)︸ ︷︷ ︸
n copies

a · · · a︸ ︷︷ ︸
n copies

and tries to match it against the string an, using a short Perl script, our solution (bin/mere), and
your solution (cp2/mere). Observe that Perl has an exponential running time, whereas our solution
has roughly quadratic running time. Hopefully, yours does too.

In order to get full credit, your solution must run faster than Perl for some value of n. If needed,
you may increase the maximum value of n by modifying the variable NMAX in time-cp2.sh. Please
be sure to commit your change.

However, a better strategy would be to optimize your code, looking in particular for inadvertent
linear searches and copies. (Python code is especially prone to the former, and C++ code is espe-
cially prone to the latter.) The hot spots are the innermost loops of the intersection and emptiness
algorithms, so look there first.

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will clone your
repository, cd into its root directory, run make -C cp2, and run tests/test-cp2.sh. You’re ad-
vised to try all of the above steps and ensure that all tests pass.

To submit your work, please push your repository to Github and then create a new release with
tag version cp2 (note that the tag version is not the same thing as the release title). If you are
making a partial submission, then use a tag version of the form cp2-12345, indicating which parts
you’re submitting.

Rubric

Parser 9
Easy operations 3
Union 4
Concatenation 4
Kleene star 4
Main program 3
Speed 3

Total 30

7

CSE 30151 Spring 2017 Course Project 2

A The Berry-Sethi construction

The Berry-Sethi construction [Berry and Sethi, 1986] is a more efficient way of converting a regular
expression to a NFA. Unlike the construction in the book, it does not create any ε-transitions.

Base cases If α = ∅, α = ε, or α is a single symbol a ∈ Σ, the construction is the same as in the
book.

Union If α = α1 ∪ α2:

• Convert α1 and α2 to

M1 = (Q1,Σ, s1, F1)

M2 = (Q2,Σ, s2, F2)

where Q1 ∩Q2 = ∅.

• Create a new start state s.

• For each transition si
a−→ r, create a transition s

a−→ r.

• State s is an accept state if either s1 or s2 is.

• Delete s1, s2, and their outgoing transitions.

Concatenation If α = α1 ◦ α2:

• Convert α1 and α2 to

M1 = (Q1,Σ, s1, F1)

M2 = (Q2,Σ, s2, F2)

where Q1 ∩Q2 = ∅.

• For each accept state q ∈ F1 and transition s2
a−→ r, create a transition q

a−→ r.

• Each accept state q ∈ F1 continues to be an accept state iff s2 is an accept state.

• Delete s2 and its outgoing transitions.

Kleene star If α = α∗
1:

• Convert α1 to

M1 = (Q1,Σ, s1, F1).

• For each accept state q ∈ F1 and transition s1
a−→ r, create a transition q

a−→ r.

• Make s1 an accept state.

References

Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theoretical Com-
puter Science, 48:117–126, 1986. URL http://dx.doi.org/10.1016/0304-3975(86)90088-5.

8

