
Course Project 4

The Mire Programming Language

CSE 30151 Spring 2017

Version of April 25, 2017

In this last project, we’ll extend regular transduction expressions (RTEs) into a full-
fledged programming language, Mire (match iterated regular expression). A Mire program
is a sequence of RTEs, separated by semicolons (;). The expressions are executed in se-
quence, with the output of each feeding into the input of the next (just like the composition
operation in CP3).

Regular transductions are closed under composition, so adding composition to RTEs
doesn’t increase their power. But one more small change does: If an expression is surrounded
by curly braces ({. . .}), then that expression is executed zero or more times, like a while
loop. As you showed in HW7, this makes our expression language equivalent to Turing
machines! Indeed, nondeterministic Turing machines are fairly easy to simulate in Mire.

Disclaimer: Unlike more, which was actually a genuinely useful tool, Mire is an example
of a Turing tarpit, a language “in which everything is possible but nothing of interest is
easy.”1 Well, the nondeterminism in the language makes some interesting things surpris-
ingly easy, but I doubt that you’d ever want to write a real program in it.

Getting started

We’ve made some updates, so please have one team member run the commands

git pull https://github.com/ND-CSE-30151-SP17/theory-project-skeleton

git push

and then other team members should run git pull.
You will need a correct solution for CP3 for this project. You may use the

official solution or another team’s solution, as long as you properly cite your source.

1Alan Perlis, 1982. Epigrams on programming. ACM SIGPLAN Notices 17(9):7–13.

1

CSE 30151 Spring 2017 Course Project 4

Examples

The transformation (1(1:))* only accepts an even number of 1’s and deletes every other 1.
If we wrap a loop around this, {(1(1:))*)} halves the number of 1’s repeatedly. If we
require that a single 1 remains afterwards, then the number of 1’s must have originally
been a power of two. Thus, the following program accepts the language {12n | n ≥ 0}:

// This is examples/log2a.mire

{(1(1:))*}; // delete every other 1

1 // must be exactly one 1 left

Try the following (user input in blue):

$ python/mire -f examples/log2a.mire

1111 input string
1 output string

The -f flag means to read the program from a file instead of the command line. To under-
stand better what’s going on, turn on the -v flag for verbose output:

$ python/mire -v -f examples/log2a.mire

1111 input string
[1] 11 delete every other 1
[1;1] 1 delete every other 1
[1;1;2] 1 must be exactly one 1 left
1 output string

The verbose output shows each step of the run. For example, the line

[1;1;2] 1

means that steps 1, 1, and 2 were applied to the input string (1111) to yield the string
1. So, what’s happening above is that the first step applies twice, transforming the string
to 11, then 1. At that point, the string matches the second step, so the program exits the
loop and accepts (with output 1).

But if the input string is 111111, then the first line will transform it to 111, and at that
point, the first line can’t repeat anymore (because it only matches even-length strings) and
the second line can’t match either, so the program rejects.

Let’s extend the above program to not just output 1, but to output 1n, where n is the
log (base 2) of the input.

// This is examples/log2u.mire

1*(:#); // append counter

{(1(1:))*#1*(:1)}; // delete every other 1, increment counter

(1#:)1* // remove input and separator

2

CSE 30151 Spring 2017 Course Project 4

Here’s an example run, on the same input string:

$ python/mire -v -f examples/log2u.mire

1111 input string
[1] 1111# append counter
[1;2] 11#1 delete every other 1, increment counter
[1;2;2] 1#11 delete every other 1, increment counter
[1;2;2;3] 11 remove input and separator
11 output string

As a final example, recall from CP3 that the RTE (0|1)*(0:1)(1:0)* increments a
binary number. We can use this trick to write the input and output in binary instead of
unary.

// This is examples/log2b.mire

10*(:#0*); // append counter

{10*(0:)#(0|1)*(0:1)(1:0)*}; // delete 0, increment counter

(1#:)(0|1)* // remove input and separator

Example run:

$ python/mire -v -f examples/log2b.mire

100 input string
[1] 100# append counter
[1;2] 10#1 delete 0, increment counter
[1;2;2] 1#10 delete 0, increment counter
[1;2;2;3] 10 remove input and separator
10 output string

This is similar to the previous example, but notice how the counter is initialized in the
first step. This is because we don’t know yet how many bits we need for the counter,
so we simply append 0*, for zero or more 0s. This means that there are multiple possible
intermediate strings, and the verbose output just shows one possibility. So when the second
line increments the counter, it magically widens as needed!

There’s one more example in the repository, examples/factor.mire, which illustrates
some more techniques.

1 Exercises

The test script tests/test-cp41.sh provides tests for the following Mire programming
exercises.

a. Write a Mire program that accepts any string w ∈ {a, b}∗ and outputs wR. Please
name your program cp4/reverse.mire.

3

CSE 30151 Spring 2017 Course Project 4

b. Write a Mire program that accepts any string ww where w ∈ {a, b} and outputs w.
Please name your program cp4/uncopy.mire.

c. Write a Mire program that accepts any string w ∈ {a, b}∗ that can be permuted into
a string w′ matching a*b*, and outputs w′. Call your program cp4/sort.mire.

2 Parser

2.1 Preprocessing

To improve readability, a Mire program can have extra whitespace and comments. Write
a preprocessing function:

• Argument: string α

• Return: copy of α preprocessed as follows

1. Delete every occurrence of // and everything to its right, to the end of the line.

2. Remove leading and trailing whitespace from each line.

3. Join lines together, without any separator.

For example,

(na(na)* // comment

(hey jude))*

should become "(na(na)*(hey jude))*".

2.2 Composition and loops

Write code to extend the syntax to handle composition (;) and loops ({. . .}). For simplicity,
assume that a loop can contain only a single expression; a loop can’t contain a composition
or another loop. (You’re welcome to try a more general case if you want to.)

You can do this by extending the grammar and its recursive-descent parser, but because
the new syntax is so simple, it’s also fine just to split the string on semicolons and check
whether each expression begins/ends with curly braces.

2.3 Testing

Write a program parse_program that can be run in two ways:

parse program program
parse program -f filename

4

CSE 30151 Spring 2017 Course Project 4

In the first form, the program is given on the command line; in the second form, the
program is contained in the specified file. For each step of the program, parse program

should output a string representing the parse of that step, as in CP2 and CP3. If a program
step is a loop, then that step’s parse should be surrounded by loop(. . .). For example,
./parse program "{(1(1:))*};1" should output

loop(star(concat(symbol(1),transduce(symbol(1),epsilon()))))

symbol(1)

2.4 Interface with interpreter

To ready your parser for the next part of the assignment, have it output a data structure
representing a Mire program. A suggested interface for the parser function is:

• Argument: string α

• Return: a list [(M1, `1), (M2, `2), . . . , (Mm, `m)], where each Mi is a NFT and each `i
is a boolean indicating whether Mi is in a loop.

3 Interpreter

The interpreter for the program should take a program P and input string w, and run the
steps of P . Just as a NFT can have multiple output strings, a Mire program can also have
multiple output strings. As in CP3, we’re just going to take one arbitrary output string.

If the program has no loops, interpreting it would be straightforward:

function run-noloop(P,w) . Don’t implement this
M = singleton(w)
for i = 1 to m do

M = M .Mi

return an arbitrary output string of M

You could visualize a program without loops as a graph; for example, a three-step program
without loops (where Mw = singleton(w)):

Mw Mw . M1 Mw . M1 . M2 Mw . M1 . M2 . M3

apply M1 apply M2 apply M3

But with loops, interpretation becomes more complex. We can visualize the program as
a graph whose edges are the steps Mi. For example, a three-step program M1;{M2};M3

can be visualized as:

5

CSE 30151 Spring 2017 Course Project 4

Mw Mw . M1 Mw . M1 Mw . M1 . M3

apply M1 do nothing apply M3

Mw . M1 . M2 Mw . M1 . M2 Mw . M1 . M2 . M3

apply M2

do nothing apply M3

...

apply M2

At each of the nodes in the second column, the program has a choice: either repeat the loop
again (down arrow) or quit the loop (right arrow). In order to navigate all these choices,
we do a breadth-first search on this graph. The pseudocode is below:

function run(P,w)
let A be an empty queue
Mw = singleton(w)
push (Mw, 0) to A
while |A| > 0 do

pop (M, i) from A
if M has an accepting path then

if i = m then
return M . end of program

else if `i+1 then . updated 2017/04/25
push (M, i+ 1) to A . do nothing and go to next step
push (M .Mi+1, i) to A . run step (i+ 1) and repeat loop

else
push (M .Mi+1, i+ 1) to A . run step (i+ 1) and go to next step

return emptyset()

The return value of this function is a NFT M that only accepts w as input, and outputs
zero or more strings. If there are no output strings, that means the program rejects w.
Otherwise, the program accepts w, and we can print out an arbitrary output string of M .

4 Putting it together

Put all of the above into a command-line interpreter called mire that can be invoked in
one of two ways:

mire program
mire -f filename

6

CSE 30151 Spring 2017 Course Project 4

In the first form, program is a program. In the second form, filename contains a program. In
either case, the program should be preprocessed for comments and whitespace and parsed
into a form P that can be passed to run.

Then, for each input string w read from stdin:

• M = run(P,w)

• If M has an accepting path, print one arbitrary output string.

Test your interpreter by running test-cp4.sh.

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will clone
your repository, cd into its root directory, run make -C cp4, and run tests/test-cp4.sh.
You’re advised to try all of the above steps and ensure that all tests pass.

To submit your work: If you are working in a branch, please merge to master. Push
your repository to Github and then create a new release with tag version cp4 (note that
the tag version is not the same thing as the release title). If you are making a partial
submission, then use a tag version of the form cp4-1234, indicating which parts you’re
submitting.

Rubric

Exercises 9
Preprocessor 3
Parser 6
Interpreter 9
Main program 3

Total 30

7

