Statistics for the Life Sciences

Math 20340 Section 01, Fall 2008

Homework 10 Solutions

• **10.18**:

– a:
$$16 + 8 - 2 = 22$$

• **10.19**:

- a:
$$s^2 = \frac{9*3.4+3*4.9}{10+4-2} = 3.775$$

- 10.21:
 - **– a**: $H_0: \mu_1 = \mu_2; H_a: \mu_1 \neq \mu_2$
 - **b**: Test statistic > 2.771 or < -2.771 (two-tailed test; t distribution with 27 d.o.f.)
 - c: Pooled estimator for variance: $\frac{15*4.8+12*5.9}{27} = 5.288...;$ test statistic is $(\mu_1 \mu_2)/\sqrt{5.288(1/16 + 1/13)} = 2.794...$
 - **d**: Since $t_{.005}$ is 2.771, the approximate *p*-value is just under 1%
 - e: Results are highly significant (accept H_a at 1% significance)
- 10.28:
 - a: Sample 1 has $\bar{x}_1 = .0125$; $s_1 = .001509$. Sample 2 has $\bar{x}_2 = .0138$; $s_2 = .001932$. Pooled estimator is s = .001733. Test statistic is -1.68. Looking at t table (18 d.o.f.) we see that data shows no significant difference between the means (p-value over 10%).
 - b: 95% confidence interval for difference is

$$(\bar{x}_1 - \bar{x}_2) \pm 2.101 \sqrt{\frac{s_1^2}{10} + \frac{s_1^2}{10}} = (-.000328, .002928)$$

Since 0 is in this interval, the result of part b) agrees with the result of part a).

- 10.35:
 - **a**: The *p*-value is between 2% and 5%; so the difference is significant (we reject H_0 at 5%) but not highly so (we do not reject H_0 at 1%)
 - **b**: (0.014, .586)

- c: We would need at least 62 pairs (assuming s_d^2 stays at .16)
- 10.40: The description seems to suggests a one-tailed test, but part a) seems instead to ask for a two-tailed test; I've done both.
 - a: $\mu_d = -16.77$ (taking Albertsons-Ralphs); $s_d = 11.18$. Assuming differences are normally distributed, test statistic (which has value -2.998) is a t distribution with 3 d.o.f.

The critical values are $t_{.05} = 2.353.t_{.025} = 3.182$. So, if we are doing the two-tailed test $H_0: \mu_d = 0$ against $H_a: \mu_d \neq 0$, the results are not significant; but if we are doing the one-tailed test $H_0: \mu_d = 0$ against $H_a: \mu_d < 0$, the result is significant (we would reject null at 5% but not at 1%).

- **b**: Two-tailed test: *p*-value is between 5% and 10%. One-tailed test: *p*-value is between 2.5% and 5%
- c: (-49.43, 15.89). At 1% significance, can't detect a difference between the averages

• **10.41**:

- a: There are two populations: drivers approaching Prohibitive signs, and drivers approaching Permissive signs. A random sample of drivers has been picked, and presented with Prohibitive signs. Then that *same* random sample is presented with Permissive signs. So there is a pairing of the two random samples: first driver in first sample goes with first driver of second sample, etc.
- **b**: The *p*-value is < 1%, so there is a significant difference
- c: (80.47, 133.32)
- 10.48: Test statistic is 24 * 21.4/15 = 34.24. If the variance truly was 15, this would be a χ^2 reading with 24 d.o.f., with 5% critical value 36.41. So (at 5% significance) there is not enough evidence.
- 10.50:
 - **– a**: $s^2 = .699$.
 - **b**: (.29027, 3.3897)
 - c: Test statistic: 5.2428. Not enough evidence to reject null
 - d: p-value is greater than 20%
- 10.56: Want to test H₀: σ² = 1600 against H_a: σ² > 1600 using data s² = 2350 with n = 40. Test statistic is 39 * 2350/1600 = 57.28127. Since we're doing a one-tailed test, we want to compare this to the critical value χ²_{.05} (with 39 d.o.f.). We can't see this value directly from Table 5 in the book, because it skips from d.o.f. 30 to d.o.f. 40; but notice that the 5% critical value for 40 is 55.75, and the 5% critical values increase as d.o.f. increases; so the 5% critical value for 39 will be something (a little) less than 55.75. Therefore we can safely say that the data is significant; there is reason to believe (at 5% significance) that σ² > 1600 and so σ > 40.