Quiz 4 (Dec. 8) 16

All questions relate to the matrix game whose payoff matrix is as shown:

1. Say what is P_1 's maximum security (pure) strategy (there might be more than one), what is P_2 's maximum security (pure) strategy (again, there might be more than one), and what the values of u_1 and u_2 are.

Min of column maxes; Pr's max seconty strategies are 6, tr, t3, t4, U2 = 1

2. Does the game have a saddle point? If so, identify it; if not, say briefly why it does not.

No. None of the DW MINS are Column Maxes

So there is no entry that is simultaneously a Pow Min + Column Max

[OR: U, (Uz, so 9pply Thm 9.3.2]

3. Suppose that P_1 plays the mixed strategy (0, 4/7, 3/7). What is the worst-case (from P_1 's perspective) payoff to P_1 , over all possible (mixed or pure) responses from P_2 ?

4. Suppose that P_2 plays the mixed strategy (3/7, 3/7, 0, 1/7). What is the worst-case (from P_2 's perspective) payoff to P_1 , over all possible (mixed or pure) responses from P_1 ?

$$\begin{bmatrix} 0 & -1 & 1 & -2 \\ -2 & 1 & -1 & -2 \\ 1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} = \begin{bmatrix} -\frac{5}{7} \\ -\frac{5}{7} \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -\frac{5}{7} \\ 4 \end{bmatrix}$$
Max here

is $\frac{5}{7}$

5. What can you say about the value of the game, based on your answers to the last two parts?

3) Says
$$\sqrt{7} \ge -\frac{5}{7}$$

4) Says $\sqrt{2} \le -\frac{5}{7}$
Since $\sqrt{1} = \sqrt{2}$, Can conclude that value of game is $\frac{101}{7}$