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Graph Theory

“Begin at the beginning,” the King said, gravely, “and go on till you

come to the end; then stop.”

— Lewis Carroll, Alice in Wonderland

The Pregolya River passes through a city once known as Königsberg. In the 1700s

seven bridges were situated across this river in a manner similar to what you see

in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard

as they tried, no resident of the city was ever able to walk a route that crossed each

of these bridges exactly once. The Swiss mathematician Leonhard Euler learned

of this frustrating phenomenon, and in 1736 he wrote an article [98] about it.

His work on the “Königsberg Bridge Problem” is considered by many to be the

beginning of the field of graph theory.

FIGURE 1.1. The bridges in Königsberg.
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At first, the usefulness of Euler’s ideas and of “graph theory” itself was found

only in solving puzzles and in analyzing games and other recreations. In the mid

1800s, however, people began to realize that graphs could be used to model many

things that were of interest in society. For instance, the “Four Color Map Conjec-

ture,” introduced by DeMorgan in 1852, was a famous problem that was seem-

ingly unrelated to graph theory. The conjecture stated that four is the maximum

number of colors required to color any map where bordering regions are colored

differently. This conjecture can easily be phrased in terms of graph theory, and

many researchers used this approach during the dozen decades that the problem

remained unsolved.

The field of graph theory began to blossom in the twentieth century as more

and more modeling possibilities were recognized — and the growth continues. It

is interesting to note that as specific applications have increased in number and in

scope, the theory itself has developed beautifully as well.

In Chapter 1 we investigate some of the major concepts and applications of

graph theory. Keep your eyes open for the Königsberg Bridge Problem and the

Four Color Problem, for we will encounter them along the way.

1.1 Introductory Concepts

A definition is the enclosing a wilderness of idea within a wall of

words.

— Samuel Butler, Higgledy-Piggledy

1.1.1 Graphs and Their Relatives

A graph consists of two finite sets, V and E. Each element of V is called a vertex

(plural vertices). The elements of E, called edges, are unordered pairs of vertices.

For instance, the set V might be {a, b, c, d, e, f, g, h}, and E might be {{a, d},

{a, e}, {b, c}, {b, e}, {b, g}, {c, f}, {d, f}, {d, g}, {g, h}}. Together, V and E
are a graph G.

Graphs have natural visual representations. Look at the diagram in Figure 1.2.

Notice that each element of V is represented by a small circle and that each ele-

ment of E is represented by a line drawn between the corresponding two elements

of V .

a b c d

hgfe

FIGURE 1.2. A visual representation of the graph G.
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As a matter of fact, we can just as easily define a graph to be a diagram consist-

ing of small circles, called vertices, and curves, called edges, where each curve

connects two of the circles together. When we speak of a graph in this chapter, we

will almost always refer to such a diagram.

We can obtain similar structures by altering our definition in various ways. Here

are some examples.

1. By replacing our set E with a set of ordered pairs of vertices, we obtain

a directed graph, or digraph (Figure 1.3). Each edge of a digraph has a

specific orientation.

FIGURE 1.3. A digraph.

2. If we allow repeated elements in our set of edges, technically replacing our

set E with a multiset, we obtain a multigraph (Figure 1.4).

FIGURE 1.4. A multigraph.

3. By allowing edges to connect a vertex to itself (“loops”), we obtain a pseu-

dograph (Figure 1.5).

FIGURE 1.5. A pseudograph.
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4. Allowing our edges to be arbitrary subsets of vertices (rather than just pairs)

gives us hypergraphs (Figure 1.6).

e1

e5

e4

e3

e2

FIGURE 1.6. A hypergraph with 7 vertices and 5 edges.

5. By allowing V or E to be an infinite set, we obtain infinite graphs. Infinite

graphs are studied in Chapter 3.

In this chapter we will focus on finite, simple graphs: those without loops or

multiple edges.

Exercises

1. Ten people are seated around a circular table. Each person shakes hands

with everyone at the table except the person sitting directly across the table.

Draw a graph that models this situation.

2. Six fraternity brothers (Adam, Bert, Chuck, Doug, Ernie, and Filthy Frank)

need to pair off as roommates for the upcoming school year. Each person

has compiled a list of the people with whom he would be willing to share a

room.

Adam’s list: Doug

Bert’s list: Adam, Ernie

Chuck’s list: Doug, Ernie

Doug’s list: Chuck

Ernie’s list: Ernie

Frank’s list: Adam, Bert

Draw a digraph that models this situation.

3. There are twelve women’s basketball teams in the Atlantic Coast Confer-

ence: Boston College (B), Clemson (C), Duke (D), Florida State (F), Geor-

gia Tech (G), Miami (I), NC State (S), Univ. of Maryland (M), Univ. of

North Carolina (N), Univ. of Virginia (V), Virginia Tech (T), and Wake

Forest Univ. (W). At a certain point in midseason,

B has played I, T*, W

C has played D*, G
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D has played C*, S, W

F has played N*, V

G has played C, M

I has played B, M, T

S has played D, V*

M has played G, I, N

N has played F*, M, W

V has played F, S*

T has played B*, I

W has played B, D, N

The asterisk(*) indicates that these teams have played each other twice.

Draw a multigraph that models this situation.

4. Can you explain why no resident of Königsberg was ever able to walk a

route that crossed each bridge exactly once? (We will encounter this ques-

tion again in Section 1.4.1.)

1.1.2 The Basics

Your first discipline is your vocabulary;

— Robert Frost

In this section we will introduce a number of basic graph theory terms and

concepts. Study them carefully and pay special attention to the examples that are

provided. Our work together in the sections that follow will be enriched by a solid

understanding of these ideas.

The Very Basics

The vertex set of a graph G is denoted by V (G), and the edge set is denoted

by E(G). We may refer to these sets simply as V and E if the context makes the

particular graph clear. For notational convenience, instead of representing an edge

as {u, v}, we denote this simply by uv. The order of a graph G is the cardinality

of its vertex set, and the size of a graph is the cardinality of its edge set.

Given two vertices u and v, if uv ∈ E, then u and v are said to be adjacent. In

this case, u and v are said to be the end vertices of the edge uv. If uv 6∈ E, then u
and v are nonadjacent. Furthermore, if an edge e has a vertex v as an end vertex,

we say that v is incident with e.

The neighborhood (or open neighborhood) of a vertex v, denoted by N(v), is

the set of vertices adjacent to v:

N(v) = {x ∈ V | vx ∈ E}.
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The closed neighborhood of a vertex v, denoted by N [v], is simply the set {v} ∪
N(v). Given a set S of vertices, we define the neighborhood of S, denoted by

N(S), to be the union of the neighborhoods of the vertices in S. Similarly, the

closed neighborhood of S, denoted N [S], is defined to be S ∪ N(S).
The degree of v, denoted by deg(v), is the number of edges incident with v. In

simple graphs, this is the same as the cardinality of the (open) neighborhood of v.

The maximum degree of a graph G, denoted by ∆(G), is defined to be

∆(G) = max{deg(v) | v ∈ V (G)}.

Similarly, the minimum degree of a graph G, denoted by δ(G), is defined to be

δ(G) = min{deg(v) | v ∈ V (G)}.

The degree sequence of a graph of order n is the n-term sequence (usually written

in descending order) of the vertex degrees.

Let’s use the graph G in Figure 1.2 to illustrate some of these concepts: G
has order 8 and size 9; vertices a and e are adjacent while vertices a and b are

nonadjacent; N(d) = {a, f, g}, N [d] = {a, d, f, g}; ∆(G) = 3, δ(G) = 1; and

the degree sequence is 3, 3, 3, 2, 2, 2, 2, 1.

The following theorem is often referred to as the First Theorem of Graph The-

ory.

Theorem 1.1. In a graph G, the sum of the degrees of the vertices is equal to

twice the number of edges. Consequently, the number of vertices with odd degree

is even.

Proof. Let S =
∑

v∈V deg(v). Notice that in counting S, we count each edge

exactly twice. Thus, S = 2|E| (the sum of the degrees is twice the number of

edges). Since S is even, it must be that the number of vertices with odd degree is

even.

Perambulation and Connectivity

A walk in a graph is a sequence of (not necessarily distinct) vertices v1, v2, . . . , vk

such that vivi+1 ∈ E for i = 1, 2, . . . , k − 1. Such a walk is sometimes called

a v1–vk walk, and v1 and vk are the end vertices of the walk. If the vertices in a

walk are distinct, then the walk is called a path. If the edges in a walk are distinct,

then the walk is called a trail. In this way, every path is a trail, but not every trail

is a path. Got it?

A closed path, or cycle, is a path v1, . . . , vk (where k ≥ 3) together with the

edge vkv1. Similarly, a trail that begins and ends at the same vertex is called a

closed trail, or circuit. The length of a walk (or path, or trail, or cycle, or circuit)

is its number of edges, counting repetitions.

Once again, let’s illustrate these definitions with an example. In the graph of

Figure 1.7, a, c, f , c, b, d is a walk of length 5. The sequence b, a, c, b, d represents

a trail of length 4, and the sequence d, g, b, a, c, f , e represents a path of length 6.
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FIGURE 1.7.

Also, g, d, b, c, a, b, g is a circuit, while e, d, b, a, c, f , e is a cycle. In general, it

is possible for a walk, trail, or path to have length 0, but the least possible length

of a circuit or cycle is 3.

The following theorem is often referred to as the Second Theorem in this book.

Theorem 1.2. In a graph G with vertices u and v, every u–v walk contains a u–v
path.

Proof. Let W be a u–v walk in G. We prove this theorem by induction on the

length of W . If W is of length 1 or 2, then it is easy to see that W must be a path.

For the induction hypothesis, suppose the result is true for all walks of length less

than k, and suppose W has length k. Say that W is

u = w0, w1, w2, . . . , wk−1, wk = v

where the vertices are not necessarily distinct. If the vertices are in fact distinct,

then W itself is the desired u–v path. If not, then let j be the smallest integer such

that wj = wr for some r > j. Let W1 be the walk

u = w0, . . . , wj , wr+1, . . . , wk = v.

This walk has length strictly less than k, and therefore the induction hypothesis

implies that W1 contains a u–v path. This means that W contains a u–v path, and

the proof is complete.

We now introduce two different operations on graphs: vertex deletion and edge

deletion. Given a graph G and a vertex v ∈ V (G), we let G − v denote the graph

obtained by removing v and all edges incident with v from G. If S is a set of

vertices, we let G − S denote the graph obtained by removing each vertex of S
and all associated incident edges. If e is an edge of G, then G − e is the graph

obtained by removing only the edge e (its end vertices stay). If T is a set of edges,

then G − T is the graph obtained by deleting each edge of T from G. Figure 1.8

gives examples of these operations.

A graph is connected if every pair of vertices can be joined by a path. Infor-

mally, if one can pick up an entire graph by grabbing just one vertex, then the
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G - { eg, fg}

G - d

G - { f, g}

G - cdaG

g

e f

d

cb

FIGURE 1.8. Deletion operations.

G1 G2 G3

FIGURE 1.9. Connected and disconnected graphs.

graph is connected. In Figure 1.9, G1 is connected, and both G2 and G3 are not

connected (or disconnected). Each maximal connected piece of a graph is called

a connected component. In Figure 1.9, G1 has one component, G2 has three com-

ponents, and G3 has two components.

If the deletion of a vertex v from G causes the number of components to in-

crease, then v is called a cut vertex. In the graph G of Figure 1.8, vertex d is a cut

vertex and vertex c is not. Similarly, an edge e in G is said to be a bridge if the

graph G − e has more components than G. In Figure 1.8, the edge ab is the only

bridge.

A proper subset S of vertices of a graph G is called a vertex cut set (or simply,

a cut set) if the graph G − S is disconnected. A graph is said to be complete if

every vertex is adjacent to every other vertex. Consequently, if a graph contains at

least one nonadjacent pair of vertices, then that graph is not complete. Complete

graphs do not have any cut sets, since G−S is connected for all proper subsets S
of the vertex set. Every non-complete graph has a cut set, though, and this leads

us to another definition. For a graph G which is not complete, the connectivity

of G, denoted κ(G), is the minimum size of a cut set of G. If G is a connected,

non-complete graph of order n, then 1 ≤ κ(G) ≤ n − 2. If G is disconnected,

then κ(G) = 0. If G is complete of order n, then we say that κ(G) = n − 1.
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Further, for a positive integer k, we say that a graph is k-connected if k ≤ κ(G).
You will note here that “1-connected” simply means “connected.”

Here are several facts that follow from these definitions. You will get to prove

a couple of them in the exercises.

i. A graph is connected if and only if κ(G) ≥ 1.

ii. κ(G) ≥ 2 if and only if G is connected and has no cut vertices.

iii. Every 2-connected graph contains at least one cycle.

iv. For every graph G, κ(G) ≤ δ(G).

Exercises

1. If G is a graph of order n, what is the maximum number of edges in G?

2. Prove that for any graph G of order at least 2, the degree sequence has at

least one pair of repeated entries.

3. Consider the graph shown in Figure 1.10.

a

e

cd

b

FIGURE 1.10.

(a) How many different paths have c as an end vertex?

(b) How many different paths avoid vertex c altogether?

(c) What is the maximum length of a circuit in this graph? Give an exam-

ple of such a circuit.

(d) What is the maximum length of a circuit that does not include vertex

c? Give an example of such a circuit.

4. Is it true that a finite graph having exactly two vertices of odd degree must

contain a path from one to the other? Give a proof or a counterexample.

5. Let G be a graph where δ(G) ≥ k.

(a) Prove that G has a path of length at least k.

(b) If k ≥ 2, prove that G has a cycle of length at least k + 1.
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6. Prove that every closed odd walk in a graph contains an odd cycle.

7. Draw a connected graph having at most 10 vertices that has at least one

cycle of each length from 5 through 9, but has no cycles of any other length.

8. Let P1 and P2 be two paths of maximum length in a connected graph G.

Prove that P1 and P2 have a common vertex.

9. Let G be a graph of order n that is not connected. What is the maximum

size of G?

10. Let G be a graph of order n and size strictly less than n − 1. Prove that G
is not connected.

11. Prove that an edge e is a bridge of G if and only if e lies on no cycle of G.

12. Prove or disprove each of the following statements.

(a) If G has no bridges, then G has exactly one cycle.

(b) If G has no cut vertices, then G has no bridges.

(c) If G has no bridges, then G has no cut vertices.

13. Prove or disprove: If every vertex of a connected graph G lies on at least

one cycle, then G is 2-connected.

14. Prove that every 2-connected graph contains at least one cycle.

15. Prove that for every graph G,

(a) κ(G) ≤ δ(G);

(b) if δ(G) ≥ n − 2, then κ(G) = δ(G).

16. Let G be a graph of order n.

(a) If δ(G) ≥ n−1
2 , then prove that G is connected.

(b) If δ(G) ≥ n−2
2 , then show that G need not be connected.

1.1.3 Special Types of Graphs

until we meet again . . .

— from An Irish Blessing

In this section we describe several types of graphs. We will run into many of them

later in the chapter.

1. Complete Graphs

We introduced complete graphs in the previous section. A complete graph

of order n is denoted by Kn, and there are several examples in Figure 1.11.
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K3 K5 K2

FIGURE 1.11. Examples of complete graphs.

2. Empty Graphs

The empty graph on n vertices, denoted by En, is the graph of order n
where E is the empty set (Figure 1.12).

E6

FIGURE 1.12. An empty graph.

3. Complements

Given a graph G, the complement of G, denoted by G, is the graph whose

vertex set is the same as that of G, and whose edge set consists of all the

edges that are not present in G (Figure 1.13).

G G

FIGURE 1.13. A graph and its complement.

4. Regular Graphs

A graph G is regular if every vertex has the same degree. G is said to be

regular of degree r (or r-regular) if deg(v) = r for all vertices v in G.

Complete graphs of order n are regular of degree n − 1, and empty graphs

are regular of degree 0. Two further examples are shown in Figure 1.14.
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FIGURE 1.14. Examples of regular graphs.

5. Cycles

The graph Cn is simply a cycle on n vertices (Figure 1.15).

FIGURE 1.15. The graph C7.

6. Paths

The graph Pn is simply a path on n vertices (Figure 1.16).

FIGURE 1.16. The graph P6.

7. Subgraphs

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆
E(G). In this case we write H ⊆ G, and we say that G contains H . In

a graph where the vertices and edges are unlabeled, we say that H ⊆ G
if the vertices could be labeled in such a way that V (H) ⊆ V (G) and

E(H) ⊆ E(G). In Figure 1.17, H1 and H2 are both subgraphs of G, but

H3 is not.

8. Induced Subgraphs

Given a graph G and a subset S of the vertex set, the subgraph of G induced

by S, denoted 〈S〉, is the subgraph with vertex set S and with edge set

{uv | u, v ∈ S and uv ∈ E(G)}. So, 〈S〉 contains all vertices of S and

all edges of G whose end vertices are both in S. A graph and two of its

induced subgraphs are shown in Figure 1.18.
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G

H3

H2

H1

FIGURE 1.17. H1 and H2 are subgraphs of G.

a d

b c
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c d
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e

FIGURE 1.18. A graph and two of its induced subgraphs.

9. Bipartite Graphs

A graph G is bipartite if its vertex set can be partitioned into two sets X
and Y in such a way that every edge of G has one end vertex in X and the

other in Y . In this case, X and Y are called the partite sets. The first two

graphs in Figure 1.19 are bipartite. Since it is not possible to partition the

vertices of the third graph into two such sets, the third graph is not bipartite.

X Y

FIGURE 1.19. Two bipartite graphs and one non-bipartite graph.

A bipartite graph with partite sets X and Y is called a complete bipartite

graph if its edge set is of the form E = {xy | x ∈ X, y ∈ Y } (that is, if
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every possible connection of a vertex of X with a vertex of Y is present in

the graph). Such a graph is denoted by K|X|,|Y |. See Figure 1.20.

K2,3 K1,4 K4,4

FIGURE 1.20. A few complete bipartite graphs.

The next theorem gives an interesting characterization of bipartite graphs.

Theorem 1.3. A graph with at least two vertices is bipartite if and only if it

contains no odd cycles.

Proof. Let G be a bipartite graph with partite sets X and Y . Let C be a cycle

of G and say that C is v1, v2, . . . , vk, v1. Assume without loss of generality that

v1 ∈ X . The nature of bipartite graphs implies then that vi ∈ X for all odd i, and

vi ∈ Y for all even i. Since vk is adjacent to v1, it must be that k is even; and

hence C is an even cycle.

For the reverse direction of the theorem, let G be a graph of order at least two

such that G contains no odd cycles. Without loss of generality, we can assume

that G is connected, for if not, we could treat each of its connected components

separately. Let v be a vertex of G, and define the set X to be

X = {x ∈ V (G) | the shortest path from x to v has even length},

and let Y = V (G) \ X .

Now let x and x′ be vertices of X , and suppose that x and x′ are adjacent. If

x = v, then the shortest path from v to x′ has length one. But this implies that

x′ ∈ Y , a contradiction. So, it must be that x 6= v, and by a similar argument,

x′ 6= v. Let P1 be a path from v to x of shortest length (a shortest v–x path) and

let P2 be a shortest v–x′ path. Say that P1 is v = v0, v1, . . . , v2k = x and that P2

is v = w0, w1, . . . , w2t = x′. The paths P1 and P2 certainly have v in common.

Let v′ be a vertex on both paths such that the v′–x path, call it P ′
1, and the v′–x′

path, call it P ′
2, have only the vertex v′ in common. Essentially, v′ is the “last”

vertex common to P1 and P2. It must be that P ′
1 and P ′

2 are shortest v′–x and

v′–x′ paths, respectively, and it must be that v′ = vi = wi for some i. But since

x and x′ are adjacent, vi, vi+1, . . . , v2k, w2t, w2t−1, . . . , wi is a cycle of length

(2k − i) + (2t − i) + 1, which is odd, and that is a contradiction.

Thus, no two vertices in X are adjacent to each other, and a similar argument

shows that no two vertices in Y are adjacent to each other. Therefore, G is bipartite

with partite sets X and Y .



1.1 Introductory Concepts 15

We conclude this section with a discussion of what it means for two graphs

to be the same. Look closely at the graphs in Figure 1.21 and convince yourself

that one could be re-drawn to look just like the other. Even though these graphs

a

8 3

4

56

7

21

hg

fe

dc

b

FIGURE 1.21. Are these graphs the same?

have different vertex sets and are drawn differently, it is still quite natural to think

of these graphs as being the same. The idea of isomorphism formalizes this phe-

nomenon.

Graphs G and H are said to be isomorphic to one another (or simply, isomor-

phic) if there exists a one-to-one correspondence f : V (G) → V (H) such that

for each pair x,y of vertices of G, xy ∈ E(G) if and only if f(x)f(y) ∈ E(H).
In other words, G and H are isomorphic if there exists a mapping from one vertex

set to another that preserves adjacencies. The mapping itself is called an isomor-

phism. In our example, such an isomorphism could be described as follows:

{(a, 1), (b, 2), (c, 8), (d, 3), (e, 7), (f, 4), (g, 6), (h, 5)} .

When two graphs G and H are isomorphic, it is not uncommon to simply say that

G = H or that “G is H .” As you will see, we will make use of this convention

quite often in the sections that follow.

Several facts about isomorphic graphs are immediate. First, if G and H are

isomorphic, then |V (G)| = |V (H)| and |E(G)| = |E(H)|. The converse of this

statement is not true, though, and you can see that in the graphs of Figure 1.22.

The vertex and edge counts are the same, but the two graphs are clearly not iso-

G H

FIGURE 1.22.
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morphic.

A second necessary fact is that if G and H are isomorphic then the degree

sequences must be identical. Again, the graphs in Figure 1.22 show that the con-

verse of this statement is not true. A third fact, and one that you will prove in

Exercise 8, is that if graphs G and H are isomorphic, then their complements G
and H must also be isomorphic.

In general, determining whether two graphs are isomorphic is a difficult prob-

lem. While the question is simple for small graphs and for pairs where the ver-

tex counts, edge counts, or degree sequences differ, the general problem is often

tricky to solve. A common strategy, and one you might find helpful in Exercises 9

and 10, is to compare subgraphs, complements, or the degrees of adjacent pairs

of vertices.

Exercises

1. For n ≥ 1, prove that Kn has n(n − 1)/2 edges.

2. If Kr1,r2
is regular, prove that r1 = r2.

3. Determine whether K4 is a subgraph of K4,4. If yes, then exhibit it. If no,

then explain why not.

4. Determine whether P4 is an induced subgraph of K4,4. If yes, then exhibit

it. If no, then explain why not.

5. List all of the unlabeled connected subgraphs of C34.

6. The concept of complete bipartite graphs can be generalized to define the

complete multipartite graph Kr1,r2,...,rk
. This graph consists of k sets of

vertices A1, A2, . . . , Ak, with |Ai| = ri for each i, where all possible

“interset edges” are present and no “intraset edges” are present. Find ex-

pressions for the order and size of Kr1,r2,...,rk
.

7. The line graph L(G) of a graph G is defined in the following way: the

vertices of L(G) are the edges of G, V (L(G)) = E(G), and two vertices

in L(G) are adjacent if and only if the corresponding edges in G share a

vertex.

(a) Let G be the graph shown in Figure 1.23. Find L(G).

FIGURE 1.23.
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(b) Find the complement of L(K5).

(c) Suppose G has n vertices, labeled v1, . . . vn, and the degree of vertex

vi is ri. Let m denote the size of G, so r1 + r2 + · · ·+ rn = 2m. Find

formulas for the order and size of L(G) in terms of n, m, and the ri.

8. Prove that if graphs G and H are isomorphic, then their complements G
and H are also isomorphic.

9. Prove that the two graphs in Figure 1.24 are not isomorphic.

FIGURE 1.24.

10. Two of the graphs in Figure 1.25 are isomorphic.

P Q R

FIGURE 1.25.

(a) For the pair that is isomorphic, give an appropriate one-to-one corre-

spondence.

(b) Prove that the remaining graph is not isomporhic to the other two.

1.2 Distance in Graphs

‘Tis distance lends enchantment to the view . . .

— Thomas Campbell, The Pleasures of Hope

How far is it from one vertex to another? In this section we define distance in

graphs, and we consider several properties, interpretations, and applications. Dis-

tance functions, called metrics, are used in many different areas of mathematics,

and they have three defining properties. If M is a metric, then
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i. M(x, y) ≥ 0 for all x, y, and M(x, y) = 0 if and only if x = y;

ii. M(x, y) = M(y, x) for all x, y;

iii. M(x, y) ≤ M(x, z) + M(z, y) for all x, y, z.

As you encounter the distance concept in the graph sense, verify for yourself that

the function is in fact a metric.

1.2.1 Definitions and a Few Properties

I prefer the term ‘eccentric.’

— Brenda Bates, Urban Legend

Distance in graphs is defined in a natural way: in a connected graph G, the dis-

tance from vertex u to vertex v is the length (number of edges) of a shortest u–v
path in G. We denote this distance by d(u, v), and in situations where clarity of

context is important, we may write dG(u, v). In Figure 1.26, d(b, k) = 4 and

d(c, m) = 6.

a

mj

nli

kh

g

f

e

c d

b

FIGURE 1.26.

For a given vertex v of a connected graph, the eccentricity of v, denoted ecc(v),
is defined to be the greatest distance from v to any other vertex. That is,

ecc(v) = max
x∈V (G)

{d(v, x)} .

In Figure 1.26, ecc(a) = 5 since the farthest vertices from a (namely k, m, n) are

at a distance of 5 from a.

Of the vertices in this graph, vertices c, k, m and n have the greatest eccentricity

(6), and vertices e, f and g have the smallest eccentricity (3). These values and

types of vertices are given special names. In a connected graph G, the radius of G,

denoted rad(G), is the value of the smallest eccentricity. Similarly, the diameter

of G, denoted diam(G), is the value of the greatest eccentricity. The center of the

graph G is the set of vertices, v, such that ecc(v) = rad(G). The periphery of G
is the set of vertices, u, such that ecc(u) = diam(G). In Figure 1.26, the radius

is 3, the diameter is 6, and the center and periphery of the graph are, respectively,

{e, f, g} and {c, k, m, n}.
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Surely these terms sound familiar to you. On a disk, the farthest one can travel

from one point to another is the disk’s diameter. Points on the rim of a disk are on

the periphery. The distance from the center of the disk to any other point on the

disk is at most the radius. The terms for graphs have similar meanings.

Do not be misled by this similarity, however. You may have noticed that the

diameter of our graph G is twice the radius of G. While this does seem to be a

natural relationship, such is not the case for all graphs. Take a quick look at a

cycle or a complete graph. For either of these graphs, the radius and diameter are

equal!

The following theorem describes the proper relationship between the radii and

diameters of graphs. While not as natural, tight, or “circle-like” as you might

hope, this relationship does have the advantage of being correct.

Theorem 1.4. For any connected graph G, rad(G) ≤ diam(G) ≤ 2 rad(G).

Proof. By definition, rad(G) ≤ diam(G), so we just need to prove the second

inequality. Let u and v be vertices in G such that d(u, v) = diam(G). Further, let

c be a vertex in the center of G. Then,

diam(G) = d(u, v) ≤ d(u, c) + d(c, v) ≤ 2 ecc(c) = 2 rad(G).

The definitions in this section can also be extended to graphs that are not con-

nected. In the context of a single connected component of a disconnected graph,

these terms have their normal meanings. If two vertices are in different compo-

nents, however, we say that the distance between them is infinity.

We conclude this section with two interesting results. Choose your favorite

graph. It can be large or small, dense with edges or sparse. Choose anything you

like, as long as it is your favorite. Now, wouldn’t it be neat if there existed a graph

in which your favorite graph was the “center” of attention? The next theorem

(credited to Hedetneimi in [44]) makes your wish come true.

Theorem 1.5. Every graph is (isomorphic to) the center of some graph.

Proof. Let G be a graph (your favorite!). We now construct a new graph H (see

Figure 1.27) by adding four vertices (w, x, y, z) to G, along with the following

edges:

{wx, yz} ∪ {xa | a ∈ V (G)} ∪ {yb | b ∈ V (G)}.

Now, ecc(w) = ecc(z) = 4, ecc(y) = ecc(x) = 3, and for any vertex v ∈ V (G),

w zyx
G

FIGURE 1.27. G is the center.

ecc(v) = 2. Therefore, G is the center of H .
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Suppose you don’t like being the center of attention. Maybe you would rather

your favorite graph avoid the spotlight and stay on the periphery. The next theorem

(due to Bielak and Sysło, [25]) tells us when that can happen.

Theorem 1.6. A graph G is (isomorphic to) the periphery of some graph if and

only if either every vertex has eccentricity 1, or no vertex has eccentricity 1.

Proof. Suppose that every vertex of G has eccentricity 1. Not only does this mean

that G is complete, it also means that every vertex of G is in the periphery. G is

the periphery of itself!

On the other hand, suppose that no vertex of G has eccentricity 1. This means

that for every vertex u of G, there is some vertex v of G such that uv 6∈ E(G).
Now, let H be a new graph, constructed by adding a single vertex, w, to G, to-

gether with the edges {wx | x ∈ V (G)}. In the graph H , the eccentricity of w is

1 (w is adjacent to everything). Further, for any vertex x ∈ V (G), the eccentricity

of x in H is 2 (no vertex of G is adjacent to everything else in G, and everything

in G is adjacent to w). Thus, the periphery of H is precisely the vertices of G.

For the reverse direction, let us suppose that G has some vertices of eccentricity

1 and some vertices of eccentricity greater than 1. Suppose also (in anticipation

of a contradiction) that G forms the periphery of some graph, say H . Since the

eccentricities of the vertices in G are not all the same, it must be that V (G) is

a proper subset of V (H). This means that H is not the periphery of itself and

that diam(H) ≥ 2. Now, let v be a vertex of G whose eccentricity in G is 1 (v
is therefore adjacent to all vertices of G). Since v ∈ V (G) and since G is the

periphery of H , there exists a vertex w in H such that d(v, w) = diam(H) ≥ 2.

The vertex w, then, is also a peripheral vertex (see Exercise 4) and therefore must

be in G. This contradicts the fact that v is adjacent to everything in G.

Exercises

1. Find the radius, diameter and center of the graph shown in Figure 1.28.

FIGURE 1.28.

2. Find the radius and diameter of each of the following graphs: P2k, P2k+1,

C2k, C2k+1, Kn, Km,n.

3. For each graph in Exercise 2, find the number of vertices in the center.

4. If x is in the periphery of G and d(x, y) = ecc(x), then prove that y is in

the periphery of G.
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5. If u and v are adjacent vertices in a graph, prove that their eccentricities

differ by at most one.

6. A graph G is called self-centered if C(G) = V (G). Prove that every com-

plete bipartite graph, every cycle, and every complete graph is self-centered.

7. Given a connected graph G and a positive integer k, the kth power of G,

denoted Gk, is the graph with V (Gk) = V (G) and where vertices u and v
are adjacent in Gk if and only if dG(u, v) ≤ k.

(a) Draw the 2nd and 3rd powers of P8 and C10.

(b) For a graph G of order n, what is Gdiam(G)?

8. (a) Find a graph of order 7 that has radius 3 and diameter 6.

(b) Find a graph of order 7 that has radius 3 and diameter 5.

(c) Find a graph of order 7 that has radius 3 and diameter 4.

(d) Suppose r and d are positive integers and r ≤ d ≤ 2r. Describe a

graph that has radius r and diameter d.

9. Suppose that u and v are vertices in a graph G, ecc(u) = m, ecc(v) = n,

and m < n. Prove that d(u, v) ≥ n − m. Then draw a graph G1 where

d(u, v) = n − m, and another graph G2 where d(u, v) > n − m. In each

case, label the vertices u and v, and give the values of m and n.

10. Let G be a connected graph with at least one cycle. Prove that G has at least

one cycle whose length is less than or equal to 2 diam(G) + 1.

11. (a) Prove that if G is connected and diam(G) ≥ 3, then G is connected.

(b) Prove that if diam(G) ≥ 3, then diam(G) ≤ 3.

(c) Prove that if G is regular and diam(G) = 3, then diam(G) = 2.

1.2.2 Graphs and Matrices

Unfortunately no one can be told what the Matrix is. You have to see

it for yourself.

— Morpheus, The Matrix

What do matrices have to do with graphs? This is a natural question — nothing

we have seen so far has suggested any possible relationship between these two

types of mathematical objects. That is about to change!

As we have seen, a graph is a very visual object. To this point, we have deter-

mined distances by looking at the diagram, pointing with our fingers, and count-

ing edges. This sort of analysis works fairly well for small graphs, but it quickly

breaks down as the graphs of interest get larger. Analysis of large graphs often

requires computer assistance.
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Computers cannot just look and point at graphs like we can. Instead, they under-

stand graphs via matrix representations. One such representation is an adjacency

matrix. Let G be a graph with vertices v1, v2, . . . , vn. The adjacency matrix of G
is the n × n matrix A whose (i, j) entry, denoted by [A]i,j , is defined by

[A]i,j =

{

1 if vi and vj are adjacent,

0 otherwise.

The graph in Figure 1.29 has six vertices. Its adjacency matrix, A, is

A =

















0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
0 0 1 1 1 0

















.

v1

v4

v3

v2

v6

v5

FIGURE 1.29.

Note that for simple graphs (where there are no loops) adjacency matrices have

all zeros on the main diagonal. You can also see from the definition that these

matrices are symmetric.1

A single graph can have multiple adjacency matrices — different orderings of

the vertices will produce different matrices. If you think that these matrices ought

to be related in some way, then you are correct! In fact, if A and B are two differ-

ent adjacency matrices of the same graph G, then there must exist a permutation

of the vertices such that when the permuation is applied to the corresponding rows

and columns of A, you get B.

This fact can be used in reverse to determine if two graphs are isomorphic,

and the permutation mentioned here serves as an appropriate bijection: Given two

graphs G1 and G2 with respective adjacency matrices A1 and A2, if one can apply

1Can you think of a context in which adjacency matrices might not be symmetric? Direct your

attention to Figure 1.3 for a hint.
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a permutation to the rows and columns of A1 and produce A2, then G1 and G2

are isomorphic.

Let’s take a closer look at the previous example. The fact that the (1, 6) entry

is 0 indicates that v1 and v6 are not adjacent. Consider now the (1, 6) entry of the

matrix A2. This entry is just the dot product of row one of A with column six of

A:
[A2]1,6 = (0, 0, 0, 1, 1, 0) · (0, 0, 1, 1, 1, 0)

= (0 · 0) + (0 · 0) + (0 · 1) + (1 · 1) + (1 · 1) + (0 · 0)

= 2.

Think about what makes this dot product nonzero. It is the fact that there was

at least one place (and here there were two places) where a 1 in row one corre-

sponded with a 1 in column six. In our case, the 1 in the fourth position of row

one (representing the edge v1v4) matched up with the 1 in the fourth position of

column six (representing the edge v4v6). The same thing occurred in the fifth po-

sition of the row and column (where the edges represented were v1v5 and v5v6).

Can you see what is happening here? The entry in position (1, 6) of A2 is equal

to the number of two-edge walks from v1 to v6 in G. As the next theorem shows

us, this is not a coincidence.

Theorem 1.7. Let G be a graph with vertices labeled v1, v2, . . . , vn, and let A
be its corresponding adjacency matrix. For any positive integer k, the (i, j) entry

of Ak is equal to the number of walks from vi to vj that use exactly k edges.

Proof. We prove this by induction on k. For k = 1, the result is true since [A]i,j =
1 exactly when there is a one-edge walk between vi and vj .

Now suppose that for every i and j, the (i, j) entry of Ak−1 is the number of

walks from vi to vj that use exactly k− 1 edges. For each k-edge walk from vi to

vj , there exists an h such that the walk can be thought of as a (k − 1)-edge walk

from vi to vh, combined with an edge from vh to vj . The total number of these

k-edge walks, then, is
∑

vh∈N(vj)

(number of (k − 1)-edge walks from vi to vh).

By the induction hypothesis, we can rewrite this sum as

∑

vh∈N(vj)

[Ak−1]i,h =

n
∑

h=1

[Ak−1]i,h[A]h,j = [Ak]i,j ,

and this proves the result.

This theorem has a straightforward corollary regarding distance between ver-

tices.

Corollary 1.8. Let G be a graph with vertices labeled v1, v2, . . . , vn, and let

A be its corresponding adjacency matrix. If d(vi, vj) = x, then [Ak]i,j = 0 for

1 ≤ k < x.
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Let’s see if we can relate these matrices back to earlier distance concepts. Given

a graph G of order n with adjacency matrix A, and given a positive integer k,

define the matrix sum Sk to be

Sk = I + A + A2 + · · · + Ak,

where I is the n × n identity matrix. Since the entries of I and A are ones and

zeros, the entries of Sk (for any k) are nonnegative integers. This implies that for

every pair i, j, we have [Sk]i,j ≤ [Sk+1]i,j .

Theorem 1.9. Let G be a connected graph with vertices labeled v1, v2, . . . , vn,

and let A be its corresponding adjacency matrix.

1. If k is the smallest positive integer such that row j of Sk contains no zeros,

then ecc(vj) = k.

2. If r is the smallest positive integer such that all entries of at least one row

of Sr are positive, then rad(G) = r.

3. If m is the smallest positive integer such that all entries of Sm are positive,

then diam(G) = m.

Proof. We will prove the first part of the theorem. The proofs of the other parts

are left for you as exercises.2

Suppose that k is the smallest positive integer such that row j of Sk contains

no zeros. The fact that there are no zeros on row j of Sk implies that the distance

from vj to any other vertex is at most k. If k = 1, the result follows immediately.

For k > 1, the fact that there is at least one zero on row j of Sk−1 indicates that

there is at least one vertex whose distance from vj is greater than k − 1. This

implies that ecc(vj) = k.

We can use adjacency matrices to create other types of graph-related matrices.

The steps given below describe the construction of a new matrix, using the matrix

sums Sk defined earlier. Carefully read through the process, and (before you read

the paragraph that follows!) see if you can recognize the matrix that is produced.

Creating a New Matrix, M

Given: A connected graph of order n, with adjacency matrix A, and with Sk as

defined earlier.

1. For each i ∈ {1, 2, . . . , n}, let [M ]i,i = 0.

2. For each pair i, j where i 6= j, let [M ]i,j = k where k is the least positive

integer such that [Sk]i,j 6= 0.

2You’re welcome.
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Can you see what the entries of M will be? For each pair i, j, the (i, j) entry

of M is the distance from vi to vj . That is,

[M ]i,j = d(vi, vj).

The matrix M is called the distance matrix of the graph G.

Exercises

1. Give the adjacency matrix for each of the following graphs.

(a) P2k and P2k+1, where the vertices are labeled from one end of the

path to the other.

(b) C2k and C2k+1, where the vertices are labeled consecutively around

the cycle.

(c) Km,n, where the vertices in the first partite set are labeled v1, . . . , vm.

(d) Kn, where the vertices are labeled any way you please.

2. Without computing the matrix directly, find A3 where A is the adjacency

matrix of K4.

3. If A is the adjacency matrix for the graph G, show that the (j, j) entry of

A2 is the degree of vj .

4. Let A be the adjacency matrix for the graph G.

(a) Show that the number of triangles that contain vj is 1
2 [A3]j,j .

(b) The trace of a square matrix M , denoted Tr(M), is the sum of the

entries on the main diagonal. Prove that the number of triangles in G
is 1

6 Tr(A3).

5. Find the (1, 5) entry of A2009 where A is the adjacency matrix of C10 and

where the vertices of C10 are labeled consecutively around the cycle.

6. (a) Prove the second statement in Theorem 1.9.

(b) Prove the third statement in Theorem 1.9.

7. Use Theorem 1.9 to design an algorithm for determining the center of a

graph G.

8. The graph G has adjacency matrix A and distance matrix D. Prove that if

A = D, then G is complete.

9. Give the distance matrices for the graphs in Exercise 1. You should create

these matrices directly — it is not necessary to use the method described in

the section.
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1.2.3 Graph Models and Distance

Do I know you?

— Kevin Bacon, in Flatliners

We have already seen that graphs can serve as models for all sorts of situations.

In this section we will discuss several models in which the idea of distance is

significant.

The Acquaintance Graph

“Wow, what a small world!” This familiar expression often follows the discovery

of a shared acquaintance between two people. Such discoveries are enjoyable,

for sure, but perhaps the frequency with which they occur ought to keep us from

being as surprised as we typically are when we experience them.

We can get a better feel for this phenomenon by using a graph as a model.

Define the Acquaintance Graph, A, to be the graph where each vertex represents

a person, and an edge connects two vertices if the corresponding people know

each other. The context here is flexible — one could create this graph for the

people living in a certain neighborhood, or the people working in a certain office

building, or the people populating a country or the planet. Since the smaller graphs

are all subgraphs of the graphs for larger populations, most people think of A in

the largest sense: The vertices represent the Earth’s human population.3

An interesting question is whether or not the graph A, in the large (Earth) sense,

is connected. Might there be a person or a group of people with no connection

(direct or indirect) at all to another group of people?4 While there is a possibility

of this being the case, it is most certainly true that if A is in fact disconnected,

there is one very large connected component.

The graph A can be illuminating with regard to the “six degrees of separation”

phenomenon. Made popular (at least in part) by a 1967 experiment by social psy-

chologist Stanley Milgram [204] and a 1990 play by John Guare [142], the “six

degrees theory” asserts that given any pair of people, there is a chain of no more

than six acquaintance connections joining them. Translating into graph theorese,

the assertion is that diam(A) ≤ 6. It is, of course, difficult (if not impossible) to

confirm this. For one, A is enormous, and the kind of computation required for

confirmation is nontrivial (to say the least!) for matrices with six billion rows. Fur-

ther, the matrix A is not static — vertices and edges appear all of the time.5 Still,

the graph model gives us a good way to visualize this intriguing phenomenon.

Milgram’s experiment [204] was an interesting one. He randomly selected sev-

eral hundred people from certain communities in the United States and sent a

3The graph could be made even larger by allowing the vertices to represent all people, living or

dead. We will stick with the living people only — six billion vertices is large enough, don’t you think?
4Wouldn’t it be interesting to meet such a person? Wait — it wouldn’t be interesting for long

because as soon as you meet him, he is no longer disconnected!
5Vertices will disappear if you limit A to living people. Edges disappear when amnesia strikes.
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packet to each. Inside each packet was the name and address of a single “target”

person. If the recipient knew this target personally, the recipient was to mail the

packet directly to him. If the recipient did not know the target personally, the re-

cipient was to send the packet to the person he/she thought had the best chance

of knowing the target personally (perhaps someone in the same state as the target,

or something like that). The new recipient was to follow the same rules: Either

send it directly to the target (if known personally) or send it to someone who has

a good chance of knowing the target. Milgram tracked how many steps it took for

the packets to reach the target. Of the packets that eventually returned, the median

number of steps was 5! Wow, what a small world!

The Hollywood Graph

Is the actor Kevin Bacon the center of Hollywood? This question, first asked by a

group of college students in 1993, was the beginning of what was soon to become

a national craze: The Kevin Bacon Game. The object of the game is to connect

actors to Bacon through appearances in movies. For example, the actress Emma

Thompson can be linked to Bacon in two steps: Thompson costarred with Gary

Oldman in Harry Potter and the Prisoner of Azkaban (among others), and Oldman

appeared with Bacon in JFK. Since Thompson has not appeared with Bacon in

a movie, two steps is the best we can do. We say that Thompson has a Bacon

number of 2.

Can you sense the underlying graph here?6 Let us define the Hollywood Graph,

H , as follows: The vertices of H represent actors, and an edge exists between two

vertices when the corresponding actors have appeared in a movie together. So, in

H , Oldman is adjacent to both Bacon and Thompson, but Bacon and Thompson

are not adjacent. Thompson has a Bacon number of 2 because the distance from

her vertex to Bacon’s is 2. In general, an actor’s Bacon number is defined to be

the distance from that actor’s vertex to Bacon’s vertex in H . If an actor cannot be

linked to Bacon at all, then that actor’s Bacon number is infinity. As was the case

with the Acquaintance Graph, if H is disconnected we can focus our attention on

the single connected component that makes up most of H (Bacon’s component).

The ease with which Kevin Bacon can be connected to other actors might lead

one to conjecture that Bacon is the unique center of Hollywood. In terms of graph

theory, that conjecture would be that the center of H consists only of Bacon’s ver-

tex. Is this true? Is Bacon’s vertex even in the center at all? Like the Acquaintance

Graph, the nature of H changes frequently, and answers to questions like these

are elusive. The best we can do is to look at a snapshot of the graph and answer

the questions based on that particular point in time.

Let’s take a look at the graph as it appeared on December 25, 2007. On that

day, the Internet Movie Database [165] had records for nearly 1.3 million actors.

Patrick Reynolds maintains a website [234] that tracks Bacon numbers, among

other things. According to Reynolds, of the 1.3 million actors in the database on

6or, “Can you smell the Bacon?”
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that day, 917,007 could be linked to Bacon in some way via chains of shared

movie appearances. The maximum distance from Bacon to any of the actors in

his component was 8 (and so Bacon’s eccentricity is 8). What about eccentricities

of other actors? Are there any that are less than 8? According to Reynolds, the

answer is no — 8 is the smallest eccentricity, and so Kevin Bacon is in the center

of H . But it is very crowded there — thousands and thousands of other actors

have eccentricity 8 as well.

The Mathematical Collaboration Graph

The Hungarian Paul Erdős (1913–1996) was one of the greatest and most pro-

lific mathematicians of the twentieth century. Erdős authored or coauthored over

1500 mathematical papers covering topics in graph theory, combinatorics, set the-

ory, geometry, number theory, and more. He collaborated with hundreds of other

mathematicians, and this collaboration forms the basis of a Bacon-like ranking

system. While not as widely popular as Bacon numbers, almost all mathemati-

cians are familiar with the concept of Erdős numbers.

Erdős himself is assigned Erdős number 0. Any mathematician who coauthored

a paper with Erdős has Erdős number 1. If a person has coauthored a paper with

someone who has an Erdős number of 1 (and if that person himself/herself doesn’t

have Erdős number 1), then that person has an Erdős number of 2. Higher Erdős

numbers are assigned in a similar manner.

The underlying graph here should be clear. Define the Mathematical Collabo-

ration Graph, C, to have vertices corresponding to researchers, and let an edge

join two researchers if the two have coauthored a paper together. A researcher’s

Erdős number, then, is the distance from the corresponding vertex to the vertex

of Erdős. If a researcher is not in the same connected component of C as Erdős,

then that researcher has an infinite Erdős number.

As you might imagine, new vertices and edges are frequently added to C. Jerry

Grossman maintains a website [140] that keeps track of Erdős numbers. At one

point in 2007, there were over 500 researchers with Erdős number 1 and over

8100 with Erdős number 2. You might surmise that because Erdős died in 1996,

the number of people with Erdős number 1 has stopped increasing. While this is

surely to be true sometime in the near future, it hasn’t happened yet. A number of

papers coauthored by Erdős have been published since his death. Erdős has not

been communicating with collaborators from the great beyond (at least as far as

we know) — it is simply the case that his collaborators continue to publish joint

research that began years ago.

Small World Networks

As we saw earlier, the Acquaintance Graph provides a way to model the famous

“small world phemomenon” — the sense that humans are connected via numerous

recognized and unrecognized connections. The immense size and dynamic nature

of that graph make it difficult to analyze carefully and completely, and so smaller

models can prove to be more useful. In order for the more manageable graphs to
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be helpful, though, it is important that they enjoy some fundamental small world

properties.

So what makes a small world small? What properties should a graph have if

it is to be a model of a small world? Let’s list a few. As you read through the

list below, think about your own acquaintance network and see if these properties

make sense to you.

1. There should be plenty of mutual acquaintances (shared neighbors). If this

were the only property, then complete graphs would surely fit the bill —

lots of mutual neighbors there. A complete graph, though, is not a realistic

model of acquaintances in the world.

2. The graph should be sparse in edges. In a realistic model, there should be

relatively few edges compared to the number of vertices in the graph.

3. Distances between pairs of vertices should be relatively small. The char-

acteristic path length of a graph G, denoted LG, is the average distance

between vertices, where the average is taken over all pairs of distinct ver-

tices. In any graph of order n, there are |E(Kn)| distinct pairs of vertices,

and in Exercise 1 of Section 1.1.3, you showed that |E(Kn)| = n(n−1)/2.

So for a graph G of order n,

LG =

∑

u,v∈V (G) d(u, v)

|E(Kn)|
=

2

n(n − 1)

∑

u,v∈V (G)

d(u, v).

One way of obtaining this value for a graph is to find the mean of the non-

diagonal entries in the distance matrix of the graph.

4. There should be a reasonable amount of clustering in a small world graph.

In actual acquaintance networks, there are a number of factors (geography,

for instance) that create little clusters of vertices — small groups of vertices

among which a larger than typical portion of edges exists. For example,

there are likely to be many edges among the vertices that represent the

people that live in your neighborhood.

Given a vertex v in a graph of order n, we define its clustering coefficient,

denoted cc(v), as follows (recall that 〈N [v]〉 is the subgraph induced by the

closed neighborhood of v).

cc(v) =
|E (〈N [v]〉)|

∣

∣E
(

K1+deg(v)

)
∣

∣

=
2 |E (〈N [v]〉)|

(1 + deg(v)) deg(v)
.

For each vertex v, this is the percentage of edges that exist among the ver-

tices in the closed neighborhood of v. For a graph G of order n, we define

the clustering coefficient of the graph G, denoted by CC(G) to be the aver-

age of the clustering coefficients of the vertices of G. That is,

CC(G) =
1

n

∑

v∈V (G)

cc(v).
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Small world networks have the property that characteristic path lengths are low

and clustering coefficients are high. Graphs that have these properties can be used

as models in the mathematical analyses of the small world phenomenon and its

associated concepts. It is interesting to note that other well known networks have

exhibited small world traits — the internet, electric power grids, and even neural

networks are examples — and this increases even further the applicability of graph

models.

Exercises

1. Compute the characteristic path length for each of each of the following

graphs: P2k, P2k+1, C2k , C2k+1, Kn, Km,n.

2. Compute the clustering coefficient for each of each of the following graphs:

P2k, P2k+1, C2k, C2k+1, Kn, Km,n.

3. (a) In the Acquaintance Graph, try to find a path from your vertex to the

vertex of the President of the United States.

(b) Your path from the previous question may not be your shortest such

path. Prove that your actual distance from the President is at most

one away from the shortest such distance to be found among your

classmates.

Interesting Note: There are several contexts in which Bacon numbers can be cal-

culuated. While Bacon purists only use movie connections, others include shared

appearances on television and in documentaries as well. Under these more open

guidelines, the mathematician Paul Erdős actually has a Bacon number of 3! Erdős

was the focus of the 1993 documentary N is a Number [63]. British actor Alec

Guinness made a (very) brief appearance near the beginning of that film, and

Guinness has a Bacon number of 2 (can you find the connections?). As far as

we know, Bacon has not coauthored a research article with anyone who is con-

nected to Erdős, and so while Erdős’ Bacon number is 3, Bacon’s Erdős number

is infinity.

1.3 Trees

“O look at the trees!” they cried, “O look at the trees!”

— Robert Bridges, London Snow

In this section we will look at the trees—but not the ones that sway in the wind

or catch the falling snow. We will talk about graph-theoretic trees. Before moving

on, glance ahead at Figure 1.30, and try to pick out which graphs are trees.


