
Problem Solving in Math (Math 43900) Fall 2013

Week nine (October 29) solutions

Instructor: David Galvin

Easy warm-up problems

1. Give a combinatorial proof of the upper summation identity (
∑n

m=k

(
m
k

)
=
(
n+1
k+1

)
).

Solution: RHS is number of subsets of {1, . . . , n + 1} of size k + 1, counted directly. LHS
counts same, by first specifying largest element in subset (if largest element is k+1, remaining
k must be chosen from {1, . . . , k},

(
k
k

)
ways; if largest element is k + 2, remaining k must be

chosen from {1, . . . , k + 1},
(
k+1
k

)
ways; etc.).

2. Give a combinatorial proof of the parallel summation identity (
∑n

k=0

(
m+k
k

)
=
(
n+m+1

n

)
.).

Solution: RHS is number of subsets of {1, . . . , n + m + 1} of size n, counted directly. LHS
counts same, by first specifying the smallest element not in subset (if smallest missed element
is 1, all n elements must be chosen from {2, . . . , n + m + 1},

(
m+n
n

)
ways, the k = n term; if

smallest missed element is 2, then 1 is in subset and remaining n−1 elements must be chosen
from {3, . . . , n+m+ 1},

(
m+n−1
n−1

)
ways, the k = n− 1 term; etc., down to: if smallest missed

element is n + 1, then {1, . . . , n} is in subset and remaining 0 elements must be chosen from
{n + 2, . . . , k + 1},

(
m+0
0

)
ways, the k = 0 term).

3. Give a combinatorial proof of the square summation identity (
∑n

k=0

(
n
k

)2
=
(
2n
n

)
).

Solution: RHS is number of subsets of {±1, . . . ,±n} of size n, counted directly. LHS counts
same, by first specifying k, the number of positive elements chosen, then selecting k positive
elements (

(
n
k

)
ways), then selecting the k negative elements that are not chosen (so the n− k

that are, for n in total) (
(
n
k

)
ways).

4. Give a combinatorial proof of the Vandermonde identity (
∑r

k=0

(
m
k

)(
n

r−k
)

=
(
n+m
r

)
).

Solution: Let A = {x1, . . . , xm} and B = {y1, . . . , yn} be disjoint sets. RHS is number of
subsets of A∪B of size r, counted directly. LHS counts same, by first specifying k, the number
of elements chosen from A, then selecting r elements from A (

(
m
k

)
ways), then selecting the

remaining r − k elements from B (
(

n
r−k
)

ways).

5. Evaluate
n∑

k=0

(−1)k
(
n

k

)
for n ≥ 1.
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Solution: Applying the binomial theorem with x = 1, y = 1 get

0 = (1− 1)n =

n∑
k=0

(
n

k

)
1n−k(−1)k =

n∑
k=0

(−1)k
(
n

k

)
so the sum is 0.

Harder warm-up problems

1. The kth falling power of x is xk = x(x− 1)(x− 2) . . . (x− (k− 1)). Prove that for all real x, y,
and all n ≥ 1,

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Solution: Here’s a combinatorial proof. Let x and y be positive integers. The number
of words in alphabet {1, . . . , x} ∪ {x1, . . . , x + y} of length n with no two repeating letters,
counted by selecting letter-by-letter, is (x + y)n. If instead we count by first selecting k, the
number of letters from {x + 1, . . . , x + y} used, then locate the k positions in which those
letters appear, then selecting the n − k letters from {1, . . . , x} letter-by-letter in the order
that they appear in the word, and finally selecting the k letters from {x+ 1, . . . , x+y} letter-
by-letter in the order that they appear in the word, we get a count of

∑n
k=0

(
n
k

)
xn−kyk. So

the identity is true for positive integers x, y.

The LHS and RHS are polynomials in x and y of degree n, so the difference is a polynomial
in x and y of degree at most n, which we want to show is identically 0. Write the difference
as P (x, y) = p0(x) + p1(x)y + . . . + pn(x)yn where each pi(x) is a polynomial in x of degree
at most n. Setting x = 1 we get a polynomial P (1, y) in y of degree at most n. This is 0
for all integers y > 0 (by our combinatorial argument), so by the polynomial principle it is
identically 0. So each pi(x) evaluates to 0 at x = 1. But the same argument shows that each
pi(x) evaluates to 0 at any positive integer x. So again by the polynomial principle, each
pi(x) is identically 0 and so P (x, y) is. This proves the identity for all real x, y.

2. The kth rising power of x is xk = x(x+ 1)(x+ 2) . . . (x+ (k− 1)). Prove that for all real x, y,
and all n ≥ 1,

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Solution: Set x′ = −x and y′ = −y; we have

(x + y)n = (−x′ − y′)n = (−1)n(x′ + y′)n

and
n∑

k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
(−x′)n−k(−y′)k

=

n∑
k=0

(
n

k

)
(−1)n−k(x′)n−k(−1)k(y′)k

= (−1)n
n∑

k=0

(
n

k

)
(x′)n−k(y′)k,
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so the identity follows from the falling power binomial theorem (the previous question).

3. Evaluate
2n∑
k=0

(−1)kkn
(

2n

k

)
for n ≥ 1.

Solution: It’s not easy to deal with this sum in isolation. But, we can generalize: define, for
each n, r ≥ 1, ar,n =

∑2n
k=0(−1)kkr

(
2n
k

)
. We claim that ar,n = 0 (and so in particular an,n,

our sum of interest, is 0.

We prove the claim for each n by induction on r. It will be helpful to define

fn(x) =
2n∑
k=0

xk
(

2n

k

)
= (1 + x)2n.

Differentiating,

f ′n(x) =
2n∑
k=0

kxk−1
(

2n

k

)
= 2n(1 + x)2n−1.

Evaluating at x = −1 we get
2n∑
k=0

(−1)k−1k1
(

2n

k

)
= 0,

and multiplying by −1 gives a1,n = 0. This is the base case of the induction.

For the induction step, assume that aj,n = 0 for all 1 ≤ j < r (with r ≥ 2). The rth derivative
of fn(x) is

f (r)
n (x) =

2n∑
k=0

k(k − 1) . . . (k − (r − 1))xk−r
(

2n

k

)
= 2n(2n− 1) . . . (2n− (r − 1))(1 + x)2n−r.

Now k(k− 1) . . . (k− (r− 1)) is a polynomial in k, of degree r, whose leading coefficient is 1,
and for which all other terms are polynomials in r; in other words,

k(k − 1) . . . (k − (r − 1)) = kr + c1(r)kr−1 + . . . + cr(r),

and so

f (r)
n (x) =

2n∑
k=0

xk−rkr
(

2n

k

)
+

r∑
j=1

cj(r)
2n∑
k=0

xk−rkr−j
(

2n

k

)
.

Evaluating at x = −1, and recalling that f
(r)
n (x) = 2n(2n − 1) . . . (2n − (r − 1))(1 + x)2n−r,

we get
2n∑
k=0

(−1)k−rkr
(

2n

k

)
+

r∑
j=1

cj(r)

2n∑
k=0

(−1)k−rkr−j
(

2n

k

)
= 0.

The sum corresponding to j = r is

cj(r)

2n∑
k=0

(−1)k−r
(

2n

k

)
= (−1)−rcj(r)

2n∑
k=0

(−1)k
(

2n

k

)
= (−1)−rcj(r)(1− 1)2n = 0.
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The sum corresponding to each j, 1 ≤ j < r is cj(r)(−1)−rar,n, so is 0 by induction. So we
conclude

2n∑
k=0

(−1)k−rkr
(

2n

k

)
= 0,

which give ar,n = 0 on multiplying by (−1)r.

4. Evaluate
n∑

k=0

Fk+1

(
n

k

)
for n ≥ 0, where F1, F2, F3, F4, F5, . . . are the Fibonacci numbers 1, 1, 2, 3, 5, . . . ,.

Solution: When n = 0 we get a sum of 1; when n = 1 we get a sum of 2; when n = 2 we
get a sum of 5; when n = 3 we get a sum of 13; when n = 4 we get a sum of 34; this suggests
strongly

n∑
k=0

Fk+1

(
n

k

)
= F2n+1.

One way to prove this is to iterative apply the Fibonacci recurrence to F2n+1: on the zeroth
iteration,

F2n+1 =

(
0

0

)
F2n+1.

The first iteration leads to

F2n+1 = F2n + F2n−1 =

(
1

0

)
F2n +

(
1

0

)
F2n−1.

The second leads to

F2n+1 = F2n + F2n−1

= (F2n−1 + F2n−2) + (F2n−2 + F2n−3)

=

(
2

0

)
F2n−1 +

(
2

1

)
F2n−2 +

(
2

2

)
F2n−3.

This suggest that we prove to more general statement, that for each 0 ≤ s ≤ n,

F2n+1 =
s∑

j=0

(
s

j

)
F2n+1−s−j . (?)

The case s = n yields

F2n+1 =
n∑

j=0

(
n

j

)
Fn+1−j ,

which is the same as what we have to prove (by the symmetry relation
(
n
j

)
=
(

n
n−j
)
).

We can prove (?) by induction on s (for each fixed n), with the case s = 0 trivial. For larger
s, we begin with the s−1 case of the induction hypothesis, then use the Fibonacci recurrence
to break each Fibonacci number into the sum of two earlier ones, then use Pascals identity
to gather together terms involving the same Fibonacci number. (Details omitted.)
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5. (a) Let an be the number of 0-1 strings of length n that do not have two consecutive 1’s.
Find a recurrence relation for an (starting with initial conditions a0 = 1, a1 = 2).

Solution: By considering whether the last term is a 0 or a 1, get the Fibonacci recur-
rence: an = an−1 + an−2.

(b) Let an,k be the number of 0-1 strings of length n that have exactly k 1′ and that do not
have two consecutive 1’s. Express an,k as a (single) binomial coefficient.

Solution: Add a 0 to the beginning and end of such a string. By reading off a1, the
number of 0’s before the first 1, then a2, the number of 0’s between the first 1 and the
second, and so on up to ak+1, the number of 0’s after the last 1, we get a composition
(a1, . . . , ak+1) of n + 2− k into k + 1 parts; and each such composition can be encoded
(uniquely) by such a string. So an,k is the number of compositions of n+2−k into k+1

parts, and so equals
(
n+1−k

k

)
.

(c) Use the results of the previous two parts to give a combinatorial proof (showing that
both sides count the same thing) of the identity

Fn =
∑
k≥0

(
n− k − 1

k

)
where Fn is the nth Fibonacci number (as defined in the last question).

Solution: From the recurrence in the first part, we get an = Fn+2, so Fn counts the
number of 0-1 strings of length n − 2 with no two consecutive 1’s. We can count such
strings by first deciding on k, the number of 1’s, and by the second part, the number of
such strings is

(
n−1−k

k

)
. Summing over k we get the result.

Problems

1. Show that for every n,m ≥ 0,∫ 1

0
xn(1− x)m dx =

1

(n + m + 1)
(
n+m
n

) .
Solution: The result is trivial when one or both of n,m = 0, so we may assume n + m ≥ 2.
Using integration by parts, we get∫ 1

0
xn(1− x)m dx =

m

n + 1

∫ 1

0
xn+1(1− x)m−1 dx.

This suggests that for each s ≥ 2 we use induction on m to prove the result for all pairs (n,m)
with n + m = s. The case m = 0 has been observed already. For m > 0 we have∫ 1

0
xn(1− x)m dx =

m

n + 1

∫ 1

0
xn+1(1− x)m−1 dx

=
m

n + 1

1

((n + 1) + (m− 1) + 1)
(
(n+1)+(m−1)

n+1

)
=

m

(n + 1)(n + m + 1)
(
n+m
n+1

) .
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The result follows if we can show

(n + 1)

(
n + m

n + 1

)
= m

(
n + m

n

)
.

This is easily verified, either algebraically, or via the “committee-chair” identity: to choose
a committee-with-chair of size n + 1 from n + m people, we either choose the n + 1 people
for the committee and elect one of them chair ((n + 1)

(
n+m
n+1

)
ways) or select the n non-chair

members from the n + m people, and choose the chair from among those not yet chosen
(m
(
n+m
n

)
ways).

2. Show that the coefficient of xk in (1 + x + x2 + x3)n is

k∑
j=0

(
n

j

)(
n

k − 2j

)
.

Solution: (This was Putnam problem 1992 B2.) We have

(1 + x + x2 + x3)n = (1 + x)n(1 + x2)n

=

∑
i≥0

(
n

i

)
xi

∑
i′≥0

(
n

2i′

)
x2i

′

 .

We get an xk term in the product by pairing each
(
n
i

)
xi from the first sum with

(
n

k−2i
)
xk−2i

from the second; so the coefficient of xk in the product is

k∑
i=0

(
n

i

)(
n

k − 2i

)
,

as claimed.

3. Let r, s and t be integers with r, s ≥ 0 and r + s ≤ t. Prove that

s∑
i=0

(
s
i

)(
t

r+i

) =
t + 1

(t + 1− s)
(
t−s
r

) .
Solution: (This was Putnam problem 1987 B2.) Write the sum on the left-hand side as
F (r, s, t); we prove by induction on s that

F (r, s, t) =
t + 1

(t + 1− s)
(
t−s
r

)
whenever r, s and t are integers with r, s ≥ 0 and r + s ≤ t. The base case s = 0 is trivial.
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For the inductive step, write

F (r, s, t) =

(
s
0

)(
t
r

) +

(
s
1

)(
t

r+1

) + . . . +

(
s

s−1
)(

t
r+s−1

) +

(
s
s

)(
t

r+s

)
=

(
s−1
0

)(
t
r

) +

(
s−1
0

)
+
(
s−1
1

)(
t

r+1

) + . . . +

(
s−1
s−2
)

+
(
s−1
s−1
)(

t
r+s−1

) +

(
s−1
s−1
)(

t
r+s

)
= F (r, s− 1, t) + F (r + 1, s− 1, t)

=
t + 1

(t + 2− s− 1)
(
t−s+1

r

) +
t + 1

(t + 2− s)
(
t−s+1
r+1

)
=

t + 1

(t + 1− s)
(
t−s
r

)
(with the last line following after a little algebra). This completes the inductive step. (See
The William Lowell Putnam Mathematical Competition 1985-2000, Problems, Solutions, and
Commentary for a nice discussion of an alternate, combinatorial approach.

4. Prove that the expression
gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

Solution: (This was Putnam problem 2000 B2.) We know that gcd(m,n) = am + bn for
some integers a, b; but then

gcd(m,n)

n

(
n

m

)
= a

(
m

n

(
n

m

))
+ b

(
n

n

(
n

m

))
.

Since (
n

m

)
=

n

m

(
n− 1

m− 1

)
(the committee-chair identity again, or easy algebra), we get

gcd(m,n)

n

(
n

m

)
= a

(
n− 1

m− 1

)
+ b

(
n

m

)
,

and so (since a, b,
(
n−1
m−1

)
and

(
n
m

)
are all integers) we get the desired result.

5. For positive integers m and n, let f(m,n) denote the number of n-tuples (x1, x2, . . . , xn) of
integers such that |x1|+ |x2|+ . . .+ |xn| ≤ m. Show that f(m,n) = f(n,m). (In other words,
the number of points in the `1 ball of radius m in Rn is the same as the number of points in
the `1 ball of radius n in Rm.)

Solution: (This was Putnam problem 2005 B5.) We’ll produce an explicit formula for f(m,n)
that is symmetric in m and n. Each tuple counted by f(m,n) has k entries that are non-zero,
for some k ≥ 0; once k has been decided on, there are

(
n
k

)
ways to decide on the locations

of the k non-zeros. Each of these k entries has a sign (±); there are 2k ways to decide on
the signs. To complete the specification of the tuple, we have find k numbers a1, . . . , ak, all
strictly positive, that add to at most m. Adding a phantom (k + 1)st number, this is the
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same as the number of (k + 1)-tuples (a1, . . . , ak+1), all strictly positive integers, that add to

exactly m+ 1; i.e., the number of compositions of m+ 1 into k + 1 parts, so
((m+1)−1
(k+1)−1

)
=
(
m
k

)
.

So

f(m,n) =
∑
k≥0

(
n

k

)(
n

k

)
2k.

Since this is symmetric in m and n, f(m,n) = f(n,m).

Note: f(m,n) is also the number of ways of moving from (0, 0) to (m,n) on the two-
dimensional lattice by taking steps of the following kind: one unit up parallel to y-axis,
one unit to the right parallel to the x-axis, or one diagonal unit (Euclidean distance

√
2) up

and to the right, parallel to the line x = y; the numbers f(m,n) are called the Delannoy
numbers.
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