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Abstract

Many combinatorial matrices — such as those of binomial coefficients, Stirling
numbers of both kinds, and Lah numbers — are known to be totally non-negative,
meaning that all minors (determinants of square submatrices) are non-negative.

The examples noted above can be placed in a common framework: for each one
there is a non-decreasing sequence (ay,ag,...), and a sequence (e1,es,...), such that
the (m, k)-entry of the matrix is the coefficient of the polynomial (z —a;)--- (z — ax)
in the expansion of (x —e1)---(x — e,,) as a linear combination of the polynomials
Lx—ay,...,(x—a1) - (x—an).

We consider this general framework. For a non-decreasing sequence (ag,as,...)
we establish necessary and sufficient conditions on the sequence (ep,ea,...) for the
corresponding matrix to be totally non-negative. As an application we obtain total
non-negativity of a family of matrices associated with chordal graphs.

Introduction

A matrix — finite or infinite — is totally non-negative if all minors (determinants of square
sub-matrices) are non-negative. Totally non-negative matrices occur frequently in combi-
natorics and have been the subject of much investigation. See e.g. [2, 11, 12, 18] for an
overview. Here are a few of the most prominent examples:

o [(Tl?)]m,kzo’ where (') is the usual binomial coefficient;

o {7V}, o where {7} is the Stirling number of the second kind, counting partitions
of a set of size m into k& non-empty blocks;

o [[M]],, 4o0 Where [}'] is the (unsigned) Stirling number of the first kind, counting

partitions of a set of size m into k non-empty cyclically ordered blocks; and

e [L(m, k)], 150, Where L(m, k) is the Lah number, counting partitions of a set of size m
into k£ non-empty linearly ordered blocks.
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These examples can be placed in a common framework. Given two real sequences a =
(a1, as,...) and e = (eq, ey,...), either both infinite or both finite and of the same length,
define a matrix S*® = (5*°(m, k))m>o0 via the relations

m k
I_Ix—eZ ZSaemkH:c—al (1)
i=1 — i=1

for m > 0. If a and e are infinite then S®° is infinite with rows and columns indexed by
{0,1,2,...}, while if a and e are both of length n then $°is (n+ 1) by (n + 1) with rows
and columns indexed by {0,1,...,n}. Note that (1) uniquely determines S®*(m, k) for each
m,k > 0.

Let us see how the four examples given earlier fit into this general framework:

o Taking ¢; = —1 and a; = 0 for all i yields $*°(m, k) = (7);

e taking ¢; = 0 and a; = i — 1 for all 7 yields S*®(m, k) = {’Z} via the identity

mmZEZ{Z}ux—n.ug—mk—m) (2)

k>0
for m > 0;

. taking e; = —(i — 1) and a; = 0 for all ¢ yields S*¢(m, k) = [}] via z(z 4+ 1)--- (z +
(m—1)) = Zk>0[ |a* for m > 0; and

e taking ¢, = —(i — 1) and a; = i — 1 for all i yields S*°(m,k) = L(m,k) via z(x +
D-(z+(m—1) =3 0 Lm,k)x(x —1) -+ (z — (k= 1)) for m > 0.

The main result of this note is a characterization, for each non-decreasing sequence a, of
those sequences e such that the matrix S®€ is totally non-negative.

Definition 1.1. If a is non-decreasing, we say that e is a restricted growth sequence relative
to a if for each 7 > 1 it holds that e; < ay(;), where f(1) =1 and for i > 1

f@+n_{ﬂ0+1ﬁq—éz

Informally, each e; is at most a certain cap. The cap for e; is a;, and it continues to be
a; until the first time that an entry of e takes the value a;, at which point it becomes as,
and so on. If a=(0,1,...,n—1,...) then a non-negative integral sequence e is a restricted
growth sequence relative to a exactly if it is a restricted growth sequence in the usual sense,
that is, one satisfying e; = 0 and €;41 < 1+ max;—;,__;e; for ¢ > 1.

Notice that in all the examples above, a was non-decreasing and e was a restricted growth
sequence relative to a. The total non-negativity of the matrices arising from these examples
thus follows from the following result.

Theorem 1.2. Let a be a non-decreasing sequence. Then



1. the matriz S*° is totally non-negative if and only if e is a restricted growth sequence
relative to a, and

2. if e is not a restricted growth sequence relative to a then the failure of S to be totally
non-negative is witnessed by a negative entry in S*°.

The proof of Theorem 1.2 involves producing a weighted planar network whose path-
matrix is S*°, and then appealing to Lindstrém’s lemma (see Section 3 for details). The
network that we initially produce, however, does not have all non-negative entries, precluding
an immediate application of Lindstrom. A substantial part of the proof involves carefully
modifying the weights of the initial network to remove the negative entries, without changing
the associated path matrix.

We prove Theorem 1.2 in Section 3. Before that, in Section 2, we consider an application
to graph Stirling numbers of chordal graphs.

To conclude the introduction, let us observe that the numbers S®¢(m, k) defined in (1)
satisfy the recurrence

S*e(m, k) = S*°(m — 1,k —1)+ (ak41 — em)S**(m — 1,k) for m,k >0 (3)

with initial conditions S¢(0,0) = 1, S*¢(0,k) = 0 for £ > 0 and S*°(m,0) = [[;~; (a1 — €;)
for m > 0 (we prove this in Section 3, see (7)). A number of authors have considered the
question of total non-negativity of matrices (G k)m x>0 With the a,, ; defined via recurrences
similar to (3). Brenti [2], for example, considered the recurrence a,r = ZmGm—tr—1 +
YmOm—1k—1 + Tmam—14 (t € N). More recently Chen, Liang and Wang [4, 5] considered
e = ThOm—1k—1 T SkG@m—1k + thr1@m—1 k41 and also the more general situation where the
amx's form a Riordan array. The recurrence (3) does not seem to fit these settings.

2 Graph Stirling numbers of chordal graphs

The Stirling numbers of the second kind have a natural generalization to the setting of
graphs. For a graph G and an integer k, the graph Stirling number of the second kind {f}
is the number of ways of partitioning the vertex set of GG into k£ non-empty independent
sets (an independent set being a set of pairwise non-adjacent vertices). This is indeed a
generalization, since if F,, is the graph on m vertices with no edges, then {E]:“} = {7]?}

This notion of graph Stirling number of the second kind was probably first introduced by
Tomescu [19] and was subsequently reintroduced by numerous authors including Korfhage
[14], Goldman, Joichi and White [13] and Duncan and Peele [7]. Its properties have been
well studied, see for example [1, 3, 6, 8, 10, 16, 17].

The Stirling number of the first kind does not have such a natural graph analog. In
9] Eu, Fu, Liang and Wong present a notion of a graph Stirling number of the first kind
for the family of quasi-threshold graphs, based on generalizations of the relation ™ D™ =
> iso(—=1)™F[7](zD)¥ in the Weyl algebra on symbols  and D (the algebra over the reals
generated by the relation Dx = xD + 1).



Here we take a different approach. It is well-known that the inverse of the matrix of
Stirling numbers of the second kind is the matrix of signed Stirling numbers of the first kind:

RS Il (e | R

This suggests the following. For a graph G on n vertices, ordered vy, ..., v,, let G, denote
the subgraph of GG induced by vy, ..., v,,, and consider the matrices

Sa = Him}] and sg = S&l.

m,k=0

When G = E, the (m, k)-entry of s¢ is (—1)™7*[7']. It is easy to find examples of graphs
such that however the vertices are ordered the matrix sg does not have the checkerboard
sign pattern exhibited by the inverse of [{?}]mkzo, meaning that this approach may not be
suited to defining a notion of graph Stirling number of the first kind for all graphs.

However, there is a class of graphs which admit a natural ordering of the vertices with
respect to which the matrix sg has a checkerboard sign-pattern, that is, with the (m, k)-
entry having sign (—1)™"*. A chordal graph is a graph in which every cycle of length four
or greater has a chord, i.e., it is a graph that contains no induced cycles of length four or
greater. A useful characterization of chordal graphs is that G is chordal if and only if it
is possible to order the vertices as vy, ..., v, so that for each m € {1,...,n} the neighbors
of v, among vy, ..., v, induce a clique (see e.g. [20, Section 5.3]). Such an ordering is
referred to as a perfect elimination order.

Theorem 2.1. Let G be a chordal graph with perfect elimination order vy,...,v,, and let
G, be the subgraph of G induced by vy, ...,v,,. Let Sq = [{ka}]n and sq = Sg'. For

m—k

m,k=0
all m, k the (m, k)-entry of sg has sign (—1)

A stronger result than Theorem 2.1 holds. Notice that the matrix Sg has determinant 1
and so by Cramer’s rule the (m, k)-entry of the inverse is (—1)™~* times the determinant of
the n — 1 by n — 1 minor obtained from Sg by deleting the kth row and the mth column. It
follows that if Sg is totally non-negative then the (m, k)-entry of sg has sign (—1)™ %, and
so the following result generalizes Theorem 2.1.

Theorem 2.2. Let G be a chordal graph with perfect elimination order vy,...,v,, and let
G, be the subgraph of G induced by vy, ... ,v,. Let Sg = [{GI;“H” Then Sg s totally
non-negative.

m,k=0"

As we will now see, Theorem 2.2 is a special case of Theorem 1.2. The chromatic poly-
nomial xg(x) of a graph G is the polynomial in z whose value at positive integers x is the
number of ways of coloring GG from a palette of x colors in such a way that adjacent vertices
receive distinct colors. That yg(x) is indeed a polynomial in z follows from the following
identity: for G' a graph on m vertices,

m

xele) = > { hate = 10— (k- 1), (@)

k=0
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Indeed, one way to enumerate the colorings of GG from a palette of x colors in such a way that
adjacent vertices receive distinct colors is to first specify k, the number of colors used, then
specify a partition of the vertex set of G into k non-empty independent sets ({i} options),
which will be the color classes, and finally specify the colors that appear on each of the
classes (x(z —1)---(z — (k— 1)) options). (Observe that by taking G to be the graph on m
vertices with no edges we recover (2) from (4)).

For a chordal graph G with perfect elimination order vy, ...,v,, for ¢ > 1 denote by
e; = €;(G) the number of neighbors that v; has among vy, ...,v;_1. We have that g, () =
(x —e1)(x —e) -+ (x — ey) (coloring the vertices of G, sequentially from v; to v,,, at the
step when v; is colored all colors are available except those used on the e; neighbors of v,
among {vy,...,v;_1}; since these neighbors form a clique, between them they account for
e; colors, leaving x — e; available for v;). Thus, in light of (4), if we knew that (eq,...,e,)
formed a restricted growth sequence relative to (0, 1,...,n—1), then the total non-negativity
of ({ka})n would follow from Theorem 1.2.

m,k=0
In fact, we have the following.

Claim 2.3. Let G be a chordal graph G with perfect elimination order vq,...,v,. Defin-

ing e; = e;(G) as above, we have that (ey,...,e,) is a restricted growth sequence relative
to (0,1,...,n —1). Moreover, if (¢},...,el) is any restricted growth sequence relative to
(0,1,...,n—1) then there is a chordal graph G with perfect elimination order vy, ..., v, such

that e;(G) = é€; for all i <n.

Proof: We begin by showing that (eq,...,e,) is a restricted growth sequence relative to
(0,1,...,n —1). Certainly e; = 0. Now consider vertex vy for &k > 1. It is adjacent to e
vertices among vy, .. ., v,_1, with the largest of these (in the ordering v; < vy < ---) being,
say, v;. Because vy, forms a clique with its neighbors among vy, ..., v;_1, it follows that v,
has at least e, — 1 neighbors among vy,...,v;_1, so ¢; > e; — 1. From this it follows that
er, < e;+1 <1+ max;.e;, exactly the condition that says that (eq,...,e,) is a restricted
growth sequence relative to (0,1,...,n —1).

Next suppose (€], ..., e}) is a restricted growth sequence relative to (0,1,...,n—1). We
construct a chordal graph G with perfect elimination order vy, . .., v, such that e;(G) = ¢} for
all i = 1,...,n, inductively, starting with an isolated vertex v;. Suppose that the adjacency
structure among vy, ..., vr_1 has been determined. We have that e, < 1 + max;-, e;, which
means that (by induction) among vy, ..., vx_; there are some e vertices that form a clique.
The construction can be continued by joining v; to any such e, vertices. O

3 Proof of Theorem 1.2

A key tool will be the following explicit expression for S¢(m, k).
Lemma 3.1. For arbitrary a and e we have

S2¢(m, k) = Z H (Gs;—it1 — €s,), (5)

S={s1,.-s8m—_k tC{1,...,m} =1
81<...<Sm—k
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and, equivalently, denoting the (m,k)-entry of (S®¢)~! by s*°(m, k),

Cortseemb = Y [ ) ©)

$1<...<Sm—k

Notice that in the chordal graph setting es, ;11 is the number of edges from vertex vy, ;41
to earlier vertices, so is at most s; —%, which is at most s; —1, which is a,,, and so the quantity
on the right-hand side of the formula for (—1)™ *s(m, k) is non-negative. This establishes
directly that the sign of the (m, k)-entry of sg is (—1)™~*, as asserted by Theorem 2.1.

In the sequel we will only give a proof of (5), so here let us note that this identity implies
(6). Indeed, from (1) we have that S*®(m, k) is the coefficient of (z — ay)---(x — a;) in
the unique expansion of (x —e;)---(x — e,,) as a linear combination of 1,z — ay,...,(x —
a) - (x — ay), and so from basic linear algebra considerations we see that the s*¢(m, k)
are uniquely determined by the relations

m m

H(m —a;) = Z s*¢(m, k) H(x —e;)

i=1 k=0 i=1
for m > 0. A direct application of (5) yields

m—k

o tsemr) = (07 Y [[(ewn —a)

S={s1,--8m-k}C{1,....m} =1
§1<...<S8m—k

Of course the same argument in reverse shows that the two identities are equivalent.

Proof (of Lemma 3.1): We will show that both sides of (5) satisfy the same recurrence relation
and initial conditions. To that end write f(m, k) for the expression on the right-hand side
of (5). We begin by establishing some boundary values for f(m, k).

e We have f(0,0) = 1 (the sum has one summand, associated with S = (), and this
summand is the empty product and so has value 1), and more generally f(m,m) =1
for all m.

e Form >0, f(m,0) = (a1 —e1) - (a1 — ).

e For k >0, f(0,k) = 0 (the sum defining f in this case is empty), and more generally
for k > m, f(m,k) = 0.

Next we establish a recurrence for f(m, k). For m > k > 0 we have

fm k)= f(m—1,k—1)+ (aks1 — en) f(m — 1, k).



The terms on the right-hand side here come from considering first those S with m ¢ S and
then those with m € S; in the latter case m is always the greatest element of S and so
contributes a factor a,,—(m—r)+1 — €m = Gr41 — €, to each summand.

Next consider the quantity S®¢(m, k). We easily have S2¢(0,0) = 1, and more generally
S2¢(m,m) = 1 for all m, as well as S**(m,0) = (a1 —e1)--- (a1 — e,,) for m > 0 (evaluate
both sides of (1) at x = a;). We also have $2¢(0,k) = 0 for £ > 0 and more generally
S2¢(m, k) =0 for k > m. We also have the recurrence

S*¢(m, k) = S*(m — 1,k — 1) + (ags1 — €m)S*(m — 1, k) (7)
for m > k > 0. To verify this, consider the expression

S2e(m,0) + S*¢(m —1,m—1)(x —ay) - (x — an) (8)
052 (m = 1,k — 1) + (agp1 — em)S®(m — 1,K)) (x —a1) - - (x — a)

(a linear combination of the polynomials 1,2 — ay,...,(x —a1)--- (x — a,,)). Rearranging
terms (8) becomes

Sa’e(m,l()) + S52°(m —1,0)(x — aq) (9)
+(z—em)d ey SPe(m—1k)(x —ar)-- (z — ag).

Writing © — a; = (z — e,,) — (a1 — e,,,) in the second term of (9) yields

S2¢(m,0) — S**(m — 1,0)(a; — e)
(1 — em) o7y 52 (m — 1, k) (& — ay) - - - (x — ag). (10)

Via the initial conditions the first two terms of (10) sum to 0, and via the defining relation
for S®¢(m —1,-) ((1) with m replaced by m — 1) the remaining terms sum to [[\",(z — ¢;).
The recurrence (7) now follows from (1) via linear algebra considerations.

Since f(m, k) and S*°(m, k) satisfy the same recurrence and initial conditions, they are

equal. O

Lemma 3.1 allows us to express S*¢(m, k) in terms of complete symmetric and elementary
symmetric functions. Recall that hy(z1,...,x;) is the degree ¢ complete symmetric polyno-
mial in zy,...,x; (the sum of all degree ¢ monomials with coefficients 1) and sy(z1, ..., z;)
is the degree ¢ elementary symmetric polynomial in xq, ..., z; (the sum of all degree ¢ linear
monomials with coefficients 1); so, for example, hy(z1, 29, x3) = $%+$%+$§+$11}2+$1$3+$2$3
while so(x1, 29, x3) = X129 + X123 + ToX3.

Lemma 3.2. For arbitrary a and e,

—k

S&(m, k) = (—l)ehm_k_g(al, cosQprr)Se(€1, oy em). (11)
0

3

~
Il

Proof. One possible approach is to show that that the expressions on the right-hand sides
of (5) and (11) are equal. This can be achieved by noting that when the right-hand side of
(5) is expanded as a polynomial in the e;’s, the monomials that arise are precisely the linear
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monomials in ep,...,e,. Foragiven ¢, 0</{¢{<m—k,and T = {t1,...,t,} C{1,...,m}
with ¢ < ... < t,, the coefficient of e, ...e;, turns out to be (—1)h,_r_¢(ar,...,ar1)
(independent of the particular choice of T'); this proves the lemma.

We take instead a linear algebra approach. From (1) we have

m k
H(aj—ei) :ZSae m, k) H T — a;)
i=1 k =1

(where the sum runs over all integers k, although the summand will only be non-zero for
ke€{0,1,...,m}). It follows that

H(:r; —e) = Z 5%€(m, j)a’
= Z 5%¢(m, 7) Z 529(j, k) H(x —a;)
= Z (Z So’e<m,J)Sa’0(j7 k) H(gj — al)

so that

Now Lemma 3.1 gives

So’e<m7j> = Z ' (_esi)

and

j—k
52035 k) = Z Hasifwl

S:{31,...,sj,k}g{l,...,j} =1
51<...<85—k

= hjflc(ala o Q).

Combining these two equations, and re-indexing via ¢ = m — j, leads to (11).
O

We now require some well-known results from the theory of totally non-negative matrices.
Consider the weighted directed planar network shown in Figure 1, where horizontal lines are
oriented to the right and vertical lines upward (so that so,..., s, are sources and %o, ...,%,
are sinks), and all horizontal edge weights are 1.
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Figure 1: A weighted directed planar network

In the sequel we will represent this network by its (doubly infinite) array of weights, viz:

T11

Ta1 T2

T31 T32 X33

Tg1 T42 T43 T4
T51 Ts2 Ts3 Ts4  Tss

Tnl Tp2 Tp3 Tnd " Tpn-1) Tan
L

and we will refer to the location of the weight x,,; in this array as the [m, k]-position of the
array (using square brackets to distinguish this from an entry in a matrix).

By the path-matriz of the planar network we mean the doubly infinite matrix whose
(i, j)-entry (with rows and columns indexed by {0,1,2,...}) is the sum of the weights of all
the directed paths from s; to t;, where the weight of one such path is the product, over all
edges traversed, of the weight of the edge. For example, the (3, 1)-entry of the path-matrix
of the planar network in Figure 1 is w3291 + 231222 + T32222. Notice that the path-matrix of
the network in Figure 1 is lower-triangular with 1’s down the main diagonal. The following
[15] (see also, for example, [18]), is a standard result from the theory of totally non-negative
matrices.

Lemma 3.3. (Lindstrom’s Lemma) If the matriz M is the path-matriz of a planar network
with all non-negative weights, then M is totally non-negative.

Indeed, the minor corresponding to selecting the rows indexed by I and columns indexed
by J (with indexing of rows and columns starting from 0) equals the sum of the weights
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of all the collections of |I| vertex disjoint paths from the sources {s; : ¢ € I} to the sinks
{t; : j € J}, where the weight of a collection of paths is the product of the weights of the
individual paths in the collection; but we will not need this.

So, to prove item 1 of Theorem 1.2, it suffices to produce, for each a and e with a non-
decreasing and e a restricted growth sequence relative to a, a planar network all of whose
weights are non-negative and whose path-matrix is $%°. We will achieve the construction
of this network in stages, first producing a network whose path-matrix is S#° but which
may have some negative entries, and then modifying it in a way that makes all the negative
entries non-negative, without changing the associated path-matrix.

Lemma 3.4. For arbitrary a and e, the following planar network has S*° as its path-matrix:

a; — €1

a1 — €3 Qs — €1

a1 — €3 Ay — €3 a3 — €1

a1 —€4 A2 — €3 a3z — €3 a4 — €1

a1 — €5 A9 — €4 a3 — €3 ay4 — €9 a5 — €1 (12>

ay —€p Q2 —€p_1 A3 —€p—2 Aq4 — €p_3 ce Qp—1 — €2 ap — €1

Proof. Clearly the first row and column of the path-matrix, as well as the main diagonal
and everything above the main diagonal, agree with S*¢, so we focus on m > k > 1. In this
range the relevant portion of (12) (the only vertical edges that can be traversed in a path
from s, to ;) is the following:

a1 — €41 ag — € az — €g—1 ... ag41 — €1
a1 — €42 A2 — €41 asz — € ce Q41 — €2
ar —€g43 G2 — €ky2 A3 — €41 .. Qg1 — €3
. . . . (13)
a; —€m—-1 G2 —€6p—2 A3 —€m—-3 - Ag41 — Cp—k—1
a; —€n A2 —€6p-1 a3 —€p-—2 - Qg41 — Em—k-

(Specifically these are the entries in the [s,¢]-position for k+1 <s<mand 1 <t <k+1
— there are m — k rows and k + 1 columns).

Now consider the following network, which is obtained from (13) by mapping e; to €,,_;+1
for each i:

ar —€m—k A2 —€m_k+1 A3 — Em—_f42 ... Qg1 — Ep
a1 — Em—k—1 a2 — Em—k as — €m—k+1 -+ Q41 — Em—1
ay —€m—k—2 G2 —€m—k—1 A3 —Em—f ... Q41 — Ep—2 (14)
ap — €2 az — €3 as — €4 Tt Qg1 — Cg42
a; —ex Gy — €3 asz — €3 0 Akl T Gy

A path from s,, to t; in either network corresponds to a composition by +- - -+bp 1 = m—k
of m — k into k + 1 non-negative parts, via: from s, take b; vertical steps along the first
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column of the weight array, then one horizontal step, then by vertical steps along the second
column of the weight array, and so on.

In (14), the weight of the path corresponding to the composition by +- - -+bg1 = m—k is
a product of the form []7";" (ag@) — €4()), where the sequence (f(1),..., f(m — k)) consists
of by 1’s, followed by by 2’s, and so on, and the sequence (g(1),...,g(m—k)) starts 1,2,...,by,
then moves on to an increasing sequence of consecutive integers of length by starting from
b1 + 2, and so on; in other words, it is

m—k
H aslferl )
=1

where {s1,...,8m_k} = {1,...,b1,lf—|—\1,b1 +2,...,b1 + by + 1,0y +/b\2—|-2,...} (the hats
indicating missing elements). As (by,...,b1) runs over all (™ ) compositions of m — k
into k+1 parts, the sets {s1,...,Sy,_4} runover all (™ ) subsets of {1,...,m} of size m—k,
and so we get that in (14) the sum of the weights of the paths from s, to ty is

m—k

Z H(asi—i+1 - esi)- (15)
S:{Sl,...,Sm_k}g{l,---,m} =l
S1 < ...< Sm—k

By Lemma 3.1 the expression in (15) is S*¢(m, k). The weights in (13) are obtained from
those in (14) by a permutation of the e;’s, and by Lemma 3.2 the expression in (15) is
invariant under such permutations. It follows that in (13) the sum of the weights of the
paths from s, to t; is also S®¢(m, k). O

Even if a is non-decreasing and e is a restricted growth sequence relative to a, it may
be that some of the entries of (12) are negative (a; — eg, for example). We now describe a
transformation that iteratively turns the network (12) into one that has only non-negative
weights, without changing the associated path matrix.

Lemma 3.5. For arbitrary a and e, if ay = ey then the following planar network has S®°
as its path-matriz:

ap — €1
1 —€1 ag — €2
a1 —€1 a2 —e€3 az — €3

a1 — €1 a9 — €4 a3 — €3 ay, — €9
a; —e; ag — €5 a3 — €4 ay — €3 a5 — €9 (16)
ay —€r Gz —€p a3 —€p-1 G4 — Cp_2 T an—1 — €3 Qn — €3

Note that (16) is obtained from (12) by, in each row, moving the —e;’s from the last
position in the row to the first, and then shifting all other —e;’s in the row one place to the
right.
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Proof (of Lemma 3.5): Again all the boundary conditions are obvious, so we focus on m >
k > 1. Because a; = e;, we have that the sum of the weights of paths from s,, to t; in (16) is
the same as the sum of the weights of paths from s, to #; in the following (finite) network:

0
0 a9 — €9
0 9 — €3 as — €2
0 a9 —ey as — e3 ay — €3 (17)
0 a9 — €5 as — €4 ay — €3 a5 — €9
0 ag—e€pn a3—€n-1 A4 —€po -+ Qp_1—€3 Uy — €.
The proof of Lemma 3.4 shows that this quantity is symmetric in e, ..., e,,, and so the

transformation es — e,,, e3 — €,,_1, etc, while maybe changing the path-matrix, does not
change the sum of the weights of the paths from s, to #; (i.e., the (m, k)-entry of the path
matrix). We can also replace the first column of (17) with

a; — €m
a1 — €p—1
a1 — €2
a1 — €

without changing the sum of the weights of the paths from s, to t;: the a; — e; at the
bottom of the first column (in the [m, 1]-position) equals 0, which has the effect that the
remaining entries in the column do not appear in any paths of non-zero weight. We now
have the following network, in which the sum of the weights of the paths from s, to t; is as
it was in (16):

ar — €én
a1 —€p-1 A2 — €y
ap — €pm—2 G2 — Ep—1 az — €m
a1 —€p-3 a2 —€p—2 a3 —€p_1 44 — Epy
a1 —€p—yg A2 —€Ep-3 A3 —Ep—2 A4 —Cp_1 45 — €y

a; — €1 Ay — €3 a3 — €3 ay — €4 ce Am—1 — Em—1 QAm — Em.

The relevant portion of this network, with respect to paths from s,, to t; (the only vertical
edges that can be traversed in a path from s, to tx), is exactly (14), and so the proof of
Lemma 3.4 shows that the sum of the weights of the paths from s,, to t; is S*¢(m, k). O

We refer to the operation that transforms the network (12) of Lemma 3.4 to the network
(16) of Lemma 3.5 as pivoting on the [1, 1]-position. More generally, given a planar network
of the type shown in Figure 1 in which, for each m > 1 and 1 < k£ < m the weight in
[m, k]-position is of the form a sy, k) — €g(m,k) (for some functions f, g) we define pivoting on
the [m, k|-position to mean the following:

12



e the weight in the [m, k]-position remains unchanged;

e in row m+ 1, the weights as(mi1,k) — €g(m+1,6) A0 @ f(m41k41) — €g(mt1,6+1) (in the [m+
1, k}- and [m+ 1, k + 1]-positions, respectively) are replaced with @ f(m-11,k) — €g(m-+1,k+1)
and af(mi1,k41) = Cg(mt1,k);

e in general, for £ > 1 the weights

Af(m+e,k) = Cg(mttk), Af(mtlk+1) = Cglmtlk+1)s -« o Af(mtlk+e) = Cg(m+Lk+e)

(in the [m + ¢, k|- through [m + ¢, k + ]-positions, respectively) are replaced with

Af(m+ek) = Eg(m+ek+0)y Af(m+Lk+6) — Eg(m+ek)s -+ Af(mtLk+€) — Eg(m4Lk+0-1);

and all other weights remain unchanged.

We refer to the triangle consisting of the [m+£;, k+/s]-positions for all /; > 0 and 0 < ¢y < 4
as the triangle headed at the [m, k]-position; Figure 2 shows a portion of the triangle headed
at the [3,2]-position in a general weighted planar network of the type first introduced in
Figure 1.

Ti1

To1 T22

T31 X32 T33

Tg1 Xg2 X3 Ty
Ts1 Xp2 X53 Xpg4 Tss

Tp1 Xn2 Xn3 Xng - Xpn-1) Tan

Figure 2: The triangle headed at the [3, 2]-position (in bold)

We can easily generalize Lemma 3.5.

Lemma 3.6. Let a and e be arbitrary. If a planar network is obtained from (12) of by
pivoting on the [m, k|-position, then as long as the weight in that position is 0, the path-
matrix of the resulting network is still S®°.

Furthermore, if (my, ma,...) and (ky, ks, ...) are sequences satisfying that for each i > 1,
the [mjy1, kiv1]-position is located in the triangle headed at the [m;, k;|-position, and if a
planar network is obtained from (12) by first pivoting on the [my, ki]-position, then pivoting
on the [mg, kol-position of the resulting network, and so on, then as long the weights in each

of the positions at which pivoting occurs is 0, the path-matrix of the resulting network is still
Sae,
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Proof: We begin with the first statement. For a given source s, and sink t,, the collection
of paths from s, to t, can be partitioned according to the first vertex along the path, v
say, that is part of the triangle headed at the [m, k]-position, and the last such vertex, v,
say. By the construction of the network, the portion of the path lying between vy and v,
lies completely inside the triangle headed at the [m, k]-position (note that this portion may
be empty, if the path completely avoids the relevant triangle). For a given partition class,
the sum of the weights of the paths from s, to ¢, is the product of three terms: the sum of
the weights of the paths s, to vs, the sum of the weights of the paths v; to v;, and sum of
the weights of the paths v; to ¢,. The first and third of these sums remain unchanged after
pivoting on the [m, k]-position, because the pivoting does not change any of the weights away
from the triangle headed at the [m, k]-position. The middle sum also remains unchanged
after pivoting, by Lemma 3.5. Summing over partition classes, the first statement of the
lemma follows.

The second statement of the lemma is obtained by iterating the above argument. O

We can now fairly swiftly present the proof of Theorem 1.2.

Proof (of Theorem 1.2): Let a be non-decreasing. We begin by arguing that if e is a restricted
growth sequence relative to a, then S© is totally non-negative (item 1).

e If all e; are at most ay, then the original network (12) presented in Lemma 3.4 has all
non-negative weights, and by Lemma 3.3 (Lindstrém’s Lemma) we are done.

e If not, then there is some index j such that e; = a; and e; < a; for all 7/ < j. We
pivot on the [j, 1]-position (note that the weight in this position is a; —e;, or 0). From
the first part of Lemma 3.6 the path-matrix of the resulting network is S2°. Notice
that all weights in the first column of the new network are either positive (the entries
in the first j — 1 rows) or 0 (the remaining entries), and that all weights in the new
network that lie above the triangle headed at the [j, 1]-position are positive (they were
positive in the original network — here we use that a is non-decreasing — and remain
unchanged after pivoting). In other words, after pivoting all weights in the network in
positions outside the triangle headed at the [j, 1]-position are non-negative.

e If all e; for 7 > j are at most as, then the new network has only non-negative weights,
and again by Lemma 3.3 we are done. If not, there is some index j’ such that e;; = a
and e < ay for all j < j” < j. We now pivot on [j’, 2]-position (which has weight
as —ej = 0). Because the [j’, 2]-position is in the triangle headed at the [j, 1]-position,
we can apply the second part of Lemma 3.6 to conclude that the path-matrix of the
resulting network is still €. Arguing as before, the new weighted planar network has
non-negative weights outside the triangle headed at the [j, 2]-position.

e Iterating this process (either finitely many times or countably many times, depending
on whether a and e are finite or countably infinite) we arrive at a weighted planar
network all of whose entries are non-negative and whose path-matrix is 5¢; the result
now follows from Lemma 3.3.

To complete the proof of Theorem 1.2, we show that if e is not a restricted growth
sequence relative to a, then S is not totally non-negative, and that moreover the failure
of total non-negativity is witnessed by a negative matrix entry (item 2).
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e Suppose that the failure of e to be a restricted growth sequence relative to a is witnessed
by some index j such that e; < a; for all ¢ < j, and e; > a;. Then evidently the path-
matrix associated with (12) has the negative entry (a1 —e;)(a1 —e;j—1) -+ (a1 — 1) —
it is the (j,0)-entry.

e Otherwise, there is some index j such that e; < a; for all 7 < j, and e; = a;. Consider
the network (12), and pivot on the [j, 1]-position to obtain a network which, as estab-
lished in the proof of item 1 above, has path-matrix S®€. This network has strictly
positive weights in the first 7 — 1 entries of the first column, the weights in the rest of
the first column are all 0, and all weights above the triangle headed at the [j, 1]-position
are strictly positive.

Now suppose that the failure of e to be a restricted growth sequence relative to a is
witnessed by some index j’ such that e; < ay for all j < i < j', and e;; > ay. Evidently
the (', 1)-entry of the path-matrix is negative, because all paths from s; to ¢; that do
not have weight 0 have a weight which is a product of strictly positive terms, together
with the term ay — e, which is negative.

e Continuing in this manner, we find that if the earliest witness of the failure of e to be
a restricted growth sequence relative to a is some index j with e; > a, for some £, then

the (j,¢ — 1)-entry of S®° is negative.
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