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Abstract

Given R ⊆ N let
{
n
k

}
R

,
[
n
k

]
R

, and L(n, k)R count the number of ways of partitioning
the set [n] := {1, 2, . . . , n} into k non-empty subsets, cycles and lists, respectively,
with each block having cardinality in R. We refer to these as the R-restricted Stirling
numbers of the second and first kind and the R-restricted Lah numbers, respectively.
Note that the classical Stirling numbers of the second kind and first kind, and Lah
numbers are

{
n
k

}
=
{
n
k

}
N,
[
n
k

]
=
[
n
k

]
N and L(n, k) = L(n, k)N, respectively.

It is well-known that the infinite matrices [
{
n
k

}
]n,k≥1, [

[
n
k

]
]n,k≥1 and [L(n, k)]n,k≥1

have inverses [(−1)n−k
[
n
k

]
]n,k≥1, [(−1)n−k

{
n
k

}
]n,k≥1 and [(−1)n−kL(n, k)]n,k≥1 respec-

tively. The inverse matrices [
{
n
k

}
R

]−1
n,k≥1, [

[
n
k

]
R

]−1
n,k≥1 and [L(n, k)R]−1

n,k≥1 exist and have
integer entries if and only if 1 ∈ R. We express each entry of each of these matrices
as the difference between the cardinalities of two explicitly defined families of labeled
forests. In particular the entries of [

{
n
k

}
[r]

]−1
n,k≥1 have combinatorial interpretations,

affirmatively answering a question of Choi, Long, Ng and Smith from 2006.
If we have 1, 2 ∈ R and if for all n ∈ R with n odd and n ≥ 3, we have n±1 ∈ R, we

additionally show that each entry of [
{
n
k

}
R

]−1
n,k≥1, [

[
n
k

]
R

]−1
n,k≥1 and [L(n, k)R]−1

n,k≥1 is up
to an explicit sign the cardinality of a single explicitly defined family of labeled forests.
With R as before we also do the same for restriction sets of the form R(d) = {d(r−1)+1 :
r ∈ R} for all d ≥ 1. Our results also provide combinatorial interpretations of the kth

Whitney numbers of the first and second kinds of Π1,d
n , the poset of partitions of [n]

that have each part size congruent to 1 mod d.

1 Introduction

For all integers n, k ≥ 1, let
{
n
k

}
,
[
n
k

]
, and L(n, k) be the classical Stirling numbers of

the second and first kinds, and Lah numbers, respectively. These numbers are defined as
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follows:
{
n
k

}
is the number of partitions of [n] := {1, 2, . . . , n} into k non-empty subsets,

[
n
k

]
is the number of partitions of [n] into k non-empty cyclically ordered sets, i.e. cycles, and
L(n, k) is the number of partitions of [n] into k non-empty linearly ordered sets, i.e. lists.
All of our partitions will be unordered unless we specify otherwise. Let S2 := [

{
n
k

}
]n,k≥1,

S1 := [
[
n
k

]
]n,k≥1, and L := [L(n, k)]n,k≥1 be infinite matrices with rows and columns indexed

by the natural numbers N := {1, 2, . . .}. In this notation n is the row index and k is the
column index. It is well-known that S−1

2 = [(−1)n−k
[
n
k

]
]n,k≥1, S−1

1 = [(−1)n−k
{
n
k

}
]n,k≥1 and

L−1 = [(−1)n−kL(n, k)]n,k≥1. In particular, each entry of each inverse matrix has, up to sign,
a combinatorial interpretation.

We consider the following generalizations of Stirling and Lah numbers.

Definition 1.1. For R ⊆ N the R-restricted Stirling number of the second kind,
{
n
k

}
R

, is the
number of partitions of [n] into k non-empty subsets such that the cardinality of each subset
is restricted to lie in R. Analogously, the R-restricted Stirling numbers of the first kind

[
n
k

]
R

and R-restricted Lah numbers L(n, k)R are the numbers of partitions of [n] into k cycles and
lists, respectively, with cardinalities restricted to lie in R.

Note that we recover the classical Stirling numbers of both kinds and the Lah numbers
by taking R to be N (e.g.

{
n
k

}
N =

{
n
k

}
etc.).

Various instances of restricted numbers have appeared in the literature. Comtet [7, page
222] introduced r-associated Stirling numbers of the second kind,

{
n
k

}
R

with R = {r, r+1, r+
2, . . .}, and obtained recurrence relations and generating functions for them. Belbachir and
Bousbaa [2] studied r-associated Lah numbers, L(n, k)R also with R = {r, r + 1, r + 2, . . .}.
Choi and Smith [5] considered r-restricted Stirling numbers of the second kind,

{
n
k

}
R

with
R = [r].

We extend the classical results on the inverses of Stirling and Lah number matrices to
find combinatorial formulas for the inverses of R-restricted Stirling and Lah number matrices
whenever the inverses exist, i.e., whenever 1 ∈ R.

Definition 1.2. Denote by
{
n
k

}−1

R
(
[
n
k

]−1

R
, L(n, k)−1

R ) the entry in the nth row and kth column

of the matrix [
{
n
k

}
R

]−1
n,k≥1 ([

[
n
k

]
R

]−1
n,k≥1, [L(n, k)R]−1

n,k≥1, respectively), when the inverse matrix

exists. We refer to
{
n
k

}−1

R
as the inverse R-restricted Stirling number of the second kind,

[
n
k

]−1

R

as the inverse R-restricted Stirling number of the first kind, and L(n, k)−1
R as the inverse R-

restricted Lah number.

Our first result (Theorem 3.1) is that for all R ⊆ N with 1 ∈ R,
{
n
k

}−1

R
,
[
n
k

]−1

R
, and

L(n, k)−1
R can each be expressed as the difference between the cardinalities of two explicitly

defined sets of forests.
If R has more structure, we can say more.

Definition 1.3. Say that R ⊆ N has no exposed odds if it has the following properties:

1. if 1 ∈ R then 2 ∈ R and

2. if n is odd, n ≥ 3, and n ∈ R then n− 1, n+ 1 ∈ R.
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For d ≥ 1 and R ⊆ N set R(d) := {d(n − 1) + 1 : n ∈ R}. We view R(d) as the set R
“stretched” along the arithmetic progression {1, d + 1, 2d + 1, . . .}. Our main set of results
(Theorems 3.8 and 3.9) is that, for all R ⊆ N with 1 ∈ R and with no exposed odds, and for

all d ≥ 1, each of
{
n
k

}−1

R
,
[
n
k

]−1

R
, L(n, k)−1

R ,
{
n
k

}−1

R(d)
,
[
n
k

]−1

R(d)
, and L(n, k)−1

R(d) can be expressed,

up to an explicit sign, as the cardinality of a single explicitly defined set of forests.

In [4] Choi, Long, Ng and Smith note that
{
n
k

}−1

[2]
is a Bessel number [13, A100861] and has

many combinatorial interpretations. For example, (−1)n−k
{
n
k

}−1

[2]
counts the number of size

n−k matchings of the complete graph K2n−1−k [6]. They asked if
{
n
k

}−1

[r]
has a combinatorial

interpretation for r > 2, and observed that an anomalous sign behavior in
{
n
k

}−1

[3]
presents an

obstacle to any such interpretations.
But in fact our results provide such combinatorial interpretations, and these are particu-

larly nice whenever r is even; see Corollary 1.4 (Part 1) below.
We give below, in Corollary 1.4, some illustrative special cases of the results in our paper.

We also give some applications to calculating the Whitney numbers of a certain subposet of
the partition lattice (Theorem 1.5).

Recall that a plane tree is a rooted tree in which the set of children of each vertex of the
tree are given a linear ordering from left to right. If the leaves of a tree are labeled with
integers we extend that labeling to other vertices v by setting `(v) to be the maximum of
the labels of the leaves descended from v. Let H(n, k) be the set of forests consisting of an
unordered collection of k plane rooted trees: (i) with n leaves in total (an isolated root is
considered a leaf) (ii) with all non-leaves having at least two children and (iii) with the leaves
labeled with the integers 1 through n in such a way that `(v) increases from left to right
across each set of siblings.

Corollary 1.4. The following are special cases of Definition 3.3, Claim 3.4, and Theorems
3.8 and 3.9.

1. Let r ≥ 1. The number
{
n
k

}−1

{1,2,...,2r} is (−1)n−k times the number of forests in H(n, k)

in which each vertex v has 0, 2, or 2r children unless v is the left-most child of a vertex
with two children, in which case it has 0 or 2r children.

2. Let r ≥ 1 and d ≥ 2. If n ≡ k (mod d), then
{
n
k

}−1

{1,d+1,2d+1,...,1+(2r−1)d} is (−1)(n−k)/d

times the number of forests in H(n, k) in which each vertex v has 0, d+1 or 1+(2r−1)d
children unless v is the left-most child of a vertex with d+ 1 children, in which case it
has 0 or 1 + (2r − 1)d children. If n 6≡ k (mod d), then the number is 0.

3. Let d ≥ 1. If n ≡ k (mod d), then
{
n
k

}−1

{1,d+1,2d+1,...} is (−1)(n−k)/d times the number of

forests in H(n, k) in which each vertex has 0 or d + 1 children and in which left-most
children are always leaves. If n 6≡ k (mod d), then the number is 0.

Suppose P is a finite ranked poset with unique minimal element 0. For all k ≥ 0, the
kth Whitney number of the second kind, Wk(P ), is the number of elements of P of rank k
and the kth Whitney number of the first kind, wk(P ), is given by wk(P ) =

∑
x µ(0, x) where

µ is the Möbius function of P and x ranges over the elements of P of rank k. The theory
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of subposets of the set partition lattice Πn consisting of partitions with restricted part sizes
has received considerable attention in the literature, see for instance [3, 16, 17, 20]. Our
results give combinatorial interpretations of the Whitney numbers of the ranked poset Π1,d

n

consisting of all partitions of [n] that have each part size congruent to 1 mod d.

Theorem 1.5. For all n, d ≥ 1 and k ≥ 0 we have

Wk(Π
1,d
n ) =

{
n

n− kd

}
{1,d+1,2d+1,...}

and

wk(Π
1,d
n ) =

{
n

n− kd

}−1

{1,d+1,2d+1,...}

In particular, wk(Π
1,d
n ) is (−1)k times the number of forests in H(n, n−kd) in which each

vertex has 0 or d+ 1 children and in which left-most children are always leaves.

Our paper is organized as follows. We provide definitions related to our combinatorial
interpretations in Section 2 and then state our main results in Section 3. In Section 4, we
state some preliminary lemmas. We give proofs of our main results in Section 5. In Section
6 we note some connections to known number sequences and indicate some directions for
future research.

2 Notation

As is evident from Corollary 1.4 and Theorem 1.5, trees and forests figure heavily in our
results. Our trees will all be rooted, i.e. they will come with a distinguished root vertex. Our
forests will also all be rooted, i.e. they will consist of unordered collections of rooted trees.
Let F be a rooted forest and let v and w be vertices of F . If v lies on the path from w to
a root, then v is an ancestor of w and w is a descendant of v. If, in addition, v and w are
neighbors, we say v is the parent of w and w is a child of v. We say v and w are siblings if
they have the same parent. The degree or down-degree of v, denoted dF (v), is the number of
children of v in F . We say v is a leaf of F if dF (v) = 0. Note that by our definition, isolated
roots are also leaves.

Our forests will either have ordered children or unordered children. A forest with un-
ordered children is just a graph made up of rooted trees with no ordering on sets of siblings.
A forest has ordered children if the set of children of each non-leaf vertex v is given a specific
linear order from left-most to right-most. Although a rooted tree with ordered children is
usually called a plane tree we avoid this terminology as we do not consider plane forests,
i.e. linearly ordered collections of plane trees. The components of our forests will always be
unordered.

If T is a tree, a leaf-labeling of T is an injective map ` from the leaves of T to N. A
leaf-labeling of a tree with n leaves is proper if it has range [n]. We will work with two
extensions of a leaf-labeling to non-leaf vertices.

Definition 2.1. Given a leaf-labeling ` of the leaves of a tree T , the labeling `max on the
vertices of T is defined by setting `max(v) to be the maximum of the labels of the leaves
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descended from v. The labeling `min is defined by setting `min(v) to be the minimum of the
labels of the leaves descended from v.

Note that any two children of a vertex have distinct labels with respect to the `max (or
`min) labeling.

A phylogenetic tree (forest) is a rooted tree (forest) with unordered children such that no
vertex has degree 1, together with a proper leaf-labeling. For 1 ≤ k ≤ n, we define T (n) to
be the family of phylogenetic trees on n leaves and F(n, k) to be the family of phylogenetic
forests with n leaves and k unordered components. Also, let T even(n) denote the subset of
trees in T (n) that have an even number of edges, and let T odd(n) be the complementary set
of trees with an odd number of edges.

Definition 2.2. Let G be a phylogenetic tree or forest. If each complete set of siblings (full
set of children of a non-leaf vertex of G) is assigned a linear ordering, we say that G is a
linearly ordered phylogenetic tree (forest). We say G is increasingly ordered if G is linearly
ordered and if additionally for each complete set of siblings, the `max label of the siblings
increases from left to right. We say G is min-first ordered if G is linearly ordered and if
additionally for each complete set of siblings, the left-most sibling has the smallest `min label
amongst all the siblings.

Let T i.o.(n), T m.o.(n), and T l.o.(n) be the families of increasingly ordered, min-first or-
dered, and linearly ordered phylogenetic trees on n leaves, respectively. For all 1 ≤ k ≤ n we
define F i.o.(n, k) (Fm.o.(n, k), F l.o.(n, k)) to be the family of increasingly (min-first, linearly)
ordered phylogenetic forests on n leaves with k unordered components.

If R ⊆ N and C is any class of trees or forests, we write CR for the subclass of objects
in C which have all non-zero down-degrees lying in R. For example, T i.o.

R (n) is the set of all
increasingly ordered phylogenetic trees with n leaves and all non-zero down-degrees lying in
R.

For d ≥ 1 let sd : N → N be defined by sd(n) := d(n − 1) + 1. As we defined in the
introduction, let R(d) = sd(R) = {d(n − 1) + 1 : n ∈ R}. Note that s1 is the identity and
R(1) = R.

Definition 2.3. Let R ⊆ N and let d ≥ 1. If G is a phylogenetic forest with all down-degrees
in R(d) let (vi)

m
i=1 be some arbitrary but fixed ordered list of the non-leaf vertices of G. For

each i let ni be the unique integer such that d(vi) = sd(ni). We refer to (ni)
m
i=1 as the internal

sequence of G. We say that G is even if
∑m

i=1 ni is even and odd otherwise.

Note that if d = 1 then ni = d(vi) and
∑m

i=1 ni is just the number of edges of G. We

define T i.o.,even
R(d) (n) (T i.o.,odd

R(d) (n)) to be the sets of even (odd) increasingly ordered trees on n

leaves with down-degrees in R(d) and define the analogous notations for the other possible
subclasses of even and odd ordered trees and forests. For example Fm.o.,odd

R(d) (n, k) is the set of

odd min-first ordered phylogenetic forests with down-degrees in R(d) and with n leaves and
k components. If d = 1 then, since R(1) = R, we will write this as Fm.o.,odd

R (n, k).

3 Results

In this section we state our main results. Using a formula for combinatorial Lagrange in-
version we obtain the following combinatorial interpretation for each inverse R-restricted

5



number (with 1 ∈ R) as the difference in cardinality between two sets of forests.

Theorem 3.1. Let R ⊆ N. Then
{
n
k

}−1

R
,
[
n
k

]−1

R
, and L(n, k)−1

R exist if and only if 1 ∈ R. For
all R with 1 ∈ R and all n, k ≥ 1 we have{

n

k

}−1

R

= (−1)n−k
(∣∣∣F i.o.,even

R (n, k)
∣∣∣− ∣∣∣F i.o.,odd

R (n, k)
∣∣∣) ,

[
n

k

]−1

R

= (−1)n−k
(
|Fm.o.,even

R (n, k)| −
∣∣∣Fm.o.,odd

R (n, k)
∣∣∣) ,

L(n, k)−1
R = (−1)n−k

(∣∣∣F l.o.,even
R (n, k)

∣∣∣− ∣∣∣F l.o.,odd
R (n, k)

∣∣∣) .
Recall (Definition 1.3) that R ⊆ N has no exposed odds if (i) 2 ∈ R whenever 1 ∈ R, and

(ii) n − 1, n + 1 ∈ R whenever n ∈ R, n ≥ 3, and n is odd. Our main result is that for R
containing 1 and with no exposed odds, we can express each inverse entry, up to sign, as the
cardinality of a single set of forests. We next define the terms needed to describe these sets.

We write R as a disjoint union of its maximal intervals. Thus if R has no exposed odds
it is a union of intervals of the form [1,∞), [1, b] with b even, [a,∞) with a even, or [a, b]
with a ≤ b and a and b even. Let a(R) be the set of all left endpoints of the intervals in
this decomposition of R, except 1, and let b(R) be the set of all right endpoints. Note that
if R = N = [1,∞) then a(R) and b(R) are empty. Note also that if [x, x] = {x} is one of the
maximal intervals of R, then x ∈ a(R) and x ∈ b(R).

Definition 3.2. Let v be a vertex in a linearly ordered tree or forest G. Then v has 2-left-odd
ancestry if v has some ancestor v1 with the following properties:

• along the path v1, . . . , vk = v from v1 to v, for each 1 ≤ i < k it holds that d(vi) = 2,
vi+1 is a left-most child of vi, and k is even, and

• v1 is not a left-most child of a vertex w with d(w) = 2.

For d ≥ 1, we say v has sd(2)-left-odd ancestry if v has some ancestor v1 such that

• along the path v1, . . . , vk = v from v1 to v, for each 1 ≤ i < k it holds that d(vi) = sd(2),
vi+1 is a left-most child of vi, and k is even, and

• v1 is not a left-most child of a vertex w with d(w) = sd(2).

In Figure 1(a), only vertex w2 has 2-left-odd ancestry. In Figures 1(b) and 1(c), only
vertices w2 and w4 have 2-left-odd ancestry.

Definition 3.3. Let G be a linearly ordered tree or forest and let R have no exposed odds.
Say G is R-good if and only if for all vertices v, either v is a leaf or d(v) = 2 or d(v) ∈ a(R),
unless v has 2-left-odd ancestry, in which case either v is a leaf or d(v) ∈ b(R).

For d ≥ 1 say that G is R(d)-good if and only if for all vertices v, either v is a leaf or
d(v) = sd(2) (= d+1) or d(v) = sd(a) for some a ∈ a(R), unless v has sd(2)-left-odd ancestry,
in which case either v is a leaf or d(v) = sd(b) for some b ∈ b(R).
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(a) w1

1

w2

2

w3

3456

(b) w1

1

w2

2

w3

3

w4

4567

(c) w1

1

w2

2

w3

3

w4

4

w5

5678

Figure 1: Three examples of linearly ordered phylogenetic trees.

Note that R-goodness and R(1)-goodness coincide. When 3 ∈ R, the next claim shows
that “has sd(2)-left-odd ancestry” in Definition 3.3 can be replaced by the simpler “is the
left-most child of a vertex w with d(w) = sd(2).” So when 3 ∈ R, all non-leaf left-children of
degree sd(2) vertices in an R(d)-good tree have degree sd(n) for n > 2.

Claim 3.4. If 3 ∈ R, then G is R(d)-good if and only if for all vertices v, either v is a leaf
or d(v) = sd(2) or d(v) = sd(a) for some a ∈ a(R), unless v is the left-most child of a vertex
w with d(w) = sd(2), in which case either v is a leaf or d(v) = sd(b) for some b ∈ b(R).

Proof. If 3 ∈ R, then an R(d)-good tree or forest cannot have a vertex w2 as a left-most
child of a vertex w1 where d(w2) = d(w1) = sd(2). Indeed, one of w1 or w2 would have
sd(2)-left-odd ancestry, and 2 /∈ b(R).

We provide a few examples to illustrate these definitions.

Example 3.5. Suppose that R = {1, 2} ∪ {4, 5, 6}, so a(R) = {4} and b(R) = {2, 6}.
Consider the three phylogenetic trees in Figure 1. Trees (a) and (c) are R-good while tree
(b) is not, since vertex w4 has 2-left-odd ancestry, but w4 is not a leaf and d(w4) = 4 /∈ b(R).

Example 3.6. If R = {1, 2}, then an R-good tree is precisely a binary tree with ordered
children and a proper leaf labeling, and an R(d)-good tree is precisely a tree with ordered
children and all degrees 0 or d+ 1, together with a proper leaf labeling.

Example 3.7. If R = [r] for even r ≥ 4, then an R-good tree is precisely a leaf-labeled
tree with ordered children and all degrees 0, 2, or r and where the left children of vertices of
degree 2 have degree 0 or r. Note that for R = [4], none of the trees in Figure 1 are R-good.

We define T i.o.,good
R (n) (T i.o.,good

R(d) (n)) to be the class of increasingly ordered R-good (R(d)-

good) phylogenetic trees on n leaves and define the analogous notations for other classes of
ordered R- and R(d)-good trees and forests. For example, Fm.o.,good

R(d) (n, k) is the set of R(d)-
good min-first ordered phylogenetic forests with n leaves and k components. If d = 1, we
write this as just Fm.o.,good

R (n, k). It is straightforward to check that good trees and forests
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are even. Indeed, since R has no exposed odds, the sets a(R) and b(R) are comprised of
even numbers. By the definition of R(d)-goodness, this means the internal sequence (see
Definition 2.3) of G is comprised of even numbers and hence has even sum.

Our main results are the following theorems.

Theorem 3.8. For all R ⊆ N with 1 ∈ R and with no exposed odds, and for all n, k ≥ 1, we
have {

n

k

}−1

R

= (−1)n−k
∣∣∣F i.o.,good

R (n, k)
∣∣∣ ,[

n

k

]−1

R

= (−1)n−k
∣∣∣Fm.o.,good

R (n, k)
∣∣∣ ,

L(n, k)−1
R = (−1)n−k

∣∣∣F l.o.,good
R (n, k)

∣∣∣ .
Theorem 3.9. For all R ⊆ N with 1 ∈ R and with no exposed odds, all d ≥ 1, and all
n, k ≥ 1, we have {

n

k

}−1

R(d)

= (−1)(n−k)/d
∣∣∣F i.o.,good

R(d) (n, k)
∣∣∣ ,

[
n

k

]−1

R(d)

= (−1)(n−k)/d
∣∣∣Fm.o.,good

R(d) (n, k)
∣∣∣ ,

L(n, k)−1
R(d) = (−1)(n−k)/d

∣∣∣F l.o.,good
R(d) (n, k)

∣∣∣ .
Notice that Theorem 3.8 is the just the special case d = 1 of Theorem 3.9. We also

note that Theorem 3.9 is vacuously true if d - (n − k). In those cases, we will show that{
n
k

}−1

R(d)
=
[
n
k

]−1

R(d)
= L(n, k)−1

R(d) = 0 and the forest classes are empty.

We illustrate these definitions and theorems in the case where R = N. An ordered tree T
is N-good if and only if every non-leaf vertex has two children, the left-most of which is a leaf.
It follows that |T i.o.,good

N (n)| = (n − 1)!, because any of the (n − 1)! proper leaf-labelings in
which the right-most child of the non-leaf vertex furthest from the root gets label n yields an
N-good increasingly ordered tree. On the other hand |T m.o.,good

N (n)| = 1, because for T to be
min-first ordered, the leaves must be labeled in increasing order when read counterclockwise
from the root. Finally we have |T l.o.,good

N (n)| = n!, because in this case there is no restriction
on the leaf-labeling. See Figure 2.

Thus Theorem 3.8 tells us{
n

1

}−1

N
= (−1)n−1|T i.o.,good

N | = (−1)n−1

[
n

1

]
,

[
n

1

]−1

N
= (−1)n−1|T m.o.,good| = (−1)n−1

{
n

1

}
, and

L(n, 1)−1
N = (−1)n−1|T l.o.,good

N | = (−1)n−1L(n, 1),

matching the first columns of the identities [
{
n
k

}
]−1
n,k≥1 = [(−1)n−k

[
n
k

]
]n,k≥1, etc.

Some other specific illustrations of these theorems are discussed in Section 6.
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(a)

∗

∗

∗ 4

(b)

1

2

3 4

(c)

∗

∗

∗ ∗

Figure 2: (a) |T i.o.,good
N (4)| = (4− 1)!; (b) |T m.o.,good

N (4)| = 1; and (c) |T l.o.,good
N (4)| = 4!.

4 Preliminary lemmas

Let a = (an)n≥1 be a sequence of complex numbers with a1 6= 0. For n, k ≥ 1 set

an,k =
∑{

a|P1|a|P2| · · · a|Pk| : {P1, . . . , Pk} a set partition of [n]
}

(1)

and set
Aa = [an,k]n,k≥1.

Note that Aa is lower triangular as no partition of [n] has more than n parts, and also that
an,n = an1 , so that Aa is invertible if and only if a1 6= 0.

All the R-restricted numbers we consider are of the form an,k for certain choices of an.
For example, note that

[
n
k

]
R

= an,k where an = (n− 1)!1{n∈R}. (Here and throughout we use
1S for the indicator function of the event S, the function which takes value 1 if S occurs and
is 0 otherwise.) This may be seen as follows. To obtain a partition of [n] into k non-empty
cycles of the allowed sizes we first pick a partition of [n] into k non-empty sets {P1, . . . , Pk}
and then for each block Pi choose one of the cycles that may be formed from the elements of
Pi. There are a|P1|a|P2| · · · a|Pk| ways of completing the second step: if Pi is of an allowed size,
there are a|Pi| = (|Pi| − 1)! possible cycles and otherwise there are a|Pi| = 0 possible cycles.
Similarly,

{
n
k

}
R

= an,k where an = 1{n∈R}, and L(n, k)R = an,k where an = n!1{n∈R}. In all
three cases a1 6= 0 and Aa is invertible if and only if 1 ∈ R.

All of our numbers
{
n
k

}
R

,
{
n
k

}−1

R
, etc. are thus entries of matrices of the form Aa or

A−1
a . As we shall see these matrices are submatrices of matrices belonging to the exponential

Riordan group. We now define this group and see that its law of multiplication gives a nice
approach to calculating the entries of A−1

a .
Given a sequence of complex numbers f = (fn)n≥0 we define the exponential generating

function of f to be f(x) =
∑∞

n=0 fnx
n/n!. Given f(x) =

∑∞
n=0 fnx

n/n!, let ord(f(x)) :=
min{n ≥ 0 : fn 6= 0}. If f(x) and g(x) are exponential generating functions with ord(f(x)) =
0 and ord(g(x)) = 1 then for k ≥ 0 let (Mn,k)n≥0 be the sequence whose exponential
generating function is f(x)gk(x)/k! (that is,

∑∞
n=0Mn,kx

n/n! = f(x)gk(x)/k!). Denote by
[f(x), g(x)] the infinite matrix [Mn,k]n,k≥0.

The exponential Riordan group (see e.g. [1, Chapter 8]) is the group of all matrices of the
form [f(x), g(x)] with ord(f(x)) = 0 and ord(g(x)) = 1. The binary operation of this group
is matrix multiplication and is computed by [f(x), g(x)][u(x), v(x)] = [f(x)u(g(x)), v(g(x))].
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The identity element is the identity matrix I = [1, x] and [f(x), g(x)]−1 = [1/f(g−1(x)), g−1(x)].
Here g−1(x) is the reversion or compositional inverse of g(x), the unique power series satis-
fying g(g−1(x)) = g−1(g(x)) = x.

Let a(x) be the exponential generating function of the sequence a = (an)n≥1. It follows
from (1) and the exponential formula (see e.g. [21, Chapter 3]) that the exponential generating
function of the sequence (an,k)n≥1 of the entries of the kth column of Aa is ak(x)/k!. Thus
Aa = [1, a(x)]0,0, the matrix obtained by removing the 0th row and 0th column of the
exponential Riordan matrix [1, a(x)]. Note that the exponential generating function of the
0th column of [1, a(x)] is 1 so the (n, 0) entry of [1, a(x)] is 1{n=0}. Thus if b = (bn)n≥1 is
another sequence with b1 6= 0 and exponential generating function b(x), then

AaAb = [1, a(x)]0,0[1, b(x)]0,0 = ([1, a(x)][1, b(x)])0,0 = [1, b(a(x))]0,0 = Ac

where, by the exponential Riordan group multiplication law, c = (cn)n≥1 has exponential
generating function b(a(x)). If b(x) = a−1(x), AaAb = I = [1, x]. This gives the following
fundamental lemma.

Lemma 4.1. Let a = (an)n≥1 be a sequence of complex numbers with a1 6= 0 and let a(x) =∑∞
n=1 anx

n/n! be its exponential generating function. Let

Aa = [an,k]n,k≥1

where
an,k =

∑{
a|P1|a|P2| · · · a|Pk| : {P1, . . . , Pk} a set partition of [n]

}
.

Let (bn)n≥1 be the sequence of complex numbers whose exponential generating function is
a−1(x). Then

A−1
a = Ab = [bn,k]n,k≥1

with
bn,k =

∑{
b|P1|b|P2| · · · b|Pk| : {P1, . . . , Pk} a set partition of [n]

}
. (2)

As an example, we apply this lemma to the case an = 1 in which Aa = [
{
n
k

}
]n,k≥1. Since

a(x) = exp(x) − 1, we have b(x) = a−1(x) = log(1 + x) =
∑∞

n=1(−1)n−1xn/n, which is the
exponential generating function of bn = (−1)n−1(n−1)!. A simple calculation shows that the
sign of bn,k is (−1)n−k and that bn,k = (−1)n−k

[
n
k

]
. (See the method of calculation of

[
n
k

]
R

given in the second paragraph of this section.) Applying Lemma 4.1 we obtain the classical
result [

{
n
k

}
]−1
n,k≥1 = [(−1)n−k

[
n
k

]
]n,k≥1 alluded to in the introduction. The well known inverses

of [
[
n
k

]
]n,k≥1 and [L(n, k)]n,k≥1 can be obtained similarly.

All sequences a = (an)n≥1 that we consider will consist of non-negative integers with
a1 = 1. This ensures that the entries of A−1

a are integers, a (perhaps minimum) requirement
for a combinatorial interpretation of those entries. Indeed, if we examine the formula for an,k
in terms of the an we see that the matrix Aa will in this case be lower triangular, have integer
entries, and have all 1’s down the diagonal. Thus, by the co-factor formula for the inverse of
a matrix, A−1

a will also have the same three properties.
We will also need the following combinatorial Lagrange inversion formula. If a1 6= 0 and

a T is a phylogenetic tree with n leaves and m non-leaf vertices then we define the a-weight
of T to be

wa(T ) = (−1)ma
−(m+n)
1

∏{
ad(v) : v ∈ V (T ), d(v) 6= 0

}
.
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Note that if a tree T consists of just a root then wa(T ) = 1/a1, as the root is considered
a leaf. The following result has appeared numerous times in the literature. It is the case
r = 1 of the multi-variable generalization Theorem 3.3.9 of [11] and that paper cites earlier
occurrences: [22, Thm. 3.10] where it is attributed to Towber and [12, Thm. 2.13]. The
Ph.D. theses of Drake and Taylor contain generalizations of the single variable case: [8, Thm.
1.3.3] and [18, Sec 3.2]. We include a sketch of a proof for completeness.

Lemma 4.2. If a(x) =
∑

n≥1 anx
n/n! (with a1 6= 0) and a−1(x) =

∑
n≥1 bnx

n/n! then for
n ≥ 1

bn =
∑

T∈T (n)

wa(T ).

Proof. Solving [xn](f(
∑∞

n=1 bnx
n/n!)− x) = 0 for bn we get b1 = 1/a1 and the recurrence

bn = −a−1
1

n∑
k=2

ak

 ∑
(i1,...,ik)

1

k!

(
n

i1, . . . , ik

) k∏
j=1

bij


for n ≥ 2, where

∑
(i1,...,ik) is a sum over compositions (i1, . . . , ik) of n.

If tn =
∑

T∈T (n) wa(T ) then tn satisfies the same initial condition and recurrence. Indeed

t1 = 1/a1 = b1. For n ≥ 2 each tree T ∈ T (n) is uniquely determined by the unordered
collection of subtrees T1, . . . , Tk rooted at the k ≥ 2 children of its root. For such a tree
T , wa(T ) = (−ak/a1)wa(T1) · · ·wa(Tk). If tree Tj has ij leaves, the sets of leaves of the Tj
form an unordered partition of [n] into k parts of sizes i1, . . . , ik. The recurrence follows by
summing wa(T ) first over k and then over all such unordered partitions.

We will use Lemmas 4.1 and 4.2 to obtain Theorem 3.1. The idea is this: for the first part

of Theorem 3.1 (
{
n
k

}−1

R
) we choose (an)n≥1 so that the matrix Aa in Lemma 4.1 is precisely

[
{
n
k

}
R

]n,k≥1. The appropriate choice is an = 1{n∈R}. Lemma 4.2 allows us to conclude that
bn (the nth entry in the first column of the inverse matrix) is a weighted sum of phylogenetic
trees, and we argue that this is the same as a signed, but otherwise unweighted, sum of
increasingly ordered trees. That is, bn is the difference between the cardinalities of two
explicitly defined sets of increasingly ordered trees. From (2) we then conclude that bn,k is
the difference between the cardinalities of two explicitly defined sets of increasingly ordered
forests, as claimed. The only change in the approach to the other two parts of Theorem 3.1
is the choice of an.

We conclude this section by briefly discussing our approach to Theorems 3.8 and 3.9. We
discuss only the case d = 1 here. Suppose that for some R ⊆ N with 1 ∈ R and with no
exposed odds we can find, for each n, an involution of T i.o.

R (n) that in its orbits of size 2 toggles
between even and odd trees, and fixes precisely the set of R-good trees (which recall are all
even; see the paragraph before the statement of Theorem 3.8). Using this involution we get

from Theorem 3.1 (in the special case k = 1) that
{
n
1

}−1

R
= (−1)n−1|T i.o.,good

R (n)|. But then

from Lemma 4.1 (and in particular equation (2)) we get that
{
n
k

}−1

R
= (−1)n−k|F i.o.,good

R (n, k)|.
The key point here is that (bn)n≥1 is an alternating sequence, from which it follows that every
summand contributing to the sum defining bn,k contributes the same sign — (−1)n−k —
something which would not necessarily be the case if (bn)n≥1 was not alternating. Analogous
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phenomena hold for
[
n
k

]−1

R
and for L(n, k)−1

R . So much of our proof will involve finding this
involution, which we give in Algorithm 5.1, and proving that it has the correct properties,
which is done in Lemma 5.3. We need to add a little more to this argument to deal with sets
of the form R(d); this is also discussed in Section 5.

5 Proofs

5.1 Proof of Theorem 3.1

That the inverse matrices under discussion exist if and only if 1 ∈ R is evident. Let R ⊆ N
with 1 ∈ R, and let (an)n≥1 be a sequence of non-negative integers with a1 = 1. Let
A−1
a = [bn,k]n,k≥1 (with the notation following that in Lemma 4.1).

For T ∈ T (n) with m non-leaf vertices, T has n+m− 1 edges, which we denote by e(T ).
Adopting the convention a0 = 1 we get from Lemma 4.2 that bn = (−1)n−1

∑
T∈T (n)Na(T )

where
Na(T ) = (−1)e(T )

∏
v∈V (T )

ad(v).

Note that if T is turned into a tree with ordered children by assigning to each complete set
of k siblings one of ak possible orderings, then the number of such trees obtainable from T
is |Na(T )|.

Let an = 1{n∈R}. Then if T ∈ T (n), |Na(T )| = 1 if T has all down-degrees in R and
Na(T ) = 0 otherwise. Thus

|T i.o.,even
R (n)| =

∑
T∈T even(n)

Na(T )

and
|T i.o.,odd
R (n)| = −

∑
T∈T odd(n)

Na(T )

as there is precisely one way to turn each T ∈ T (n) with all down-degrees in R into an
increasingly ordered tree. Thus

bn = (−1)n−1(|T i.o.,even(n)| − |T i.o.,odd(n)|).

We claim that bn,k = (−1)n−k(|F i.o.,even(n, k)| − |F i.o.,odd(n, k)|), via equation (2). Indeed, a
forest on n leaves with k components can be chosen in two stages. The first stage is to pick
a partition {P1, . . . , Pk} of the label set [n], with say |Pi| = ni. The second stage is to build
for each Pi a tree whose leaves are labeled with those ni labels. Examine the term bn1 · · · bnk

of the sum for bn,k. Since (n1 − 1) + · · · (nk − 1) = n− k, this term is

(−1)n−k
(
|T i.o.,even(n1)| − |T i.o.,odd(n1)|

)
· · ·
(
|T i.o.,even(nk)| − |T i.o.,odd(nk)|

)
.

The internal sequence of a forest has an even (odd) sum if and only if an even (odd) number
of its trees have internal sequences with odd sum so (−1)n−kbn1 · · · bnk

is the number of even
forests whose trees have label sets Pi minus the number of odd forests whose trees have label
sets Pi. Thus bn,k = (−1)n−k(|F i.o.,even(n, k)| − |F i.o.,odd(n, k)|) as claimed.
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We turn to the second statement in Theorem 3.1. Let an = (n − 1)!1{n∈R}. Then if
T ∈ T (n), |Na(T )| is the number of ways T can be turned into a min-first ordered tree with
all down-degrees in R. Note that there are 0 ways if T has a vertex with down-degree not in
R. Thus

|T m.o.,even
R (n)| =

∑
T∈T even(n)

Na(T ),

|T m.o.,odd
R (n)| = −

∑
T∈T odd(n)

Na(T ),

bn = (−1)n−1(|T m.o.,even(n)| − |T m.o.,odd(n)|),

and
bn,k = (−1)n−k(|Fm.o.,even(n, k)| − |Fm.o.,odd(n, k)|).

Similarly if an = n!1{n∈R} then

bn = (−1)n−1(|T l.o.,even(n)| − |T l.o.,odd(n)|

and
bn,k = (−1)n−k(|F l.o.,even(n, k)| − |F l.o.,odd(n, k)|).

5.2 Proofs of Theorem 3.9 and Corollary 1.4

Recall that Theorem 3.8 is the special case d = 1 of Theorem 3.9, so our focus in this section
is Theorem 3.9.

All the results in Theorem 3.9 are obtained as follows. We define an involution on in-
creasingly (min-first, linearly) ordered phylogenetic trees with down-degrees in R (or R(d))
that maps odd trees to even trees and vice versa and we show that the trees that are fixed
by this involution are precisely the R-good (R(d)-good) trees in that class. Since good trees
are even this means that bn = (−1)n−1|T i.o.,good

R (n)| and bn,k = (−1)n−k|F i.o.,good
R (n, k)|, (or

bn = (−1)(n−1)/d|T i.o.,good
R(d) (n)| and bn,k = (−1)(n−k)/d|F i.o.,good

R(d) (n, k)|), etc.
The image of a tree under this involution, whether the tree is increasingly, min-first, or

linearly ordered, is obtained by applying the same algorithm, Algorithm 5.1 below. We will
describe this algorithm and derive its properties for general d. The algorithm is expressed in
terms of sd(n) = d(n− 1) + 1. Since s1(n) = n, the special case d = 1 of both the algorithm
and the analysis can be recovered by reading “sd(n)” throughout as “n”.

Algorithm 5.1. Let R ⊆ N with 1 ∈ R have no exposed odds and let d ≥ 1.
Input: A tree T in T i.o.

R(d) (T m.o.
R(d) , T l.o.

R(d)).

Output: A tree A(T ) in T i.o.
R(d) (T m.o.

R(d) , T l.o.
R(d), respectively).

1. (Initial phase.) Let v1, v2, . . . , vk be the unique right-most path in T from root v1 to
leaf vk, i.e. vj+1 is the right-most child of vj for 1 ≤ j < k. Consider each vertex vj in
this path in increasing order of j for 1 ≤ j ≤ k − 1.
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(a) If vj has sd(2) children, let v′j be the left-most child of vj. If v′j is not a leaf and
v′j has sd(n) children for n 6∈ b(R), remove vertex v′j and all edges adjacent to it
and then make every child of v′j a child of vj. The vertex vj now has sd(n + 1)
children: the former children of v′j and the original d right-most children of vj.
Linearly order these children as follows. Let each set of children inherit the linear
ordering they had originally and place the former children of v′j before the original
d right-most children of vj. Leave the orderings on the children of all other vertices
v 6= vj, v

′
j unchanged. Let A(T ) be the resulting tree.

(b) If vj has sd(n) children for n > 2 where n 6∈ a(R): remove the edges between vj
and its left-most sd(n − 1) children, create a new vertex v′j to be the parent of
these children, and make v′j a child of vj. Let the sd(n− 1) children of v′j inherit
the linear ordering they were assigned as children of vj. Make v′j be the left-most
child of vj and let the other d children of vj retain the linear ordering they had
before. Now d(vj) = sd(2). Leave the orderings on the children of all other vertices
v 6= vj, v

′
j unchanged. Let A(T ) be the resulting tree.

2. (Recursive phase.) Suppose now that for all 1 ≤ j ≤ k− 1, vj fails both criteria in step
1. Remove v1, . . . , vk and all edges adjacent to these vertices. If vj has sd(2) = d + 1
children, also remove the left-most child v′j of vj and all edges adjacent to v′j. This
leaves behind a possibly empty forest F .

If F is not empty consider its component trees T ′ in increasing order of the `max label on
their root (or the `min label if we are dealing with min-first ordered trees). If there is any
tree T ′ for which the algorithm, when applied to T ′, would produce a tree A(T ′) 6= T ′

then replace the first such T ′ in T by A(T ′) and let A(T ) be the resulting tree.

If F is empty, or if the algorithm would fix each tree T ′ in F , let A(T ) = T .

Note that in the recursive phase the component trees T ′ are not necessarily properly leaf-
labeled. By “apply the algorithm to T ′” what we formally mean is “for each i replace the
ith largest leaf label of T ′ with the label i, to obtain a new tree T ′′ that is properly labeled;
then apply the algorithm to T ′′; and then, for each i, replace the label i in A(T ′′) with the
ith largest leaf label of T ′”.

v1

vj

vj+1

vk

v′j

contraction

uncontraction

v1

vj

vj+1

vk

Figure 3: Contraction and uncontraction in the initial phase (d = 1).
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We refer to the operation in (1a) as contraction at vj towards v′j, because it corresponds
to the usual graph-theoretic operation of contracting the edge vjv

′
j. We refer to the operation

in (1b) as uncontraction at vj away from vj+1. See Figure 3.

v1

v2

v3

v4

v′1

v′2

recursion

Figure 4: Recursive phase (d = 1, R = {1, 2} ∪ {4, 5, 6}).

See Figure 4 for an example of the recursive phase of the algorithm when d = 1 and
R = {1, 2} ∪ {4, 5, 6}. The right-most path is v1, v2, v3, v4. Since d(v1) = 2 and d(v′1) = 2 ∈
b(R) = {2, 6}, since d(v′2) = 0, and since d(v3) = 4 ∈ a(R) = {4}, the algorithm cannot
perform an operation in the initial phase. It removes v1, . . . , v4 and v′1, v

′
2 and recursively

evaluates trees in the resulting forest.
We establish some useful facts about Algorithm 5.1 in Lemmas 5.2 and 5.3, after which

the proof of Theorem 3.9 will be quite short.

Lemma 5.2. Suppose that T is a tree that produces a forest F via the recursive phase of
Algorithm 5.1, and let v be a vertex in F . Then v has sd(2)-left-odd ancestry in T if and
only if v has sd(2)-left-odd ancestry in F .

Proof. If v has sd(2)-left-odd ancestry in T , then in T we have v1, . . . , vk = v, d(vi) = sd(2)
(1 ≤ i < k), vi+1 a left-most child of vi (1 ≤ i < k), k even, and v1 not a left-most child
of a vertex w with d(w) = sd(2). If v1 is not deleted then these properties hold for v in F
exactly as in T . If v1 is deleted it must be in the right-most path. (As v1 is not a left-most
child of a vertex with degree sd(2), it is not one of the v′j.) Thus v2 is also deleted in the
recursive phase, and so v3 is a root in F . The path v3, . . . , vk = v then demonstrates that v
has sd(2)-left-odd ancestry in F .

For the converse, suppose v in F has sd(2)-left-odd ancestry. So in F we have a path P
on v1, . . . , vk = v, where d(vi) = sd(2) and vi+1 is a left-most child of vi for 1 ≤ i < k, k is
even, and v1 is not a left-most child of a vertex w with d(w) = sd(2). Let T ′ be the tree in F
containing v1. If v1 is not the root of T ′ then P is a witness that v has sd(2)-left-odd ancestry
in T . Suppose now that v1 is the root of T ′. Let vj be the ancestor of v1 on the right-most
path in T that is closest to v1. If d(vj) = sd(n) with n > 2 then v1 must be a child of vj and
P is a witness that v has sd(2)-left-odd ancestry in T .

Now suppose d(vj) = sd(2). The vertex v1 cannot be v′j or vj+1 as these vertices are
deleted. If v1 is some other child of vj then P is a witness of sd(2)-left-odd ancestry. So
suppose that v1 is a child of v′j. If d(v′j) = sd(n) for n > 2 or if d(v′j) = sd(2) and v1 is not the
left-most child of v′j then P is a witness of sd(2)-left-odd ancestry. The remaining possibility
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is that d(v′j) = sd(2) and v1 is the left-most child of v′j. In this case vj, v
′
j, v1, . . . , vk is a

witness that v has sd(2)-left-odd ancestry, as vj is on the right-most path so cannot be a
left-most child of any vertex.

Lemma 5.3. Algorithm 5.1 has the following properties.

1. We have A(T ) = T if and only if T is an R(d)-good tree.

2. All non-zero degrees in A(T ) are in R(d).

3. If the input tree T is increasingly (min-first, linearly) ordered then so is the output tree
A(T ).

4. We have A(A(T )) = T for all T .

Proof. We prove these statements by induction on n, the number of leaves.
The base case of the induction, n = 1, is trivial, as T i.o.(1), T m.o.(1), and T l.o.(1) each

consist of a single R(d)-good tree, an isolated root with label 1, and the algorithm fixes that
tree. Suppose now that n > 1.

We now show item 1. Suppose that T is an R(d)-good tree. Let v be a non-leaf vertex on
the right-most path of T . By definition of sd(2)-left-odd ancestry, v does not have sd(2)-left-
odd ancestry and so either d(v) = sd(2) or d(v) = sd(a) for some a ∈ a(R). If d(v) = sd(2)
the left-most child of v has sd(2)-left-odd ancestry and so is either a leaf or has degree sd(b)
for some b ∈ b(R). Therefore Algorithm 5.1 proceeds to the recursive phase. This removes
the vertices in the right-most path, and the left-children of vertices with degree d(v) = sd(2).
This leaves behind a possibly empty forest F . Note that a vertex that remains in F has the
same down-degree as in T , and the property of having sd(2)-left-odd ancestry transfers to
vertices in F by Lemma 5.2. So each component tree meets the definition of being R(d)-good,
and so by induction is fixed by Algorithm 5.1. Therefore tree T is fixed by Algorithm 5.1,
i.e., A(T ) = T .

Conversely, suppose that A(T ) = T . Then Algorithm 5.1 proceeds to the recursive phase,
and so all non-leaf vertices on the right-most path must have degree sd(a) for some a ∈ a(R),
or sd(2) with the left-child a leaf or having degree sd(b) for some b ∈ b(R). The deletion
leaves a forest F , which by hypothesis has A(T ′) = T ′ for each component T ′ of F , and so by
induction consists of R(d)-good trees T ′. So by definition of R(d)-goodness a vertex v in F
is either a leaf or d(v) = sd(2) or d(v) = sd(a) for some a ∈ a(R), unless v has sd(2)-left-odd
ancestry in F in which case d(v) = sd(b) for some b ∈ b(R). In the last case Lemma 5.2 shows
that v has sd(2)-left-odd ancestry in T . Combining this with the fact that down-degrees of
v in F are the down-degrees of v in T , this shows that T is R(d)-good.

We now show items 2 and 3 in the case that T is produced from a contraction at vertex
vj in step 1(a) of the algorithm. Suppose d(v′j) = sd(n). Since n 6∈ b(R), n + 1 ∈ R and
d(vj) = sd(n+ 1) ∈ R(d) in A(T ). All other vertices of A(T ) are unchanged from T , so A(T )
has all down-degrees in R(d) and we have item 2.

We now show item 3. Let v′′1 , . . . v
′′
m and v′j, w2, . . . , wd, vj+1 be the ordered lists of

children of v′j and vj in T respectively. The ordered list of children of vj in A(T ) is
v′′1 , . . . , v

′′
m, w2, . . . , wd, vj+1.
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If T is increasingly ordered then

`max(v′′1) < · · · < `max(v′′m) and `max(v′j) < `max(w2) < · · · < `max(wd) < `max(vj+1).

Since
`max(v′j) = max(`max(v′′1), . . . , `max(v′′m)) = `max(v′′m)

we have

`max(v′′1) < · · · < `max(v′′m) < `max(w2) < · · · < `max(wd) < `max(vj+1)

and thus the children of vj are increasingly ordered in A(T ). Since the orderings of all other
children in A(T ) are unchanged from their ordering in T , A(T ) is increasingly ordered.

If T is min-first ordered then v′′1 has the smallest `min label amongst v′′1 , . . . , v
′′
m and v′j has

the smallest `min label amongst v′j, w2, . . . , wm, vj+1. Since in T we have

`min(v′′1) = min(`min(v′′1), . . . , `min(v′′m)) = `min(v′j),

v′′1 has the smallest `min label amongst the children of vj in A(T ). Thus A(T ) is min-first
ordered.

There are no restrictions on the linear orderings in a linearly ordered tree so if T is linearly
ordered then A(T ) is automatically linearly ordered.

We now show items 2 and 3 in the case that A(T ) is produced from T by an uncontraction
at vertex vj in step 1(b) of the algorithm. Suppose d(vj) = sd(n) with n > 2. Since n 6∈ a(R),
n − 1 ∈ R and, in A(T ), d(vj) = sd(n − 1) ∈ R(d) and d(vj) = sd(2). It follows that A(T )
has all down-degrees in R(d), and we have item 2.

We now show item 3. Let v′′1 , . . . v
′′
m, w2, . . . , wd, vj+1 be the ordered list of children of vj

in T where m = sd(n− 1).
If T is increasingly ordered then

`max(v′′1) < · · · < `max(v′′m) < `max(w2) < · · · < `max(wd) < `max(vj+1).

Thus the children v′′1 , . . . v
′′
m of v′j in A(T ) are increasingly ordered. Since

`max(v′j) = max(`max(v′′1), . . . , `max(v′′m)) = `max(v′′m)

in A(T ), the children of vj are increasingly ordered in A(T ):

`max(v′j) < `max(w2) < · · · < `max(wd) < `max(vj+1).

Thus, as before, A(T ) is increasingly ordered.
If T is min-first ordered then v′′1 has the smallest `min label amongst v′′1 , . . . , v

′′
m, w2, . . . , wd,

and vj+1. Thus the children of v′j in A(T ) are min-first ordered. Since

`min(v′j) = min(`min(v′′1), . . . , `min(v′′m)) = `min(v′′1),

the children of vj are min-first ordered in A(T ) as well and A(T ) is min-first ordered. As
before, if T is a linearly ordered tree then A(T ) is automatically linearly ordered.
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If A(T ) is produced by a contraction/uncontraction at vertex vj in step 1, we have shown
that A(T ) has all down-degrees in R(d), and so we can apply Algorithm 5.1 to A(T ). In this
case, we will now show that A(A(T )) = T .

In A(T ) the right-most path is exactly as it was in T . Further, for i < j the number
of children of vi remains unchanged from T to A(T ), as does the left-most child of vi and
its children. Since this is the data that determines whether a contraction/uncontraction is
to be performed at vi, it follows that if the algorithm is applied to A(T ), it does not call
for contraction/uncontraction at vi for any i < j. However, at vj, if in T we performed a
contraction, then the algorithm calls for an uncontraction at vj in A(T ), while if in T we
performed an uncontraction, then the algorithm calls for a contraction at vj in A(T ). In
either case, we have A(A(T )) = T , which gives item 4 in this case.

We now suppose that A(T ) is produced by step 2, the recursive phase of the algorithm. If
A(T ) = T , the results are immediate. Therefore we assume that A(T ) 6= T , and so there is a
T ′ in F with A(T ′) 6= T ′, and A(T ) is obtained from T by replacing T ′ with A(T ′). Thus by
the initial phase and induction, A(T ) has all down-degrees in R(d) and remains increasingly
(min-first, linearly) ordered. This gives items 2 and 3.

Finally we show item 4 in the case where A(T ) is produced by step 2. The right-most
path stays the same from T to A(T ). Every vertex vj on the path keeps the children in A(T )
it had in T and if d(vj) = sd(2), then its left-most child v′j keeps the children in A(T ) it had
in T . Thus when the algorithm is applied to A(T ) it also produces the same forest in the
recursive phase. The collection of subtrees examined when applying the algorithm to A(T ) is
the same one examined when applying the algorithm to T , except that T ′ has become A(T ′).
The ordering on subtrees remains unchanged, so now A(T ′) is the first component that is
not R(d)-good. By induction A(A(T ′)) = T ′, so A(A(T )) = T .

Example 5.4. Let R = {1, 2} ∪ {4, 5, 6} and consider the tree T in Figure 5 below, which
was the only tree in Figure 1 that was not R-good (here we use linear ordering). In this case
T contracts edge w3w4 via Algorithm 5.1 to produce A(T ). Notice also that Algorithm 5.1
applied to A(T ) shows A(A(T )) = T .

T : w1

1

w2

2

w3

3

w4

4567

A(T ): w1

1

w2

2

w3

34567

Figure 5: Tree T produces A(T ) via Algorithm 5.1.

Proof of Theorem 3.9. As noted after the statement of Theorem 3.9, if {P1, . . . , Pk} is a
partition of [n] with part sizes restricted to lie in R(d), then n = |P1|+ · · ·+ |Pk| = sd(m1) +
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· · ·+ sd(mk) = d(m1 + · · ·+mk− k) + k, so
{
n
k

}
R(d)

=
[
n
k

]
R(d)

= L(n, k)R(d) = 0 if d - (n− k).

Similarly, FR(d)(n, k) = ∅ if d - (n − k). Indeed, let F be a phylogenetic forest with n
leaves, k components, and down-degrees in R(d), i.e. F has m non-leaf vertices vi with
d(vi) = sd(ni). The number of edges of F is (n + m) − k =

∑m
i=1 (d(ni − 1) + 1), giving

n− k = d(n1 + · · ·+ nm −m). For this reason in the sequel we only consider triples (d, n, k)
with d | n− k.

If T has internal sequence (ni)
m
i=1 then, by case k = 1 of the edge count of F in the

previous paragraph, it has m = −(n− 1)/d +
∑m

i=1 ni internal vertices. Thus, from Lemma
4.2, we have

bn = (−1)(n−1)/d
∑

T∈T (n)

(−1)
∑m

i=1 ni

m∏
i=1

ad(vi)

where v1, . . . , vm is the set of non-leaf vertices of the index tree T in the summation.
We begin with the first statement of Theorem 3.9. If an = 1{n∈R(d)} then by the method

of Theorem 3.1 we have

bn = bn,1 = (−1)(n−1)/d(|T i.o.,even
R(d) (n)| − |T i.o.,odd

R(d) (n)|).

Indeed, since an = 1{n∈R(d)}, the
∏m

i=1 ad(vi) factor of the summand is the number of ways
of turning the index tree T , a properly labeled phylogenetic tree with unordered children,
into an increasingly ordered tree with down-degrees in R(d). The (−1)

∑m
i=1 ni factor of the

summand ensures even trees are counted positively and odd trees negatively.
When A(T ) 6= T the internal sequence of A(T ) is obtained from the internal sequence of

T by replacing a pair of indices ni, nj with a single entry ni + nj − 1 or vice versa. Thus
A(T ) is even when T is odd and vice versa. Since A(T ) = T if and only if T is R(d)-good
and since R(d)-good trees are even we get

bn = (−1)(n−1)/d|T i.o.,good
R(d) (n)|.

Using that bn is alternating along the arithmetic progression {1, d + 1, 2d + 1, . . .} it is easy
to check that in this case the sign of all the summands on the right-hand side of equation (2)
is (−1)(n−k)/d, and so

bn,k = (−1)(n−k)/d|F i.o.,good
R(d) (n, k)|,

as claimed.
For the second statement of Theorem 3.9, if we take an = (n− 1)!1{n∈R(d)} then we get

bn = (−1)(n−1)/d(|T m.o.,even
R(d) (n)| − |T m.o.,odd

R(d) (n)|) = (−1)(n−1)/d|T m.o.,good
R(d) (n)|

and bn,k = (−1)(n−k)/d|Fm.o.,good
R(d) (n, k)|. Similarly, if we take an = n!1{n∈R(d)} then we get

bn = (−1)(n−1)/d(|T l.o.,even
R(d) (n)| − |T l.o.,odd

R(d) (n)|) = (−1)(n−1)/d|T l.o.,good
R(d) (n)|

and bn,k = (−1)(n−k)/d|F l.o.,good
R(d) (n, k)|.

Proof of Corollary 1.4. This easily follows from the definitions and theorems indicated.
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5.3 Proof of Theorem 1.5

It is clear that σ is covered by τ in Π1,d
n if and only if some part of τ is the union of d + 1

parts of σ and every other part of σ is a part of τ . Thus Π1,d
n is ranked, the partitions at

rank k are precisely the partitions with n− kd parts, and Wk(Π
1,d
n ) =

{
n

n−kd

}
{1,d+1,2d+1,...}

.

Suppose σ = {σ1, . . . , σk} and τ = {τ1, . . . , τ`} are partitions in Π1,d
n . If σ ≤ τ , i.e.

σ is a refinement of τ , let ε = ε(σ, τ) = {ε1, . . . , ε`} be the unique partition of [k] such
that for all 1 ≤ i ≤ `, τi =

⋃
j∈εi σj. We have ε ∈ Π1,d

k . Indeed, since |τi| =
∑

j∈εi |σj|,
|εi| ≡

∑
j∈εi 1 ≡

∑
j∈εi |σj| ≡ |τi| ≡ 1 (mod d) for all i.

Fix σ ∈ Π1,d
n with k parts and let P = [σ,∞) = {τ ∈ Π1,d

n |τ ≥ σ}. We have τ ≤ τ ′ in P if
and only if ε(σ, τ) ≤ ε(σ, τ ′) in Π1,d

k . Thus [σ,∞) is isomorphic to Π1,d
|σ| via the isomorphism

f(τ) = ε(σ, τ). Since the isomorphism type of [σ,∞) depends only on the number of parts
of σ, this type also depends only on the rank of σ, i.e. Π1,d

n is uniform.
We set Wz(·) = 0 for non-integer and negative values of z so that W(n−k)/d(Π

1,d
n ) ={

n
k

}
{1,d+1,2d+1,...} for all n, k ≥ 1. We also set wz(·) = 0 for non-integer or negative values of

z and show

[w(n−k)/d(Π
1,d
n )]n,k≥1 =

[{
n

k

}
{1,d+1,2d+1,...}

]−1

n,k≥1

.

This will prove w(n−k)/d(Π
1,d
n ) =

{
n
k

}−1

{1,d+1,2d+1,...} or wk(Π
1,d
n ) =

{
n

n−kd

}−1

{1,d+1,2d+1,...}
as desired.

Let

S(n, `) =
∑
k

{
n

k

}
{1,d+1,2d+1,...}

w(k−`)/d(Π
1,d
k ) =

∑
k

W(n−k)/d(Π
1,d
n )w(k−`)/d(Π

1,d
k )

We have to show that S(n, `) = 1{n=`}, for all n, ` ≥ 1. Since the summand in S(n, `) is
0 unless ` ≤ k ≤ n, we have S(n, `) = 0 for ` > n. Clearly if ` = n, S(n, `) = 1. We now
suppose that ` < n. The summand is also 0 unless k ≡ ` (mod d) and k ≡ n (mod d). So
S(n, `) = 0 if n 6≡ ` (mod d). Suppose now that n ≡ ` (mod d). We may restrict the index
of summation to those k for which k = n − jd for some integer j ≥ 0. (All other terms are
0.) Fix j0 so that ` = n− j0d and reindex the summation by j. Then

S(n, `) =

j0∑
j=0

Wj(Π
1,d
n )wj0−j(Π

1,d
n−jd).

For n ≥ 1 let ζ = ζn and µ = µn be the zeta and Möbius functions of Π1,d
n , i.e. ζ(σ, τ) =

1{σ≤τ} for all σ, τ ∈ Π1,d
n and [µ(σ, τ)]σ,τ∈Π1,d

n
= [ζ(σ, τ)]−1

σ,τ∈Π1,d
n

(see [14]). Let ρn be the rank

function of Π1,d
n , i.e. ρn(σ) = (n − k)/d where k is the number of parts of σ. Let 0n be the

unique minimal element of Π1,d
n , i.e. the partition of [n] into singletons.

Fix j with 0 ≤ j ≤ j0. We have

Wj(Π
1,d
n ) =

∑
σ∈Π1,d

n ,ρn(σ)=j

ζ(0n, σ)
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and by definition

wj0−j(Π
1,d
n−jd) =

∑
ε∈Π1,d

n−jd,ρn−jd(ε)=j0−j

µn−jd(0n−jd, ε).

Fix an element σ in Π1,d
n with ρn(σ) = j, i.e. with k = n−jd parts. Then [σ,∞) is isomorphic

to Π1,d
n−jd and so µn−jd(0n−jd, ε(σ, τ)) = µn(σ, τ) and ρn−jd(ε(σ, τ)) = ρn(τ) − ρn(σ) for all

τ ≥ σ. Thus
wj0−j(Π

1,d
n−jd) =

∑
τ∈[σ,∞),ρn(τ)=j0

µn(σ, τ)

and

S(n, `) =

j0∑
j=0

∑
σ∈Π1,d

n ,ρn(σ)=j

ζn(0n, σ)
∑

τ∈[σ,∞),ρn(τ)=j0

µn(σ, τ)

=
∑

τ∈Π1,d
n ,ρn(τ)=j0

∑
σ∈[0n,τ ]

ζn(0n, σ)µn(σ, τ).

For each τ in the summation the inner summation is 0 as µ and ζ are inverses.

Remark 5.5. This proof was inspired by Exercise 3-130 of [14] (which in turn generalizes
Theorem 6 of [9]). The statement in [14] only covers uniform, ranked posets with a 0 and a
1, leaving out Π1,d

n with n 6≡ 1 (mod d).

6 Discussion and some open questions

For R ⊆ N with 1 ∈ R and with no exposed odds, it is straightforward to enumerate R-good
and R(d)-good increasingly ordered, min-first ordered and linearly ordered trees by number
of leaves. Indeed, from our results we have the following for all such R; here we use the
notation [xn/n!]f(x) to denote the coefficient of xn/n! in the Taylor series of f(x), and recall
that f−1(x) denotes the compositional inverse or series reversion of f(x).

• The number of R-good increasingly ordered trees with n leaves is (−1)n−1[xn/n!]f−1
1 (x)

where f1(x) =
∑

k∈R x
k/k!, and

• the number of R(d)-good increasingly ordered trees with d(n− 1) + 1 leaves is

(−1)n−1

[
xd(n−1)+1

(d(n− 1) + 1)!

]
f−1

2 (x)

where f2(x) =
∑

k∈R x
d(k−1)+1/(d(k − 1) + 1)!.

The same holds for min-first ordered trees, with

f1(x) =
∑
k∈R

xk

k
, f2(x) =

∑
k∈R

xd(k−1)+1

d(k − 1) + 1
,
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and for linearly ordered trees, with

f1(x) =
∑
k∈R

xk, f2(x) =
∑
k∈R

xd(k−1)+1.

For example, the series reversion of f(x) = x+ x2/2 is

f−1(x) =
∑
n≥1

(−1)n−1 (2n− 3)!!xn

n!

(where m!! = m(m−2)(m−4) . . . is the double factorial), and so the sequence of both [2]-good
increasingly ordered trees and [2]-good min-first ordered trees is (1, 1, 3, 15, 105, 945, 10395, . . .)
[13, A001147], while the series reversion of g(x) = x+ x2 is

g−1(x) =
∑
n≥1

(−1)n−1 (2n− 2)!xn

(n− 1)!n!
,

and so the sequence of [2]-good linearly ordered trees is (1, 2, 12, 120, 1680, 30240, 665280, . . .)
[13, A001813].

Another interesting example relates to the following special functions. For d ≥ 1 the
hyperbolic function of order d of the first kind (see for example [19]) is the function Hd,1(x)
defined by the power series

Hd,1(x) =
∑
n≥1

xd(n−1)+1

(d(n− 1) + 1)!
;

so for example H1,1(x) = ex − 1 and H2,1(x) = sinhx. The study of these functions goes
back to the mid-1700’s. As an immediate by-product of Theorem 3.9 and Theorem 1.5 we
obtain combinatorial interpretations for the coefficients of the compositional inverses of these
functions and their connection to Whitney numbers of the poset Π1,d

d(n−1)+1.

Corollary 6.1. For d ≥ 1, let hd,1(x) be the compositional inverse of Hd,1(x) (satisfying
hd,1(Hd,1(x))) = Hd,1(hd,1(x))) = x for all x). Then writing hd,1(x) in the form

hd,1(x) =
∑
n≥1

(−1)n−1hn
xd(n−1)+1

(d(n− 1) + 1)!

we have

(a) hn is the number of increasingly ordered trees with d(n−1)+1 leaves that are N(d)-good,
i.e. have all vertices of degree d+ 1 or 0 and all left-most children of degree 0; and

(b) wn−1(Π1,d
d(n−1)+1) = (−1)n−1hn, i.e., the Whitney numbers of the first kind of the poset

Π1,d
d(n−1)+1 are the coefficients of the exponential generating function of the compositional

inverse of Hd,1(x).
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As discussed after Definition 3.3, there are (n− 1)! N(1)-good increasingly ordered trees
with n leaves, and indeed the compositional inverse of H1,1(x) = ex − 1 is log(1 + x) =∑

n≥1(−1)n−1(n− 1)!xn/n!.
For d = 2 the sequence nth term is the number of N(2)-good increasingly ordered trees

with 2(n−1)+1 leaves begins (1, 1, 9, 225, 11025, 893025, 108056025, . . .), and is the sequence
of squares of double factorials of odd numbers [13, A001818]. It is well-known that this
sequence arises in the power series of the inverse of the hyperbolic sine function. For d =
3 it begins (1, 1, 34, 5446, 2405116, 2261938588, 3887833883752, . . .); this sequence does not
appear in [13].

We have given combinatorial interpretations for each each of
{
n
k

}−1

R
,
[
n
k

]−1

R
and L(n, k)−1

R

for all R with 1 ∈ R, but for many R these interpretations are as the difference in cardinalities
of two sets of forests. Only for R and R(d) with 1 ∈ R and with no exposed odds can we
interpret the inverse entries as counts of single sets of forests. In all of these special cases
we have the crucial property that the compositional inverses of

∑
n∈R x

n/n!,
∑

n∈R x
n/n,∑

n∈R x
n,
∑

n∈R x
d(n−1)+1/(d(n− 1) + 1)!,

∑
n∈R x

d(n−1)+1/(d(n− 1) + 1) and
∑

n∈R x
d(n−1)+1

each have alternating coefficient sequences (in the latter three cases, alternating along an
arithmetic progression). Here we say that a series

∑
n≥1 cnx

n with c1 > 0 is alternating
if (−1)n−1cn ≥ 0 for all n ≥ 1; it is alternating along the arithmetic progression A =
{1, d+ 1, 2d+ 1, . . .} if cn = 0 for all n 6∈ A and if (−1)kckd+1 ≥ 0 for all k ≥ 0.

This raises a number of natural questions.

Question 6.2. Can we characterize those R ⊆ N with 1 ∈ R for which the compositional
inverse of

∑
n∈R x

n/n! (
∑

n∈R x
n/n,

∑
n∈R x

n) has an alternating coefficient sequence or one
alternating along an arithmetic progression starting at 1?

Question 6.3. For those R, is there an analog of Algorithm 5.1 that furnishes a combinatorial

interpretation of the numbers
{
n
k

}−1

R
, etc.?

In the case of
∑

n∈R x
n, we can say definitively that the characterization sought in Ques-

tion 6.2 is not simply having no exposed odds. Let f(x) be a power series with ord(f(x)) = 1
and with a positive coefficient of x. In what follows we say that a series

∑
n≥0 cnx

n with
c0 > 0 is alternating if (−1)ncn ≥ 0 for all n ≥ 0.

Claim 6.4. A sufficient condition for the compositional inverse f−1(x) of f(x) to be alter-
nating is that x/f(x) is alternating.

Proof. Since the product of alternating power series with positive constant terms is again
alternating with positive constant term, under the hypothesis of the claim we get that for all
n ≥ 1 the power series of (x/f(x))n is alternating. The Lagrange inversion formula (see e.g.
[15, Chapter 5]), which says that for all n the coefficient of xn in f−1(x) is the same as (1/n)
times the coefficient of xn−1 in (x/f(x))n, then says that the sign of the coefficient of xn in
f−1(x) is (−1)n−1 or 0.

This is not a terribly useful test for the power series that come up when studying restricted
Stirling numbers, but it is quite useful for restricted Lah numbers, where the series under
consideration take the form f(x) =

∑
n∈R x

n, and the geometric series can sometimes be used

23



to find an explicit expression for the coefficients of the power series of x/f(x). For example,
when R = {1, 2, r + 1, r + 2} for r ≥ 2, we have

x

x+ x2 + xr+1 + xr+2
=

1

(1 + x)(1 + xr)

=

{ ∑∞
k=1(−1)k−1k

∑r−1
j=0(−1)jx(k−1)r+j if r odd∑∞

k=1

∑r−1
j=0(−1)jx2(k−1)r+j if r even,

which is alternating. This shows that L(n, k)−1
R has sign (−1)n−k (or 0) for all n, k ≥ 1,

whenever R is of the form {1, 2, r + 1, r + 2} for r ≥ 2; but only in the case r = 2 is this a
set R with 1 ∈ R and with no exposed odds.

There is some computational evidence in favor of an affirmative answer to the following
question, but perhaps not enough to merit forming a conjecture.

Question 6.5. Is it the case that for R ⊆ N with 1 ∈ R, we have that the inverse of∑
n∈R x

n/n! is alternating if and only if the inverse of
∑

n∈R x
n/n is alternating and if and

only if the inverse of
∑

n∈R x
n is alternating?

In light of the discussion after Question 6.3, it is worth noting that the compositional
inverses of both x + x2/2 + x4/24 + x5/120 and x + x2/2 + x4/4 + x5/5 are alternating for
their first 1200 terms.

We have shown in this paper, by a combinatorial argument (Algorithm 5.1) that if R ⊆ N
with 1 ∈ R has no exposed odds, then f(x) =

∑
n∈R x

n/n!, g(x) =
∑

n∈R x
n/n and h(x) =∑

n∈R x
n have compositional inverses with alternating coefficient sequences. In [10, Section

5] we also show h(x) =
∑

n∈R x
n has an alternating inverse by a different combinatorial

argument expressing inverse Lah numbers in terms of Dyck paths. There we also showed
analytically that x/h(x) is alternating. Together with Claim 6.4 this gives an analytical
proof that h−1(x) is alternating.

This leads us to the following non-combinatorial question: are there analytical proofs that
f−1(x) and g−1(x) are alternating? We do not even know of an analytical way of showing,
for example, that x+x2/2 +x3/3 +x4/4, the degree four Taylor approximation to log(1 +x),
has alternating compositional inverse (note that x/(x + x2/2 + x3/3 + x4/4) does not have
an alternating power series, so we cannot apply Claim 6.4).
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