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Abstract

The even discrete torus is the graph TL,d on vertex set {0, . . . , L − 1}d (with L
even) in which two vertices are adjacent if they differ on exactly one coordinate and
differ by 1 (mod L) on that coordinate. The hard-core measure with activity λ on TL,d

is the probability distribution πλ on the independent sets (sets of vertices spanning no
edges) of TL,d in which an independent set I is chosen with probability proportional
to λ|I|. This distribution occurs naturally in problems from statistical physics and the
study of communication networks.

We study Glauber dynamics, a single-site update Markov chain on the set of in-
dependent sets of TL,d whose stationary distribution is πλ. We show that for λ =
ω(d−1/4 log3/4 d) and d sufficiently large the convergence to stationarity is (essen-
tially) exponentially slow in Ld−1. This improves a result of Borgs et al., who had
shown slow mixing of Glauber dynamics for λ growing exponentially with d.

Our proof, which extends to ρ-local chains (chains which alter the state of at most
a proportion ρ of the vertices in each step) for suitable ρ, closely follows the conduc-
tance argument of Borgs et al., adding to it some combinatorial enumeration meth-
ods that are modifications of those used by Galvin and Kahn to show that the hard-
core model with parameter λ on the integer lattice Zd exhibits phase coexistence for
λ = ω(d−1/4 log3/4 d).

The discrete even torus is a bipartite graph, with partition classes E (consisting
of those vertices the sum of whose coordinates is even) and O. Our result can be
expressed combinatorially as the statement that for each sufficiently large λ, there is
a ρ(λ) > 0 such that if I is an independent set chosen according to πλ, then the
probability that ||I ∩ E| − |I ∩ O|| is at most ρ(λ)Ld is exponentially small in Ld−1.

Key words and phrases: Glauber dynamics, mixing time, independent sets, hard-core model, conduc-
tance, discrete torus, Peierl’s argument.
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In particular, we obtain the combinatorial result that for all ε > 0 the probability that a
uniformly chosen independent set from TL,d satisfies ||I ∩E|−|I ∩O|| ≤ (.25−ε)Ld

is exponentially small in Ld−1.

1 Introduction and statement of the result
Let Σ = (V,E) be a simple, loopless, finite graph on vertex set V and edge set E. (For
graph theory basics, see e.g. [2], [7].) Write I(Σ) for the set of independent sets (sets of
vertices spanning no edges) in V . For λ > 0 we define the hard-core probability measure
with activity λ on I(Σ) by

πλ({I}) =
λ|I|

Zλ(Σ)
for I ∈ I(Σ)

where Zλ(Σ) =
∑

I∈I λ|I| is the appropriate normalizing constant or partition function.
Note that π1 is uniform measure on I(Σ).

The hard-core measure originally arose in statistical physics (see e.g. [8, 1]) where it
serves as a model of a gas with particles of non-negligible size. The vertices of Σ we think
of as sites that may or may not be occupied by particles; the rule of occupation is that
adjacent sites may not be simultaneously occupied. In this context the activity λ measures
the likelihood of a site being occupied.

The measure also has a natural interpretation in the context of multicast communica-
tions networks (see e.g. [16]). Here the vertices of Σ are thought of as locations from which
calls can be made; when a call is made, the call location is connected to all its neighbours,
and throughout its duration, no call may be placed from any of the neighbours. Thus at any
given time, the set of locations from which calls are being made is an independent set in Σ.
If calls are attempted independently at each vertex as a Poisson process of rate λ and have
independent exponential mean 1 lengths, then the process has stationary distribution πλ.

Unless L and d are small, it is unfeasible to explicitly compute the partition function
Zλ and the distribution πλ. It is therefore of great interest to understand the effectiveness
of algorithms which approximate Zλ and/or πλ. In this paper we study Glauber dynamics,
a Monte Carlo Markov chain (MCMC) which simulates πλ. MCMC’s occur frequently
in computer science in algorithms designed to sample from or estimate the size of large
combinatorially defined structures; they are also used in statistical physics and the study of
networks to help understand the behavior of models of physical systems and networks in
equilibrium. Glauber dynamics is the single-site update Markov chain Mλ = Mλ(Σ) on
state space I(Σ) with transition probabilities Pλ(I, J), I, J ∈ I(Σ), given by

Pλ(I, J) =





0 if |I 4 J | > 1
1
|V |

λ
1+λ

if |I 4 J | = 1, I ⊆ J
1
|V |

1
1+λ

if |I 4 J | = 1, J ⊆ I

1−∑
I 6=J ′∈I(Σ) Pλ(I, J ′) if I = J .
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We may think of Mλ dynamically as follows. From an independent set I , choose a vertex
v uniformly from V . Then add v to I with probability proportional to λ, and remove it with
probability proportional to 1; that is, set

I ′ =
{

I ∪ {v} with probability λ
1+λ

I \ {v} with probability 1
1+λ

.

Finally, move to I ′ if I ′ is an independent set, and stay at I otherwise.
It is readily checked that Mλ is an ergodic Markov chain with (unique) stationary dis-

tribution πλ. A natural and important question to ask aboutMλ is how quickly it converges
to its stationary distribution. It is traditional to define the mixing time τMλ(Σ) of Mλ(Σ) to
be

τMλ(Σ) = max
I∈I(Σ)

min



t0 :

1

2

∑

J∈I(Σ)

|P t(I, J)− πλ(J)| ≤ 1

e
∀t > t0



 ,

where P t(I, ·) is the distribution of the chain at time t, given that it started in state I .
The mixing time of Mλ captures the speed at which the chain converges to its stationary
distribution: for every ε > 0, in order to get a sample from I(Σ) which is within ε of πλ

(in variation distance), it is necessary and sufficient to run the chain from some arbitrarily
chosen distribution for some multiple (depending on ε) of the mixing time. For surveys of
issues related to the mixing time of a Markov chain, see e.g. [19, 20].

Here we study τMλ(TL,d), where TL,d is the even discrete torus. This is the graph on
vertex set {0, . . . , L − 1}d (with L even) in which two strings are adjacent if they differ
on only one coordinate, and differ by 1 (mod L) on that coordinate. For L ≥ 4 this is a
2d-regular bipartite graph with unique bipartition E ∪O where E is the set of even vertices
of TL,d (those strings the sum of whose coordinates is even) andO is the set of odd vertices.

Much work has been done on the question of bounding τMλ
above for various classes

of graphs. The most general results available to date are due to Luby and Vigoda [18] and
Dyer and Greenhill [11], who have shown that for any graph Σ with maximum degree ∆,
τMλ(Σ) is a polynomial in |V (Σ)| whenever λ < 2/(∆ − 2), which implies that τMλ(TL,d)

is a polynomial in Ld whenever λ < 1/(d − 1). More recently, Weitz [22] has improved
this general bound in the case of graphs with sub-exponential growth, and in particular has
shown that τMλ(TL,d) is a polynomial in Ld whenever λ ≤ (2d−1)2d−1/(2d−2)2d ≈ e/2d.

Recently, attention has been given to the question of regimes of inefficiency of Glauber
and other dynamics. Dyer, Frieze and Jerrum [10] considered the case λ = 1 and showed
that for each ∆ ≥ 6 a random (uniform) ∆-regular, n-vertex bipartite Σ almost surely (with
probability tending to 1 as n tends to infinity) satisfies τM1(Σ) ≥ 2γn for some absolute
constant γ > 0. The first result in this vein that applied specifically to TL,d was due to
Borgs et al. [5], who used a conductance argument to obtain the following.

Theorem 1.1 There is c(d) > 0 (independent of L) such that for λ sufficiently large and
all even L ≥ 4,

τMλ(TL,d) > exp

{
c(d)Ld−1

log2 L

}
.
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An examination of [5] reveals that “sufficiently large” may be quantified as λ > cd for
a suitable constant c > 1. One motivation for [5] was to show that for values of λ for
which the hard-core model on the integer lattice Zd exhibits multiple Gibbs phases (to be
explained below), the mixing of the Glauber dynamics on TL,d should be slow. Dobrushin
[8] showed that as long as λ is sufficiently large, there are indeed multiple Gibbs phases in
the hard-core model. Specifically, write E andO for the sets of even and odd vertices of Zd

(defined in the obvious way). Equip Zd with the usual nearest neighbour adjacency and set

ΛL = [−L,L]d and ∂ΛL = [−L, L]d \ [−(L− 1), L− 1]d.

For λ > 0, choose I from I(ΛL) with Pr(I = I) ∝ λ|I|. Dobrushin showed that for λ large

lim
L→∞

P
(
~0 ∈ I | I ⊇ ∂ΛL ∩ E

)
> lim

L→∞
P

(
~0 ∈ I | I ⊇ ∂ΛL ∩ O

)
(1)

where ~0 = (0, . . . , 0). Thus, roughly speaking, the influence of the boundary on behavior
at the origin persists as the boundary recedes. Informally, this suggests that for λ large,
the typical independent set chosen from TL,d according to the hard-core measure is either
predominantly odd or predominantly even, and so there is a highly unlikely bottleneck set
of balanced independent sets separating the predominantly odd sets from the predominantly
even ones. It is the existence of this bottleneck that should cause the mixing of the Glauber
dynamics chain to be slow. No explicit bound is given in [8], but several researchers report
that Dobrushin’s argument works for λ > cd for a suitable constant c > 1. A key tool in the
proof of Theorem 1.1 is an appeal to a (suitable generalization) of a lemma of Dobrushin
from [9], and our main lemma, Lemma 3.5, is of a similar flavour.

In light of a recent result of Galvin and Kahn [12], it is tempting to believe that slow
mixing on TL,d should hold for smaller values of λ; even for values of λ tending to 0
as d grows. The main result of [12] is that the hard-core model on Zd exhibits multiple
Gibbs phases for λ = ω(d−1/4 log3/4 d). Specifically, Galvin and Kahn show that for λ ≥
cd−1/4 log3/4 d for sufficiently large c, (1) holds.

In [13], some progress was made towards establishing slow mixing on TL,d for small
λ. Let Qd be the usual discrete hypercube (the graph on {0, 1}d in which two strings are
adjacent if they differ on exactly one coordinate). Note that T2,d is isomorphic to Qd. A
corollary of the main result of [13] is that for λ = ω(d−1/4 log3/2 d),

τMλ(Qd) ≥ exp

{
Ω

(
2d

d2

)}
.

In the present paper, using different methods, we show that for d sufficiently large
Glauber dynamics does indeed mix slowly on TL,d for all even L ≥ 4 for some small
values of λ.

Theorem 1.2 There are constants c, d0 > 0 for which the following holds. For

λ ≥ cd−1/4 log3/4 d, (2)
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d ≥ d0 and L ≥ 4 even, the Glauber dynamics chain Mλ on I(TL,d) satisfies

τMλ(TL,d) ≥ exp

{
Ld−1

d4 log2 L

}
.

Our techniques actually apply to the class of ρ-local chains (considered in [5] and also
in [10], where the terminology ρ|V |-cautious is employed) for suitable ρ. A Markov chain
M on state space I is ρ-local if in each step of the chain the states of at most ρ|V | vertices
are changed; that is, if

PM(I1, I2) 6= 0 ⇒ |I14I2| ≤ ρ|V |.
Our main theorem is the following.

Theorem 1.3 There are constants c, d0 > 0 for which the following holds. For λ satisfying
(2), d ≥ d0, L ≥ 4 even and ρ satisfying

ρ +
1

2d1/2
≤ λ

1 + λ
(3)

and

H

(
1

2d1/2

)
+ H

(
ρ +

1

2d1/2

)
+

(
1

d1/2
+ ρ

)
log2 λ +

10

d4L log2 L
≤ log2(1 + λ) (4)

(where H(α) = −α log2 α − (1 − α) log2(1 − α) is the usual binary entropy function), if
M is an ergodic ρ-local Markov chain on state space I(TL,d) with stationary distribution
πλ then

τM(TL,d) ≥ exp

{
Ld−1

d4 log2 L

}
.

With ρ = L−d, (4) is satisfied for all λ satisfying (2) (for sufficiently large d). An
L−d-local chain is a single-site update chain and so Theorem 1.2 is a corollary of Theorem
1.3. Taking λ = 1 we may satisfy (4) with ρ any constant less than 1/2 by taking d large
enough (as a function of ρ). We therefore obtain a further corollary of Theorem 1.3.

Corollary 1.4 Fix ρ < 1/2. There is a constant d0 = d0(ρ) > 0 for which the following
holds. For L ≥ 4 even and d ≥ d0, ifM is an ergodic ρ-local Markov chain on state space
I(TL,d) with uniform stationary distribution then

τM(TL,d) ≥ exp

{
Ld−1

d4 log2 L

}
.

We prove Theorem 1.3 via a well-known conductance argument (introduced in [15]). A
particularly useful form of the argument was given by Dyer, Frieze and Jerrum [10]. LetM
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be an ergodic Markov chain on state space Ω with transition probabilities P and stationary
distribution π. Let A ⊆ Ω and M ⊆ Ω \ A satisfy π(A) ≤ 1/2 and

ω1 ∈ A,ω2 ∈ Ω \ (A ∪M) ⇒ P (ω1, ω2) = 0.

Then from [10] we have

τM ≥ π(A)

8π(M)
. (5)

The intuition behind (5) is that if we start the chain at some state in A, then in order to
mix, it must at some point leave A and so pass through M . The ratio of π(A) to π(M) is
a measure of how long the chain must run before it transitions from A to M . So we may
think of M as a bottleneck set through which any run of the chain must pass in order to
mix; if the bottleneck has small measure, then the mixing time is high.

Now let us return to the setup of Theorem 1.3. Set

Ib,ρ = Ib,ρ(TL,d) = {I ∈ I(TL,d) : ||I ∩ E| − |I ∩ O|| ≤ ρLd/2}
(Ib,ρ is the set of balanced independent sets) and

IE,ρ = IE,ρ(TL,d) = {I ∈ I(TL,d) : |I ∩ E| > |I ∩ O|+ ρLd/2}.
By symmetry, πλ(IE,ρ) < 1/2. Notice that since M changes the state of at most ρLd

vertices in each step, we have that if I1 ∈ IE,ρ and I2 ∈ I(TL,d) \ (IE,ρ ∪ Ib,ρ) then
PM(I1, I2) = 0. From (5) we obtain

τM ≥ πλ(IE,ρ)

8πλ(Ib,ρ)
=

1− πλ(Ib,ρ)

16πλ(Ib,ρ)
.

Theorem 1.3 thus follows from the following theorem, whose proof will be the main busi-
ness of this paper.

Theorem 1.5 There are constants c, d0 > 0 for which the following holds. For λ satisfying
(2), d ≥ d0, L ≥ 4 even and ρ satisfying (3) and (4),

πλ(Ib,ρ) ≤ exp

{
− 2Ld−1

d4 log2 L

}
.

Theorem 1.5 is the statement that if an independent set I is chosen from I(TL,d) accord-
ing to the hard-core distribution πλ, then, as long as λ is sufficiently large, it is extremely
unlikely that I is balanced. In particular, if we take λ = 1 we obtain the following appealing
combinatorial corollary.

Corollary 1.6 Fix ε > 0. There is a constant d0 = d0(ε) > 0 for which the following
holds. For L ≥ 4 even and d ≥ d0, if I is a uniformly chosen independent set from TL,d

then

P
(||I ∩ E| − |I ∩ O|| ≤ (.25− ε)Ld

) ≤ exp

{
− 2Ld−1

d4 log2 L

}
.
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2 Overview of the proof of Theorem 1.5
Consider an independent set I ∈ I(TL,d). Some regions of TL,d consist predominantly of
even vertices from I together with their neighbours (the even-occupied regions) and some
regions consist predominantly of odd vertices from I with their neighbours. These regions
are separated by a collection of connected unoccupied two-layer moats or cutsets γ. In
Section 3.1 we follow [5] and describe a procedure which selects a collection Γ(I) of these
γ’s with the properties that i) the interiors of those γ ∈ Γ(I) are mutually disjoint (the
interior of γ is the smaller of the two parts into which its deletion breaks a graph) and
ii) either the interiors of all γ ∈ Γ(I) are predominantly even-occupied or they are all
predominantly odd-occupied. We do this in the setting of an arbitrary bipartite graph. We
also point out some properties of γ that are specific to the torus, including an isoperimetric
inequality that gives a lower bound on |γ| (the number of edges in γ) in terms of the number
of vertices it encloses.

Our main technical result, Lemma 3.5, is the assertion that for each specification of
cutset sizes c1, . . . , c` and vertices v1, . . . , v`, the probability that an independent set I has
among its associated cutsets Γ(I) a collection γ1, . . . , γ` with |γi| = ci and with vi in the
interior of γi is exponentially small in the sum of the ci’s. The case ` = 1 is essentially
contained in [12], and our generalization draws heavily on that paper. It may be worthwhile
to compare our Lemma 3.5 with [5, Lemma 6] in which is obtained an exponential bound
on the probability of I having a particular collection of cutsets.

We use a Peierl’s argument (see e.g. [14]) to prove Lemma 3.5. For simplicity, we
describe the argument here for λ = 1. For fixed c1, . . . , c`, v1, . . . , v`, let Ispec be the
collection of I ∈ I(TL,d) which have a collection of associated cutsets γ1, . . . , γ` with
|γi| = c` and with vi in the interior of γi. For an I ∈ Ispec, fix one such collection
γ1, . . . , γ`. By modifying I carefully in the interior of each γi (specifically, by shifting I
one unit in a carefully chosen direction) we can identify a collection of subsets Si of the
vertices of γi with |Si| = ci/2d which can be added to the modified I , the resulting set
still being independent. (Here we exploit the fact that the cutset can be thought of as two
unoccupied layers separating the interior from the exterior). By adding arbitrary subsets of
each Si to the modified I , we get a one-to-many map ϕ from Ispec to I(TL,d) with |ϕ(I)|
exponential in the sum of the ci’s.

If the ϕ(I)’s would be disjoint for distinct I’s, we would essentially be done, having
shown that there are exponentially more (in the sum of the ci’s) independent sets than
sets in Ispec. To deal with the issue of overlaps between the ϕ(I)’s, we define a flow
ν : Ispec × I(TL,d) → [0,∞) supported on pairs (I, J) with J ∈ ϕ(I) in such a way that
the flow out of every I ∈ Ispec is 1. Any uniform bound we can obtain on the flow into
vertices of I(TL,d) is then easily seen to be a bound on π1(Ispec).

We define the flow via a notion of approximation modified from [12]. To each cut-
set γ we associate a set A(γ) which approximates the interior of γ in a precise sense, in
such a way that as we run over all possible γ, the total number of approximate sets used is
small (and in particular, much smaller than the total number of cutsets). There is a clear
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trade-off here: the more precise the notion of approximation used, the greater the number
of approximate sets needed. Then for each J ∈ I(TL,d) and each collection of approxi-
mations A1, . . . , A` we consider the set of those I ∈ Ispec with J ∈ ϕ(I) and with Ai the
approximation to γi. We define the flow in such a way that if this set is large, then ν(I, J)
is small for each I in the set. In this way we control the flow into J corresponding to each
collection of approximations A1, . . . , A`; and since the total number of approximations is
small, we control the total flow into J .

In the language of statistical physics, there is a tradeoff between entropy and energy
that we need to control. Each I ∈ Ispec has high energy — by the shift operation described
above, we can perturb it only slightly and map it to an exponentially large collection of
independent sets. But before exploiting this fact to show that π1(Ispec) is small, we have
to account for a high entropy term — there are exponentially many possible cutsets of
size ci that could be associated with an I ∈ Ispec. There are about exp{Ω(ci log d/d)}
cutsets of size ci (this count comes from [17]), each one giving rise to about exp{Θ(ci/d)}
independent sets, so the entropy term exceeds the energy term and the Peierl’s argument
cannot succeed. One way to overcome this problem is to allow λ to grow exponentially with
d, increasing the energy term (the independent sets obtained from the shift are larger than
the pre-shifted sets, and so have greater weight) while not changing the entropy term. This
is the approach taken in [5]. Alternatively we could try to salvage the argument for λ = 1
by somehow decreasing the entropy term. This is where the idea of approximate cutsets
comes in. Instead of specifying a cutset γi by its ci edges, we specify a connected collection
of roughly ci/d

3/2 vertices nearby (in a sense to be made precise) to the cutset, from which
a good approximation to the cutset can be constructed in a specified (algorithmic) way. Our
entropy term drops to roughly exp{O(ci log d/d3/2)}, much lower than the energy term; so
much lower, in fact, that we can rescue the Peierl’s argument for values of λ tending to 0 as
d grows. The bound exp{O(ci log d/d3/2)} on the number of connected subsets of TL,d of
size O(ci/d

3/2) is based on the fact that a ∆-regular graph has at most 2O(n log ∆) connected
induced subgraphs of size n passing through a fixed vertex.

The precise statement of Lemma 3.5 appears in Section 3.2 and the proof appears in
Section 4. It is here that the precise notion of approximation used is given, together with
the verification that there is a ν that satisfies our diverse requirements. We defer a more
detailed discussion of the proof to that section.

Given Lemma 3.5, the proof of Theorem 1.5 is relatively straightforward. We begin
by using a naive count to observe that the total measure of those I ∈ Ib,ρ with min{|I ∩
E|, |I ∩ O|} ≤ Ld/4d1/2 is exponentially small in Ld. This drives our specification of ρ,
which is chosen as large as possible so that the naive count gives an exponentially small
bound. This allows us in the sequel to consider only those I ∈ I(TL,d) with min{|I ∩
E|, |I ∩ O|} > Ld/4d1/2. The naive count consists of considering those subsets X of TL,d

with min{|X∩E|, |X∩O|} ≤ Ld/4d1/2 and max{|X∩E|, |X∩O|} ≤ Ld/4d1/2 +ρLd/2,
without regard for whether X ∈ I(TL,d).

It remains to consider the case where balanced I satisfies min{|I ∩ E|, |I ∩ O|} >
Ld/4d1/2. In this case the isoperimetric inequality in the torus allows us to conclude that
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Γ(I) contains a small subset of cutsets, all with similar lengths, the sum of whose lengths is
essentially Ld−1. We then use Lemma 3.5 and a union bound to say that the measure of the
large balanced independent sets is at most the product of a term that is exponentially small
in Ld−1 (from Lemma 3.5), a term corresponding to the choice of a fixed vertex in each
of the interiors, and a term corresponding to the choice of the collection of lengths. The
second term will be negligible because our special collection of contours is small and the
third will be negligible because the contours all have similar lengths. The detailed proof
appears in Section 3.3.

3 Proof of Theorem 1.5

3.1 Cutsets
We describe a way of associating with each I ∈ I(TL,d) a collection of minimal edge
cutsets, following the approach of [5]. Much of the discussion is valid for any bipartite
graph, so we present it in that generality.

Let Σ = (V,E) be a connected bipartite graph on at least 3 vertices with partition
classes E and O. For X ⊆ V , write ∇(X) for the set of edges in E which have one end
in X and one end outside X; X for V \ X; ∂intX for the set of vertices in X which are
adjacent to something outside X; ∂extX for the set of vertices outside X which are adjacent
to something in X; X+ for X ∪ ∂extX; XE for X ∩ E and XO for X ∩ O. Further, for
x ∈ V set ∂x = ∂ext{x}. In what follows we abuse notation slightly, identifying sets of
vertices of V and the subgraphs they induce.

For each I ∈ I(Σ), each component R of (IE)+ or (IO)+ and each component C of
R, set γ = γRC(I) = ∇(C) and W = WRC(I) = C. Evidently C is connected, and
W consists of R, which is connected, together with a number of other components of R,
each of which is connected and joined to R, so W is connected also. It follows that γ is a
minimal edge-cutset in Σ. Define the size of γ to be |γ| = |∇C| (= |∇(W )|). Define int γ,
the interior of γ, to be the smaller of C,W (if |W | = |C|, take int γ = W ) and say that γ is
enveloping if int γ = W (so that R, the component that gives rise to γ, is contained in the
interior of γ). Say that I is even (respectively, odd) if it satisfies the following condition:
for every component R of (IE)+ (respectively, (IO)+) there exists a component C of R
such that γRC(I) is enveloping. Note that there must be an unique such C for each R since
the components of R are disjoint and each one that gives rise to an enveloping cutset must
have more than |V |/2 vertices.

Lemma 3.1 Each I ∈ I(Σ) is either odd or even.

Proof: Suppose that I is not even. Then there is a component R of (IE)+ such that for all
components C of R, |C| < |V |/2. Consider a component R′ of (IO)+. It lies inside some
component C of R, so one of the components of R′, say C ′, contains C. Since |C| ≥ |V |/2
the cutset γR′C′(I) is enveloping. It follows that I is odd. 2
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Lemma 3.2 For each even I ∈ I(Σ) there is an associated collection Γ(I) of enveloping
cutsets with mutually disjoint interiors such that IE ⊆ ∪γ∈Γ(I)int γ.

Proof: Let R1, . . . , Rm be the components of (IE)+. For each i there is one component, Ci

say, of Ri such that γi = γRiCi
is enveloping. We have IE ⊆ ∪m

i=1int γi.
We claim that for each i 6= j one of int γi ⊆ int γj , int γi ⊇ int γj , int γi ∩ int γj = ∅

holds. To see this, we consider cases. If Rj ⊆ C ′ for some component C ′ 6= Ci of Ri

then int γj ⊆ C ′ ⊆ int γi (= Ci). Otherwise, Rj ⊆ Ci. In this case, either Cj ⊆ Ci (so
int γj ⊇ int γi) or Cj ⊇ Ci (so int γj ∩ int γi = ∅). We may take

Γ(I) = {γi : for all j 6= i either int γj ⊆ int γi or int γi ∩ int γj = ∅}.
2

The following lemma identifies some key properties of γ ∈ Γ(I) for even I . In the
proof of Theorem 1.5 these properties only come into play through Lemma 3.5.

Lemma 3.3 For each even I and γ ∈ Γ(I), we have the following.

∂intW ⊆ O and ∂extW ⊆ E ; (6)

∂intW ∩ I = ∅ and ∂extW ∩ I = ∅; (7)

∀x ∈ ∂intW, ∂x ∩W ∩ I 6= ∅ (8)

and
WO = ∂extW

E and W E =
{
y ∈ E : ∂y ⊆ WO}

. (9)

Proof: We begin by noting that ∂intW ⊆ ∂intR (specifically, ∂intW = ∂intR ∩ ∂extC =
∂extC) and ∂extW = ∂intC. Since ∂intR ⊆ O and ∂intC ⊆ E , (6) follows immediately
from these observations.

By construction, R ∩ O ∩ I = ∅, so ∂intW ∩ I = ∅. If there is x ∈ ∂intC ∩ I then,
since x ∈ E and there is y ∈ R adjacent to x, we would have x ∈ R, a contradiction; so
∂intC ∩ I = ∅, giving (7).

It is clear that for all x ∈ ∂intR there is y ∈ R ∩ I with x adjacent to y; so (8) follows
from ∂intW ⊆ ∂intR.

Since ∂intW ⊆ O, we have WO ⊇ ∂extW
E . If there is y ∈ WO with ∂y∩W E = ∅, then

the connectivity of W implies that W = WO (and that WO consists of a single vertex).
But W E is non-empty; so we get the reverse containment WO ⊆ ∂extW

E .
The containment W E ⊆ {y ∈ E : ∂y ⊆ WO} follows immediately from WO ⊇

∂extW
E . For the reverse containment, consider (for a contradiction) y ∈ E with ∂y ⊆ WO

but y 6∈ W E . We must have y ∈ C; but y is not adjacent to anything else in C, and |C| > 1
(indeed, |C| ≥ |V |/2 > 1 since γ is enveloping), a contradiction since C is connected. So
we have W E ⊇ {y ∈ E : ∂y ⊆ WO}. 2

We now return to TL,d. Set Ieven = {I ∈ I(TL,d) : I even} and define Iodd analogously.
The next lemma establishes some of the geometric properties of TL,d that we will need.
Before stating it we need some more notation.
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For k ≥ 1, we say that S ⊆ V (TL,d) is k-clustered if for every x, y ∈ S there is a
sequence x = x0, . . . , xm = y of vertices of S such that d(xi−1, xi) ≤ k for all i = 1, . . . m,
where d(·, ·) is the usual graph distance. Note that S can be partitioned uniquely into
maximal k-clustered subsets; we refer to these as the k-components of S.

For a cutset γ, we define a graph Gγ as follows. The vertex set of Gγ is the set of
edges of TL,d that comprise γ. Declare e, f ∈ γ to be adjacent in Gγ if either e and f share
exactly one endpoint and if the coordinate on which the endpoints of e differ is different
from the coordinate on which the endpoints of f differ (i.e., e and f are not parallel) or
if the endpoints of e and f determine a cycle of length four (a square) in TL,d. (This is
equivalent to the following construction, well known in the statistical physics literature:
for e ∈ γ, let e? be the dual (d− 1)-dimensional cube which is orthogonal to e and bisects
it when TL,d is considered as immersed in the continuum torus. Then declare e, f ∈ γ to
be adjacent if e? ∩ f ? is a (d− 2)-dimensional cube.) We say that a cutset γ is trivial if Gγ

has only one component.

Lemma 3.4 For each I ∈ Ieven and γ ∈ Γ(I),

|γ| ≥ |W |1−1/d; (10)

for large enough d, |γ| ≥ d1.9; (11)

if γ is not trivial then each component of Gγ has at least Ld−1 edges (12)

and

either ∂intW is 2-clustered or each of its 2-components has size at least Ld−1/2d. (13)

Proof: For (10) and (11) we appeal to an isoperimetric inequality of Bollobás and Leader
[4] which states that if A ⊆ V (TL,d) with |A| ≤ Ld/2, then

|∂extA| ≥ min
{
2|A|1−1/rrL(d/r)−1 : r = 1, . . . , d

}
.

From this (10) follows easily, as does (11) once we observe that |W | ≥ 2d + 1 (since
W E 6= ∅) and that |γ| ≥ |∂extW |.

From [5, Lemma 3] we have (12). Finally we turn to (13). Let C1, . . . , C` be the
components of Gγ , and for each i let C ′

i be the vertices of ∂intW which are endpoints of
edges of Ci. It is readily checked that each C ′

i is 2-clustered and that ∂intW = ∪iC
′
i. If

` = 1 we therefore have that ∂intW is 2-clustered. If ` > 1, we have (by (12)) that each Ci

has at least Ld−1 edges. Since each vertex in TL,d has degree 2d, it follows that each C ′
i has

size at least Ld−1/2d. Since the C ′
i’s are 2-clustered, each 2-component of ∂intW has size

at least Ld−1/2d, establishing (13). 2
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3.2 The main lemma
For c ∈ N and v ∈ V (TL,d) set

W(c, v) =
{
γ : γ ∈ Γ(I) for some I ∈ Ieven, |γ| = c, v ∈ W E}

and set W = ∪c,vW(c, v). A profile of a collection {γ1, . . . , γ`} ⊆ W is a vector p =
(c1, v1, . . . , c`, v`) with γi ∈ W(ci, vi) for all i. Given a profile vector p set

I(p) = {I ∈ Ieven : Γ(I) contains a subset with profile p}.

Our main lemma is the following.

Lemma 3.5 There are constants c, c′, d0 > 0 such that the following holds. For all even
L ≥ 4, d ≥ d0, λ satisfying (2) and profile vector p,

πλ(I(p)) ≤ exp

{
−c′β(λ)

∑`
i=1 ci

d

}
, (14)

where β(λ) = 2 log(1 + λ)− log(1 + 2λ).

This may be thought of as an extension of the main result of [12], which treats only
` = 1 and in a slightly less general setting. We will derive Theorem 1.5 from Lemma 3.5
in Section 3.3 before proving the lemma in Section 4. From here on we assume that the
conditions of Theorem 1.5 and Lemma 3.5 are satisfied (with c and d0 sufficiently large
to support our assertions). All constants implied in O and Ω statements will be absolute.
When it makes no difference to do otherwise, we assume that all large numbers are integers.
We note for future reference that for λ satisfying (2) we have

λ

1 + λ
= ω

(
1

d1/4

)
and β(λ) = ω

(
1

d1/2

)
. (15)

3.3 The proof of Theorem 1.5
We begin with an easy count that dispenses with small balanced independent sets. Set

Ismall =
{
I ∈ Ib,ρ : min{|IE |, |IO|} ≤ Ld/4d1/2

}
.

and Ilarge = Ib,ρ \ Ismall.

Lemma 3.6
πλ(Ismall) ≤ exp

{
− 3Ld−1

d4 log2 L

}
.
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Proof: We need a well-known result of Chernoff [6] (see also [3], p.11). Let X1, . . . , Xn

be i.i.d. Bernoulli random variables with P(X1 = 1) = p. Then for k ≤ pn

P

(
n∑

i=1

Xi ≤ k

)
≤ 2nHp( k

n)

where Hp(x) = x log2(p/x) + (1− x) log2((1− p)/(1− x)). Note that Hp(x) = H(x) +
x log2 p + (1 − x) log2(1 − p) where H(x) is the usual binary entropy function. Taking
p = λ/(1 + λ) we see that for a set X with |X| = n and for c ≤ λ/(1 + λ),

∑

A⊆X, |A|≤cn

λ|A|

(1 + λ)n
≤ 2nHλ/(1+λ)(c)

= 2n(H(c)+c log2
λ

1+λ
+(1−c) log2

1
1+λ)

= 2n(H(c)+c log2 λ−log2(1+λ))

from which it follows that
∑

A⊆X, |A|≤cn

λ|A| ≤ 2n(H(c)+c log2 λ). (16)

Now using (1 + λ)Ld/2 as a trivial lower bound on
∑

I∈I(TL,d) λ|I| and with the subse-
quent inequalities justified below, we have

πλ(Ismall) ≤ 2


 ∑

A⊆E, |A|≤Ld/4d1/2

λ|A|





 ∑

B⊆O, |B|≤(1/2d1/2+ρ)Ld/2

λ|B|


 (1 + λ)−Ld/2

≤
2 exp2

{
Ld

2

(
H

(
1

2d1/2

)
+ H

(
1

2d1/2 + ρ
)

+
(

1
d1/2 + ρ

)
log2 λ

)}

(1 + λ)Ld/2
(17)

≤ exp

{
− 2Ld−1

d4 log2 L

}
. (18)

In (17) we use (16) (legitimate since 1/2d1/2 ≤ λ/(1 + λ) and 1/2d1/2 + ρ ≤ λ/(1 + λ),
the former by (15) and the latter by (3)); (18) follows from (4). 2

Set Ilarge, even = Ilarge ∩ Ieven and define Ilarge, odd analogously. By Lemma 3.1
Ilarge = Ilarge, even ∪ Ilarge, odd and by symmetry πλ(Ilarge, even) = πλ(Ilarge, odd). In
the presence of Lemma 3.6, Theorem 1.5 reduces to bounding (say)

πλ(Ilarge, even) ≤ exp

{
− 3Ld−1

d4 log2 L

}
. (19)

Set Inon−trivial
large, even = {I ∈ Ilarge, even : there is γ ∈ Γ(I) with |γ| ≥ Ld−1} and Itrivial

large, even =

Ilarge, even \ Inon−trivial
large, even . With the sum below running over all vectors p of the form (c, v)
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with v ∈ V (TL,d) and c ≥ Ld−1, and with the inequalities justified below, we have

πλ(Inon−trivial
large, even ) ≤

∑
p

πλ(I(p))

≤ L2d exp

{
−Ω

(
Ld−1β(λ)

d

)}
(20)

≤ exp

{
−Ω

(
Ld−1

d3/2

)}
(21)

We have used Lemma 3.5 in (20) and the factor of L2d is for the choices of c and v. In (21)
we have used (15).

For I ∈ Itrivial
large, even and γ ∈ Γ(I) we have |γ| ≥ |int γ|1−1/d (by (10)) and so

∑

γ∈Γ(I)

|γ|d/(d−1) ≥
∑

γ∈Γ(I)

|int γ| ≥ |IE | ≥ Ld/4d1/2.

The second inequality is from Lemma 3.2 and the third follows since I 6∈ Ismall.
Set Γi(I) = {γ ∈ Γ(I) : 2i−1 ≤ |γ| < 2i}. Note that Γi(I) is empty for 2i < d1.9

(recall (11)) and for 2i−1 > Ld−1 so we may assume that

1.9 log d ≤ i ≤ (d− 1) log L + 1. (22)

Since
∑∞

m=1 1/m2 = π2/6, there is an i such that

∑

γ∈Γi(I)

|γ| d
d−1 ≥ Ω

(
Ld

d1/2i2

)
. (23)

Choose the smallest such i set ` = |Γi(I)|. We have
∑

γ∈Γi(I) |γ| ≥ Ω(`2i) (this follows
from the fact that each γ ∈ Γi(I) satisfies |γ| ≥ 2i−1) and

O

(
dLd

2i

)
≥ ` ≥ Ω

(
Ld

2
id

d−1 i2d1/2

)
. (24)

The first inequality follows from that fact that
∑

γ |γ| ≤ dLd = |E(TL,d)|; the second
follows from (23) and the fact that each γ has |γ|d/(d−1) ≤ 2di/(d−1). We therefore have
I ∈ I(p) for some p = (c1, v1, . . . , c`, v`) with ` satisfying (24), with

∑̀
j=1

cj ≥ O(`2i), (25)

with
cj ≤ 2i (26)
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for each j and with i satisfying (22). With the sum below running over all profile vectors p
satisfying (22), (24), (25) and (26) we have

πλ(Itrivial
large, even) ≤

∑
p

πλ(I(p))

≤ d log L max
i satisfying (22)

2`i

(
Ld

`

)
exp

{
−Ω

(
`2iβ(λ)

d

)}
. (27)

In (27) we have used Lemma 3.5. The factor of d log L is an upper bound on the number
of choices for i; the factor of 2`i is for the choice of the cj’s; and the factor

(
Ld

`

)
is for

the choice of the ` (distinct) vj’s. By (22), the second inequality in (24) and the second
inequality in (15) we have (for d sufficiently large)

2`i

(
Ld

`

)
≤ 2`i

(
Ld

`

)`

≤ 2`i
(
O

(
2

id
d−1 i2d1/2

))`

≤ 24`i

= exp

{
o

(
2iβ(λ)

d

)}
.

Inserting into (27) we finally get

πλ(Itrivial
large, even) ≤ d log L max

i
exp

{
−Ω

(
2iβ(λ)`

d

)}

≤ d log L max
i

exp

{
−Ω

(
2iβ(λ)Ld

d2
id

d−1 i2d1/2

)}
(28)

≤ exp

{
− 4Ld−1

d4 log2 L

}
. (29)

In (28) we have taken ` as small as possible, and in (29) we have taken i as large as possible
and used (15).

Combining (29) and (21) we obtain (19) and so Theorem 1.5.

4 Proof of Lemma 3.5
Our strategy is the following. Let a profile vector p = (c1, v1, . . . , c`, v`) be given. Set
p′ = (c2, v2, . . . , c`, v`). We will show

πλ(I(p))

πλ(I(p′))
≤ exp

{
−Ω

(
c1β(λ)

d

)}
. (30)
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Then by a telescoping product

πλ(I(p)) ≤ πλ(I(p))

πλ(Ieven)
≤ exp

{
−Ω

(
β(λ)

∑`
i=1 ci

d

)}

as claimed. To obtain (30) we employ a general strategy to bound πλ(S)/πλ(T ) for S ⊆
T ⊆ I(TL,d) (note that I(p) ⊆ I(p′)). We define a one-to-many map ϕ from S to T . We
then define a flow ν : S × T → [0,∞) supported on pairs (I, J) with J ∈ ϕ(I) satisfying

∀I ∈ S,
∑

J∈ϕ(I)

ν(I, J) = 1 (31)

and
∀J ∈ T ,

∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J) ≤ M. (32)

This gives
∑
I∈S

λ|I| =
∑
I∈S

λ|I|
∑

J∈ϕ(I)

ν(I, J)

=
∑
J∈T

λ|J |
∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J)

≤ M
∑
J∈T

λ|J |

and so πλ(S)/πλ(T ) ≤ M . So our task is to define ϕ and ν for S = I(p) and T = I(p′)
for which (32) holds with M given by the right-hand side of (30).

Much of what follows is modified from [12]. The main result of [12] has already been
described in Section 1. It will be helpful here to describe the main technical work of that
paper. Let ΛL be the box [−L,L]d in Zd with boundary ∂?ΛL = [−L,L]d \ [−(L− 1), L−
1]d. Write J for the set of independent sets in ΛL which extend ∂?ΛL ∩ O and, for a fixed
vertex v0 ∈ ΛL∩E , write I for those I ∈ J with v0 ∈ I . The stated aim of [12] is to show,
using a similar strategy to that described above, that πλ(I)/πλ(J ) ≤ (1 + λ)−2(d−o(1)).
More specifically, for each I ∈ I let γ′(I) be the cutset associated with that component of
(IE)+ that includes v0. For each wo, we write I(wo, we) for those I ∈ I with |W E | = we

and |WO| = wo, where W is the subset of ΛL associated with γ′(I) as described in Section
3.1. It is shown in [12] (inequalities (62) and (63) of that paper) that for λ satisfying (2) we
have

πλ(I(wo, we))

πλ(J )
≤

{
exp{−Ω(λ2(wo − we))} for λ < 2 and
λ−Ω(wo−we) for larger λ

(33)

from which the stated bound on πλ(I)/πλ(J ) is easily obtained by a summation. The
remainder of this paper is devoted to an explanation of how the proof of (33) needs to be
augmented and modified to obtain our main lemma, and we do not state the proofs of many
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of our intermediate lemmas, since they can be found in the generality we need in [12]. The
main technical issue we have to deal with in moving from (33) to Lemma 3.5 relates to
dealing with γ that are non-trivial (in the sense defined before the proof of Lemma 3.4);
this is not an issue in [12] because it is shown there that the cutsets γ′(I) described above
are always trivial.

One technical issue aside, the specification of ϕ is relatively straightforward. For each
s ∈ {±1, . . . ,±d}, define σs, the shift in direction s, by σs(x) = x + es, where es is the
sth standard basis vector if s > 0 and es = −e−s if s < 0. For X ⊆ V (TL,d), write σs(X)
for {σs(x) : x ∈ X}. For a cutset γ ∈ W set W s = {x ∈ ∂intW : σ−1

s (x) 6∈ W}. We will
obtain ϕ(I) by shifting I inside W in a certain direction s and adding arbitrary subsets of
W s to the result, where W is associated with a cutset γ ∈ Γ(I) ∩W(c1, v1). The success
of this process depends on the fact that I is disjoint from the vertex set of γ. We now
formalize this.

Lemma 4.1 Let I ∈ I(p) be given. Let γ ∈ Γ(I) be such that |γ| = c1 and v1 ∈ W E

where W = int γ. For any choice of s, it holds that

I0 := (I \W ) ∪ σs(I ∩W ) is in I(p′)

and has the same size as I . Moreover, the sets I0 and W s are mutually disjoint and

I0 ∪W s ∈ I(p′).

Proof: That I0 ∪W s is an independent set and that I0 is the same size as I is the content
of [12, Proposition 2.12]. Because int γ is disjoint from the interiors of the remaining
cutsets and the shift operation that creates I0∪W s only modifies I inside W it follows that
I0, I0 ∪W s ∈ I(p′). 2

For I ∈ I(p) we define

ϕ(I) = {I0 ∪ S : S ⊆ W s}

for a certain s to be chosen presently. In light of Lemma 4.1, ϕ(I) ⊆ I(p′) regardless of
this choice.

To define ν and s we employ the notion of approximation also used in [12] and intro-
duced by Sapozhenko in [21]. For γ ∈ W we say that A ⊆ V (TL,d) is an approximation of
γ if

AE ⊇ W E and AO ⊆ WO, (34)

dAO(x) ≥ 2d−
√

d for all x ∈ AE (35)

and
dE\AE (x) ≥ 2d−

√
d for all y ∈ O \ AO, (36)

where dX(x) = |∂x ∩X|. Note that since WO = ∂WE , W is an approximation of γ.
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To motivate the definition of approximation, note that by (9) if u is in W E then all of
its neighbors are in WO, and if u′ is in O \WO then all of its neighbors are in E \W E . If
we think of AE as approximate-W E and AO as approximate-WO, (35) says that if u ∈ E
is in approximate-W E then almost all of its neighbors are in approximate-WO while (36)
says that if u′ ∈ O is not in approximate-WO then almost all of its neighbors are not in
approximate-W E .

Before stating our main approximation lemma, which is a slight modification of [12,
Lemma 2.18], it will be convenient to further refine our partition of cutsets. To this end set

W(we, wo, v) = {γ : γ ∈ Γ(I) for some I ∈ Ieven, |WO| = wo, |W E | = we, v ∈ W E}.
Note that (by (9))

|γ| = |∇(W )| = 2d(|WO| − |W E |)
so W(we, wo, v) ⊆ W((wo − we)/2d, v).

Lemma 4.2 For each we, wo and v there is a family A(we, wo, v) satisfying

|A(we, wo, v)| ≤ exp
{

O
(
(wo − we)d

− 1
2 log

3
2 d

)}

and a map Π : W(we, wo, v) → A(we, wo, v) such that for each γ ∈ W(we, wo, v), Π(γ)
is an approximation for γ.

The proof of this lemma is deferred to Section 4.1. Our bound on the number of ap-
proximate cutsets with parameters we, wo and v is much smaller than any bound we are
able to obtain on the number of cutsets with the same set of parameters. This is where we
make the entropy gain discussed in Section 2.

We are now in a position to define ν and s. Our plan for each fixed J ∈ I(p′) is to fix
we, wo and A ∈ W(we, wo) and to consider the contribution to the sum in (32) from those
I ∈ ϕ−1(J) with Π(γ(I)) = A. We will try to define ν in such a way that each of these
individual contributions to (32) is small; to succeed in this endeavour we must first choose
s with care. To this end, given γ ∈ W(we, wo, v), set

QE = AE ∩ ∂ext(O \ AO) and QO = (O \ AO) ∩ ∂extA
E ,

where A = Π(γ) in the map guaranteed by Lemma 4.2. To motivate the introduction of QE

and QO, note that for γ ∈ Π−1(A) we have

AE \QE ⊆ W E

E \ AE ⊆ E \W E

AO ⊆ WO

and

O \ (AO ∪QO) ⊆ O \WO

(all using (9) and (34)). It follows that for each γ ∈ Π−1(A), QE ∪ QO contains all of the
vertices whose location in the partition TL,d = W ∪W is as yet unknown.
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Lemma 4.3 For γ ∈ W(we, wo, v), there is an s ∈ {±1, . . . ,±d} such that both of

|W s| ≥ .8(wo − we) and |σs(Q
E) ∩QO| ≤ 5|W s|√

d

hold.

Proof: [12, (49) and (50)]. 2

We choose the smallest such s to be the lattice direction associated with γ. Note that s
depends on γ but not on I .

Now for each I ∈ I(p) let γ ∈ Γ(I) be a particular cutset with γ ∈ W(c1, v1). Let
ϕ(I) be as defined before, with s as specified by Lemma 4.3. Define

C = W s ∩ AO ∩ σs(Q
E)

and
D = W s \ C,

and for each J ∈ ϕ(I) set

ν(I, J) = λ|J∩W s|
(

λ

(1 + λ)2

)|C∩J | (
1 + 2λ

(1 + λ)2

)|C\J | (
1

1 + λ

)|D|
.

Note that for I ∈ ϕ−1(J), ν(I, J) depends on W but not on I itself.
Noting that C ∪D partitions W we have

∑

J∈ϕ(I)

ν(I, J) =
∑

A⊆C, B⊆D

λ|A|+|B|
(

λ

(1 + λ)2

)|A| (
1 + 2λ

(1 + λ)2

)|C|−|A| (
1

1 + λ

)|D|

=
∑
B⊆D

λ|B|

(1 + λ)|D|
∑
A⊆C

(
λ2

1 + 2λ

)|A| (
1 + 2λ

(1 + λ)2

)|C|

=
(1 + λ)|D|

(1 + λ)|D|

(
1 + 2λ + λ2

1 + 2λ

)|C| (
1 + 2λ

(1 + λ)2

)|C|

= 1,

so ν satisfies (31). To obtain (14) we must establish (32) with M given by the right-hand
side of (30).

Fix we, wo such that 2d(wo −we) = c1. Fix A ∈ A(we, wo, v1) and s ∈ {±1, . . . ,±d}.
For I with γ(I) ∈ W(we, wo, v1) write I ∼s A if it holds that Π(γ) = A and s(I) = s.
The next lemma, which bounds the contribution to the sum in (32) from those I ∈ ϕ−1(J)
with I ∼s A, is the heart of the whole proof, and perhaps the principal inequality of [12].
We extract it directly from [12]; although the setting here is slightly different, the proof is
identical to the equivalent statement in [12].
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Lemma 4.4 For J ∈ I(p′),

∑{
λ|I|−|J |ν(I, J) : I ∼s A, I ∈ ϕ−1(J)

} ≤
(√

1 + 2λ

1 + λ

)wo−we

.

Proof: [12, Section 2.12]. 2

We are now only a short step away from (14). With the steps justified below we have
that for each J ∈ I(p′)

∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J) ≤
∑

we,wo

∑
s,A

∑ {
λ|I|−|J |ν(I, J) : I ∼s A, I ∈ ϕ−1(J)

}

≤ 2dc
2d

d−1

1 |A(we, wo, v1)|
(√

1 + 2λ

1 + λ

) c1
2d

(37)

≤ 2dc
2d

d−1

1 exp

{
−Ω

(
c1β(λ)

d

)}
(38)

≤ exp

{
−Ω

(
c1β(λ)

d

)}
(39)

completing the proof of (32). In (37), we note that there are |A(we, wo, v1)| choices for the
approximation A, 2d choices for s and c

d/(d−1)
1 choices for each of we, wo (this is because

c1 ≥ (we + wo)
1−1/d by (10)), and we apply Lemma 4.4 to bound the summand. In (38)

use Lemma 4.2 and the fact that for any c > 0 we can choose c′ > 0 such that whenever
λ > c′d−1/4 log3/4 d and d = d(c) is sufficiently large we have

exp
{

cd−
1
2 log

3
2 d

} √1 + 2λ

1 + λ
≤ exp

{
−β(λ)

4

}
.

Finally in (39) we use c1 ≥ d1.9 (by (11)) and the second inequality in (15) to bound
2dc

2d/(d−1)
1 = exp{o(c1β(λ)/d)}.

4.1 Proof of Lemma 4.2
We obtain Lemma 4.2 by combining a sequence of lemmas. Lemma 4.5, which we ex-
tract directly from [12], establishes the existence for each γ of a very small set of vertices
nearby to γ whose neighbourhood can be thought of as a coarse approximation to γ. (We
will elaborate on this after the statement of the lemma.) Lemma 4.6 shows that there is a
small collection of these coarse approximations such that every γ ∈ W(we, wo, v) is ap-
proximated by one of the collection. Our proof of this lemma for γ trivial is from [12],
but we need to add a new ingredient to deal with non-trivial γ. Finally Lemma 4.7, which
we extract directly from [12], turns the coarse approximations of Lemma 4.6 into the more
refined approximations of Lemma 4.2 without increasing the number of approximations
too much.
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Given γ ∈ W(we, wo, v) set

∂′intW = {x ∈ ∂intW : dWE (x) ≤ d} and ∂′intC = {x ∈ ∂intC : dCO(x) ≤ d}.

(Recall that dX(x) = |∂x ∩X|.)
Lemma 4.5 For each γ ∈ W(we, wo, v) there is a U with the following properties.

U ⊆ N(∂′intW ∪ ∂′intC) (40)

N(U) ⊇ ∂′intW ∪ ∂′intC (41)

and

|U | ≤ O

(
(wo − we)

√
log 2d

2d

)
(42)

where N(X) = ∪x∈X∂x.

To motivate Lemma 4.5, let us point out that in [12, (34)] it is observed that for U satisfying
(40) and (41) the removal of N(U) from V (TL,d) separates W from C. U may therefore be
thought of a coarse approximation to γ: removing U and its neighbourhood achieves the
same effect as removing γ. However, U is very much smaller than γ (γ has 2d(wo − we)
edges). By focusing on specifying U instead of γ, we lose some information, but we gain
because fewer choices have to be made to specify U . The engine driving the proof of
Lemma 3.5 is the fact that the gain far outweighs the loss. Lemma 4.5 is [12, Lemma 2.15]
and we omit the proof.

Lemma 4.6 For each we, wo and v there is a family U(we, wo, v) satisfying

|U(we, wo, v)| ≤ exp
{

O
(
(wo − we)d

− 1
2 log

3
2 d

)}

and a map ΠU : W(we, wo, v) → U(we, wo, v) such that for each γ ∈ W(we, wo, v), ΠU(γ)
satisfies (40), (41) and (42).

Proof: It is observed in [12, paragraph after (35)] that for U satisfying (40) and (41) we
have

for all x ∈ ∂intW , d(x, U) ≤ 2 (43)

and
for all y ∈ U , d(y, ∂intW ) ≤ 2. (44)

Let U satisfy (43), (44) and (42) for some γ ∈ W(we, wo, v) and let W1, . . . , Wk be the
2-components of ∂intW . For each j = 1, . . . , k let

Uj = {y ∈ U : d(y, x) ≤ 2 for some x ∈ Wj}.
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We claim that each Uj is 6-clustered. To see this, fix u, v ∈ Wj and take xu ∈ Wj at distance
at most 2 from u and xv ∈ Wj at distance at most 2 from v. Let xu = x0, . . . , x` = xv

be a sequence of vertices in Wj with d(xi−1, xi) ≤ 2 for each i. For i = 1, . . . , ` − 1,
take ui ∈ Wj with d(ui, xi) ≤ 2. Then the sequence u = u0, u1, . . . , u`−1, u` = v has the
property that d(ui−1, ui) ≤ 6 for each i, establishing the claim.

To bound the number of possibilities for U we first consider the case 2d(wo − we) ≤
Ld−1. In this case, by (13), all γ under consideration are trivial (in the sense defined before
the statement of Lemma 3.3) and k = 1.

We show that there is a small (size O(wod
2)) set of vertices meeting all possible U ’s in

this case. Fix a linear ordering ¿ of O satisfying

d(v, y1) < d(v, y2) =⇒ y1 ¿ y2,

and let T be the initial segment of¿ of size wo. We claim that T ∩∂intW 6= ∅. If T = WO,
this is clear; if not, consider a shortest y − v path in TL,d for some y ∈ T \WO. This path
intersects WO (since ∂v ⊆ WO). Let y′ be the largest (with respect to ¿) vertex of WO

on the path; then y′ ∈ ∂intW ∩T , establishing our claim. There are at most wo possibilities
for y′ ∈ ∂intW ∩ T , so at most O(wod

2) possibilities for a vertex x′ with d(x′, y′) ≤ 2; and
by (43) U must contain such an x′.

In this case we may take U(we, wo, v) to be the collection of all 6-connected subsets of
V (TL,d) of size at most O((wo − we)

√
log 2d/2d) containing one of the O(wod

2) vertices
described in the last paragraph. Using the fact that in any graph with maximum degree ∆
the number of connected, induced subgraphs of order n containing a fixed vertex is at most
(e∆)n (see, e.g., [12, Lemma 2.1]) we infer that

|U(we, wo, v)| ≤ O(wod
2)(d7)

O
�
(wo−we)

√
log 2d

2d

�
(45)

≤ exp
{

O
(
(wo − we)d

− 1
2 log

3
2 d

)}
, (46)

as required. The factor of O(wod
2) in (45) accounts for the choice of a fixed vertex in

U ; the exponent O((wo − we)
√

log 2d/2d) is from (42); and the d7 accounts for the fact
that U is connected in a graph with maximum degree at most 65d6. In (46) we use (10)
to bound 2d(wo − we) ≥ (wo + we)

1−1/d ≥ w
3/4
o and so (since wo ≥ 2d) log(wod

2) =
o((wo − we)d

−1/2 log3/2 d).
In the case where 2d(wo−we) > Ld−1, by (13) each of the components of γ has at least

Ld−1 edges, so γ has at most dLd/Ld−1 = dL components and U at most dL 6-components.
In this case we may take U(we, wo, v) to be the collection of all subsets of V (TL,d) of size
at most O((wo−we)

√
log 2d/2d) containing at most dL 6-components. As in the previous

case we have

|U(we, wo, v)| ≤ (Ld)dL(d7)
O
�
(wo−we)

√
log 2d

2d

� dL∑
j=1

(O

(
((wo − we)

√
log 2d

2d

)
+ j − 1

j − 1

)

≤ exp
{

O
(
(wo − we)d

− 1
2 log

3
2 d

)}
, (47)
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as required, the extra factors in the first inequality accounting for the choice of a fixed vertex
in each of the at most dL 6-components and of the sizes of each of the 6-components. To ob-

tain (47) we use wo ≤ Ld to bound (Ld)dL
∑dL

j=1

(O((wo−we)
√

log 2d/2d)+j−1

j−1

) ≤ 2O(d2L log L)

and 2d(wo − we) ≥ Ld−1 to bound d2L log L = o((wo − we)d
−1/2 log3/2 d). 2

The next lemma turns U(we, wo, v) into the collection of approximations postulated in
Lemma 4.2. It is a straightforward combination of [12, Lemmas 2.16, 2.17, 2.18], and we
omit the proof. Combining Lemmas 4.6 and 4.7 we obtain Lemma 4.2.

Lemma 4.7 For each U ∈ U(we, wo, v) there is a family V(we, wo, v) satisfying

|V(we, wo, v)| ≤ exp
{

O
(
(wo − we)d

− 1
2 log

3
2 d

)}

and a map ΠV : U(we, wo, v) → V(we, wo, v) such that for each γ ∈ W(we, wo, v) and
U ∈ U(we, wo, v) with ΠU(γ) = U , ΠV(U) is an approximation of γ.

Acknowledgment: We thank Dana Randall for numerous helpful discussions.
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