Matchings and Independent Sets of a Fixed Size in Regular Graphs

Teena Carroll* ${ }^{*}$ David Galvin ${ }^{\dagger}$ Prasad Tetali ${ }^{\ddagger}$

November 2008

Abstract

We use an entropy based method to study two graph maximization problems. We upper bound the number of matchings of fixed size ℓ in a d-regular graph on N vertices. For $\frac{2 \ell}{N}$ bounded away from 0 and 1 , the logarithm of the bound we obtain agrees in its leading term with the logarithm of the number of matchings of size ℓ in the graph consisting of $\frac{N}{2 d}$ disjoint copies of $K_{d, d}$. This provides asymptotic evidence for a conjecture of S. Friedland et al.. We also obtain an analogous result for independent sets of a fixed size in regular graphs, giving asymptotic evidence for a conjecture of J. Kahn. Our bounds on the number of matchings and independent sets of a fixed size are derived from bounds on the partition function (or generating polynomial) for matchings and independent sets.

1 Introduction

Given a d-regular graph G on N vertices and a particular type of subgraph, a natural class of problems arises: "How many subgraphs of this type can G contain?" In this paper we give upper bounds on the number of partial matchings of a fixed fractional size, and on the number of independent sets

[^0]of a fixed size, in a general d-regular graph, and we show that our bounds are asymptotically matched at the logarithmic level by the graph consisting of $\frac{N}{2 d}$ disjoint copies of $K_{d, d}$. (See [2] and [4] for graph theory basics.)

Let G be a bipartite graph on N vertices with partition classes A and B and with $|A|=|B|$. Suppose that the degree sequence of A is given by $\left\{r_{i}\right\}_{i=1}^{|A|}$. A result of Brégman concerning the permanent of 0-1 matrices [3] (see also [1]) gives a bound on the number of perfect matchings in G :

Theorem 1.1 (Brégman) Let $\mathcal{M}_{\text {perfect }}(G)$ be the set of perfect matchings in G. Then

$$
\left|\mathcal{M}_{\text {perfect }}(G)\right| \leq \prod_{i=1}^{|A|}\left(r_{i}!\right)^{\frac{1}{r_{i}}}
$$

When $r_{i}=d$ for all i and $|A|$ is divisible by d, equality in the above theorem is achieved by the graph consisting of $\frac{N}{2 d}$ disjoint copies of the complete bipartite graph $K_{d, d}$, so we know that among d-regular bipartite graphs on N vertices, with $2 d \mid N$, this graph contains the greatest number of perfect matchings. (Wanless [12] has considered the case when $2 d$ is not a multiple of N, obtaining lower bounds on $\left|\mathcal{M}_{\text {perfect }}(G)\right|$ and some structural results on the maximizing graphs in this case.)

Friedland et al. [6] propose an extension of this observation, which they call the Upper Matching Conjecture. Write $m_{\ell}(G)$ for the number of matchings in G of size ℓ, and write $D K_{N, d}$ for the graph consisting of $\frac{N}{2 d}$ disjoint copies of $K_{d, d}$.

Conjecture 1.2 For any N-vertex, d-regular graph G with $2 d \mid N$ and any $0 \leq \ell \leq N / 2$,

$$
m_{\ell}(G) \leq m_{\ell}\left(D K_{N, d}\right)
$$

In this note we upper bound the logarithm of the number of ℓ-matchings of a regular graph and show that, at the level of the leading term, this upper bound is achieved by the disjoint union of the appropriate number of copies of $K_{d, d}$. We will use the parameterization $\alpha=\frac{2 \ell}{N}$, and refer interchangeably to a matching of size ℓ or a matching whose size is an α-fraction of the maximum possible matching size. In what follows, $H(x)=-x \log x-(1-x) \log (1-x)$ is the usual binary entropy function. (All logarithms in this note are base 2.)

Theorem 1.3 Let G be a d-regular graph on N vertices and ℓ an integer satisfying $0 \leq \ell \leq \frac{N}{2}$. Set $\alpha=\frac{2 \ell}{N}$. The number of matchings in G of size ℓ satisfies

$$
\log \left(m_{\ell}(G)\right) \leq \frac{N}{2}[\alpha \log d+H(\alpha)]
$$

This bound is tight up to the first order term: for fixed $\alpha \in(0,1)$,

$$
\log \left(m_{\ell}\left(D K_{N, d}\right)\right) \geq \frac{N}{2}\left[\alpha \log d+2 H(\alpha)+\alpha \log \left(\frac{\alpha}{e}\right)+\Omega\left(\frac{\log d}{d}\right)\right]
$$

with the constant in the Ω term depending on α.
In [7] an asymptotic variant of Conjecture 1.2 is presented. Let $\left\{G_{k}\right\}$ be a sequence of d-regular bipartite graphs with $\left|V_{k}\right|$, the number of vertices of G_{k}, growing to infinity, and fix $\alpha \in[0,1]$. Set

$$
h_{\left\{G_{k}\right\}}(\alpha)=\limsup \left(\log m_{\ell_{k}}\left(G_{k}\right)\right) /\left|V_{k}\right|
$$

where the limit is over all sequences $\left\{\ell_{k}\right\}$ with $2 \ell_{k} /\left|V_{k}\right| \rightarrow \alpha$. The Asymptotic Upper Matching Conjecture asserts that

$$
h_{\left\{G_{k}\right\}}(\alpha) \leq h_{\left\{k K_{d, d}\right\}}(\alpha)
$$

where $k K_{d, d}$ is the graph consisting of k disjoint copies of $K_{d, d}$. Theorem 1.3 shows that for each fixed α, there is a constant c_{α} (independent of d) with $h_{\left\{G_{k}\right\}}(\alpha) \leq h_{\left\{k K_{d, d}\right\}}(\alpha)+c_{\alpha}$.

We show similar results for the number of independent sets in d-regular graphs. A point of departure for our consideration of independent sets is the following result of Kahn [10]. For any graph G write $\mathcal{I}(G)$ for the set of independent sets in G and write $i_{t}(G)$ for the set of independent sets of size t (i.e., with t vertices).

Theorem 1.4 (Kahn) For any N-vertex, d-regular bipartite graph G,

$$
|\mathcal{I}(G)| \leq\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}
$$

Note that when $2 d \mid N$, we have $\left|\mathcal{I}\left(K_{d, d}\right)\right|^{N / 2 d}=\left|\mathcal{I}\left(D K_{N, d}\right)\right|$. Kahn [10] proposes the following natural conjecture.

Conjecture 1.5 For any N-vertex, d-regular graph G with $2 d \mid N$ and any $0 \leq t \leq N / 2$,

$$
i_{t}(G) \leq i_{t}\left(D K_{N, d}\right)
$$

We provide asymptotic evidence for this conjecture.
Theorem 1.6 For N-vertex, d-regular G, and $0 \leq t \leq N / 2$,

$$
i_{t}(G) \leq \begin{cases}2^{\frac{N}{2}\left(H\left(\frac{2 t}{N}\right)+\frac{2}{d}\right)} & \text { in general } \tag{1}\\ 2^{\frac{N}{2}\left(H\left(\frac{2 t}{N}\right)+\frac{1}{d}-\frac{\log e}{2 d}\left(1-\frac{2 t}{N}\right)^{d}\right)} & \text { if } G \text { is bipartite } \\ 2^{t}\left(\frac{N}{2}\right) & \text { if } G \text { has a perfect matching }\end{cases}
$$

On the other hand,

$$
i_{t}\left(D K_{N, d}\right) \geq \begin{cases}\left(1-\frac{1}{c}\right)\binom{\frac{N}{2}}{t} 2^{\frac{N}{2}\left(\frac{1}{d}-\frac{c}{d}\left(1-\frac{2 t}{N}\right)^{d}\right)} & \text { for any } c>1 \tag{2}\\ 2^{t}\binom{\frac{N}{2}}{t} \prod_{k=1}^{t-1}\left(1-\frac{2 k d}{N}\right) & \text { for } t \leq \frac{N}{2 d}\end{cases}
$$

If N, d and t are sequences satisfying $t=\alpha \frac{N}{2}$ for some fixed $\alpha \in(0,1)$ and G is a sequence of N-vertex, d-regular graphs, then from (1)

$$
\log i_{t}(G) \leq \begin{cases}\frac{N}{2}\left[H(\alpha)+\frac{2}{d}\right] & \text { in general } \\ \frac{N}{2}\left[H(\alpha)+\frac{1}{d}\right] & \text { if } G \text { is bipartite }\end{cases}
$$

whereas if $N=\omega(d \log d)$ and $d=\omega(1)$ then taking $c=2$ in the first bound of (2) and using Stirling's formula to analyze the behavior of $\binom{N / 2}{\alpha N / 2}$, we obtain the near matching lower bound

$$
\log i_{t}\left(D K_{N, d}\right) \geq \frac{N}{2}\left[H(\alpha)+\frac{1}{d}(1+o(1))\right] .
$$

If $N=o\left(d /(1-\alpha)^{d}\right)$ and G is bipartite, then the gap between our bounds on $i_{t}(G)$ and $i_{t}\left(D K_{N, d}\right)$ is just a multiplicative factor of $O(\sqrt{N})$; indeed, in this case (taking any $c=\omega(1)$) we obtain from the first bound of (2) that

$$
i_{t}\left(D K_{N, d}\right) \geq(1-o(1))\binom{\frac{N}{2}}{t} 2^{\frac{N}{2}\left(H(\alpha)+\frac{1}{d}\right)}
$$

For smaller sets, whose sizes scale with N / d rather than N, the final bounds in (1) and (2) come into play. Specifically, for any N, t and d

$$
i_{t}\left(D K_{N, d}\right) \geq \begin{cases}\binom{\frac{N}{2}}{t} 2^{t(1+o(1))} & \text { if } t=o\left(\frac{N}{d}\right) \tag{3}\\ (1+o(1))\binom{\frac{N}{2}}{t} 2^{t} & \text { if } t=o\left(\sqrt{\frac{N}{d}}\right)\end{cases}
$$

Note that in the latter case, for G with a perfect matching we have $i_{t}(G) \leq$ $(1+o(1)) i_{t}\left(D K_{N, d}\right)$. To obtain (3) from (2) we use

$$
\prod_{k=1}^{t-1}\left(1-\frac{2 k d}{N}\right) \geq \exp \left\{-\frac{4 d}{N} \sum_{k=1}^{t-1} k\right\} \geq \exp \left\{-\frac{2 d t(t-1)}{N}\right\}
$$

2 Counting Matchings

Given a graph G and a nonnegative real number λ, we can form weighted matchings of G by assigning each matching containing ℓ edges weight λ^{ℓ}. The weighted partition function, $Z_{\lambda}^{\text {match }}(G)$, gives the total weight of matchings. Formally,

$$
Z_{\lambda}^{\text {match }}(G):=\sum_{m \in \mathcal{M}(G)} \lambda^{|m|}=\sum_{k=0}^{\frac{N}{2}} m_{k}(G) \lambda^{k}
$$

(This is often referred to as the generating function for matchings or the matching polynomial). We will prove Theorem 1.3 by showing a bound on the partition function, and then using that bound to limit the number of matchings of a particular weight (size).

Lemma 2.1 For all d-regular graphs $G, Z_{\lambda}^{\text {match }}(G) \leq(1+d \lambda)^{\frac{N}{2}}$
This lemma is easily proven in the bipartite case; the difficulty arises when we want to prove the same bound for general graphs. Indeed, if G is a bipartite graph with bipartition classes A and B, we can easily see that the right hand side above counts a superset of weighted matchings. Elements in this superset are sets of edges no two of which are adjacent to the same element of A (but with no restriction on incidences with B).
Proof of Lemma 2.1 To prove this lemma, we will use the following result of Friedgut [5], which describes a weighted version of the information theoretic Shearer's Lemma.

Theorem 2.2 (Friedgut) Let $H=(V, E)$ be a hypergraph, and $F_{1}, F_{2}, \ldots F_{r}$ subsets of V such that every $v \in V$ belongs to at least t of the sets F_{i}. Let H_{i} be the projection hypergraphs: $H_{i}=\left(V, E_{i}\right)$, where $E_{i}=\left\{e \cap F_{i}: e \in E\right\}$. For each edge $e \in E$, define $e_{i}=e \cap F_{i}$, and assign each e_{i} a nonnegative real weight $w_{i}\left(e_{i}\right)$. Then

$$
\left(\sum_{e \in E} \prod_{i=1}^{r} w_{i}\left(e_{i}\right)\right)^{t} \leq \prod_{i} \sum_{e_{i} \in E_{i}} w_{i}\left(e_{i}\right)^{t}
$$

The first step in applying this theorem is to define appropriate variables. Let $G=(V, E)$ be a d-regular graph, with its vertex set $\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$. We will use G to form an associated matching hypergraph, $H=(E, \mathcal{M})$, where the vertex set of the hypergraph is the edge set of G, and \mathcal{M} is the sets of matchings in G. Let F_{i} be the set of edges incident to a vertex $v_{i} \in V$. Note that each edge in E is covered twice by $\bigcup_{i=1}^{N} F_{i}$, so we may take $t=2$. We define the trace sets, $E_{i}=\left\{F_{i} \cap m: m \in \mathcal{M}\right\}$, as the set of possible intersections of a matching with the set of edges incident with v_{i}. Let $m_{i}=m \cap F_{i}$. Then for all i, assign

$$
w_{i}\left(m_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } m_{i}=\emptyset \\
\sqrt{\lambda} & \text { else }
\end{array}\right.
$$

With these definitions we have $\sum_{m_{i} \in E_{i}} w_{i}\left(m_{i}\right)^{2}=1+d \lambda$, and for a fixed m, $\prod_{i} w_{i}\left(m_{i}\right)=\sqrt{\lambda}^{(2|m|)}$. Putting these expressions into Theorem 2.2, we have that

$$
\left(Z_{\lambda}^{\operatorname{match}}(G)\right)^{2}=\left(\sum_{m \in \mathcal{M}} \lambda^{|m|}\right)^{2} \leq \prod_{i=1}^{N}(1+d \lambda)
$$

Therefore,

$$
Z_{\lambda}^{\operatorname{match}}(G) \leq(1+d \lambda)^{\frac{N}{2}}
$$

Remark 2.1 After the submission of this paper, L. Gurvits pointed out an alternative proof of Lemma 2.1, which applies to graphs with average degree d and actually gives a slight improvement when G does not have a perfect matching. By a result of Heilmann and Lieb [9], the roots of $Z_{\lambda}^{\text {match }}(G)=0$
are all real and negative, and so we can write $Z_{\lambda}^{\text {match }}(G)=\prod_{i=1}^{\nu(G)}\left(1+\alpha_{i} \lambda\right)$ for some positive α_{i}^{\prime} 's with $\sum \alpha_{i}=\left.\left(Z_{\lambda}^{\operatorname{match}}(G)\right)^{\prime}\right|_{\lambda=0}=|E(G)|=\frac{N d}{2}$, where $\nu(G)$ is the size of the largest matching of G. Applying the arithmetic mean - geometric mean inequality to this expression we obtain

$$
Z_{\lambda}^{\text {match }}(G) \leq\left(1+\lambda \frac{\sum \alpha_{i}}{\nu(G)}\right)^{\nu(G)}=\left(1+\lambda \frac{N d}{2 \nu(G)}\right)^{\nu(G)} \leq(1+d \lambda)^{\frac{N}{2}}
$$

Proof of Theorem 1.3 We begin with the upper bound. We may assume $0<\ell<N / 2$, since the extreme cases $\ell=0, N / 2$ are obvious. For fixed ℓ, a single term of the partition function $Z_{\lambda}^{\text {match }}(G)$ is bounded by the whole sum, and so by Lemma 2.1 we have $m_{\ell}(G) \lambda^{\ell} \leq Z_{\lambda}^{\text {match }}(G) \leq(1+d \lambda)^{\frac{N}{2}}$ and

$$
\begin{equation*}
m_{\ell}(G) \leq(1+d \lambda)^{\frac{N}{2}}\left(\frac{1}{\lambda}\right)^{\ell} \tag{4}
\end{equation*}
$$

We take

$$
\lambda=\frac{\ell}{d\left(\frac{N}{2}-\ell\right)}
$$

to minimize the right hand side of (4) and obtain the upper bound in Theorem 1.3 (in the case $\ell=\frac{\alpha N}{2}$):

$$
\begin{aligned}
\log \left(m_{\ell}(G)\right) & \leq \log \left(\frac{\frac{N}{2}}{\frac{N}{2}-\ell}\right)^{\frac{N}{2}}\left(\frac{d\left(\frac{N}{2}-\ell\right)}{\ell}\right)^{\ell} \\
& =\frac{N}{2}\left(\frac{2 \ell}{N} \log d+H(2 \ell / N)\right) \\
& =\frac{N}{2}(\alpha \log d+H(\alpha))
\end{aligned}
$$

We now turn to the lower bound. We begin by observing

$$
\begin{equation*}
m_{\ell}\left(D K_{N, d}\right)=\sum_{\substack{a_{1}, \ldots, a_{N / 2} d \\ 0 \leq a_{i} \leq d, \sum \sum_{i} a_{i}=\ell}} \prod_{i=1}^{N / 2 d}\binom{d}{a_{i}}^{2} a_{i}! \tag{5}
\end{equation*}
$$

Here the a_{i} 's are the sizes of the intersections of the matching with each of the components of $D K_{N, d}$, and the term $\binom{d}{a_{i}}^{2} a_{i}$! counts the number of matchings of size a_{i} in a single copy of $K_{d, d}$. (The binomial term represents
the choice of a_{i} endvertices for the matching from each partition class, and the factorial term tells us how many ways there are to pair the endvertices from the top and bottom to form a matching.)

From Stirling's formula we have that there is an absolute constant $c \geq 1$ such that for any $d \geq 1$ and $0<a<d$,

$$
\begin{equation*}
\log \left(\binom{d}{a}^{2} a!\right) \geq a \log d+a \log \frac{a}{d}-a \log e+2 H(a / d) d-\log c d \tag{6}
\end{equation*}
$$

and we may verify by hand that (6) holds also for $a=0, d$. Combining (5) and (6) we see that $\log \left(m_{\ell}\left(D K_{N, d}\right)\right)$ is bounded below by

$$
\begin{equation*}
\frac{N}{2}\left(\frac{2 \ell}{N} \log d-\frac{2 \ell}{N} \log e-\frac{\log c d}{d}+\frac{2}{N} \sum_{i=1}^{N / 2 d}\left(a_{i} \log \frac{a_{i}}{d}+2 H\left(a_{i} / d\right) d\right)\right) \tag{7}
\end{equation*}
$$

for any valid sequence of a_{i} 's. To get our lower bound in the case $\ell=\alpha \frac{N}{2}$, we consider (7) for that sequence of a_{i} 's in which each a_{i} is either $\lfloor\alpha d\rfloor$ or $\lceil\alpha d\rceil$. Note that by the mean value theorem, there is a constant $c_{\alpha}>0$ such that both

$$
\log \frac{\lceil\alpha d\rceil}{d}, \log \frac{\lfloor\alpha d\rfloor}{d} \geq \log \alpha-\frac{c_{\alpha}}{d}
$$

and

$$
H\left(\frac{\lceil\alpha d\rceil}{d}\right), H\left(\frac{\lfloor\alpha d\rfloor}{d}\right) \geq H(\alpha)-\frac{c_{\alpha}}{d} .
$$

(Here we use

$$
\left|\frac{\lceil\alpha d\rceil}{d}-\alpha\right|,\left|\frac{\lfloor\alpha d\rfloor}{d}-\alpha\right| \leq \frac{1}{d}
$$

and $\alpha \neq 0,1$.) Putting these bounds into (7) we obtain

$$
\log \left(m_{\ell}\left(D K_{N, d}\right)\right) \geq \frac{N}{2}\left(\alpha \log d+2 H(\alpha)+\alpha \log \left(\frac{\alpha}{e}\right)+\Omega\left(\frac{\log d}{d}\right)\right)
$$

with the constant in the Ω term depending on α.

3 Counting Independent Sets

In this section we prove the various assertions of Theorem 1.6. We begin with the second bound in (1). We use a result from [8], which states that for any $\lambda>0$ and any d-regular N-vertex bipartite graph G, the weighted independent set partition function satisfies

$$
\begin{equation*}
Z_{\lambda}^{\mathrm{ind}}(G):=\sum_{I \in \mathcal{I}(G)} \lambda^{|I|} \leq\left(2(1+\lambda)^{d}-1\right)^{\frac{N}{2 d}} \tag{8}
\end{equation*}
$$

Choose λ so that $\frac{\lambda N}{2(1+\lambda)}=t$. Noting that $i_{t}(G) \lambda^{\frac{\lambda N}{2(1+\lambda)}}$ is the contribution to $Z_{\lambda}^{\text {ind }}(G)$ from independent sets of size t we have

$$
\begin{align*}
i_{t}(G) & \leq \frac{Z_{\lambda}^{\text {ind }}(G)}{\lambda^{\frac{\lambda N}{2(1+\lambda)}}} \\
& \leq \frac{\left(2(1+\lambda)^{d}-1\right)^{\frac{N}{2 d}}}{\lambda^{\frac{\lambda N}{2(1+\lambda)}}} \tag{9}\\
& =2^{\frac{N}{2 d}}\left(\frac{1+\lambda}{\lambda^{\frac{\lambda}{1+\lambda}}}\right)^{N / 2}\left(1-\frac{1}{2(1+\lambda)^{d}-1}\right)^{\frac{N}{2 d}} \\
& =2^{H\left(\frac{\lambda}{1+\lambda}\right) \frac{N}{2}+\frac{N}{2 d}} e^{-\frac{N}{4 d(1+\lambda)^{d}}} \\
& =2^{H\left(\frac{2 t}{N}\right) \frac{N}{2}+\frac{N}{2 d}-\frac{N \log e}{4 d}\left(1-\frac{2 t}{N}\right)^{d}}
\end{align*}
$$

We use (8) to make the critical substitution in (9).
To obtain the first bound in (1) we need the following analog of (8) for G not necessarily bipartite:

$$
\begin{equation*}
Z_{\lambda}^{\text {ind }}(G) \leq 2^{\frac{N}{d}}(1+\lambda)^{\frac{N}{2}} \tag{10}
\end{equation*}
$$

From (10) we easily obtain the claimed bound, following the steps of the derivation of the second bound in (1) from (8). We prove (10) by using a more general result on graph homomorphisms. For graphs $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$ set

$$
\operatorname{Hom}(G, H)=\left\{f: V_{1} \rightarrow V_{2}:\{u, v\} \in E_{1} \Rightarrow\{f(u), f(v)\} \in E_{2}\right\}
$$

That is, $\operatorname{Hom}(G, H)$ is the set of graph homomorphisms from G to H. Fix a total order \prec on $V(G)$. For each $v \in V(G)$, write $P_{\prec}(v)$ for $\{w \in V(G)$: $\{w, v\} \in E(G), w \prec v\}$ and $p_{\prec}(v)$ for $\left|P_{\prec}(v)\right|$. The following natural generalization of a theorem of J. Kahn is due to D. Galvin (see [11] for a proof).

Theorem 3.1 For any d-regular and N-vertex graph G (not necessarily bipartite) and any total order \prec on $V(G)$,

$$
|H o m(G, H)| \leq \prod_{v \in V(G)}\left|\operatorname{Hom}\left(K_{p_{\prec}(v), p_{\prec}(v)}, H\right)\right|^{\frac{1}{d}} .
$$

If G is bipartite with bipartition classes \mathcal{E} and \mathcal{O} and \prec satisfies $u \prec v$ for all $u \in \mathcal{E}, v \in \mathcal{O}$ then Theorem 3.1 reduces to the main result of [8].

To prove (10), we first note that (by continuity) it is enough to prove the result for λ rational. Let C be an integer such that $C \lambda$ is also an integer, and let H_{C} be the graph which consists of an independent set of size $C \lambda$ and a complete looped graph on C vertices, with a complete bipartite graph joining the two. As described in [8] we have, for any graph G on N vertices,

$$
\left|\operatorname{Hom}\left(G, H_{C}\right)\right|=C^{N} Z_{\lambda}^{\mathrm{ind}}(G) .
$$

For $G d$-regular and N-vertex, we apply Theorem 3.1 twice to obtain

$$
\begin{aligned}
Z_{\lambda}^{\text {ind }}(G) & =\frac{\left|\operatorname{Hom}\left(G, H_{C}\right)\right|}{C^{N}} \\
& \leq \frac{\prod_{v \in V(G)}\left|\operatorname{Hom}\left(K_{p \prec(v), p \prec(v)}, H_{C}\right)\right|^{\frac{1}{d}}}{C^{N}} \\
& =\frac{\prod_{v \in V(G)}\left(C^{2 p_{\prec}(v)} Z_{\lambda}^{\text {ind }}\left(K_{p_{\prec}(v), p_{\prec}(v)}\right)\right)^{\frac{1}{d}}}{C^{N}} \\
& \leq \frac{C^{\frac{2 \sum_{v \in V(G)} p_{\prec}(v)}{d}} \prod_{v \in V(G)}\left(2(1+\lambda)^{p_{\prec}(v)}\right)^{\frac{1}{d}}}{C^{N}} \\
& =2^{\frac{N}{d}} \frac{C^{\frac{2 \sum_{v \in V(G)}}{d}}(1+\lambda)^{\frac{\Sigma_{v \in V(G)}}{p_{\prec}(v)}}}{C^{N}}
\end{aligned} .
$$

Now noting that

$$
\sum_{v \in V(G)} p_{\prec}(v)=|E(G)|=\frac{N d}{2}
$$

we obtain

$$
Z_{\lambda}(G) \leq 2^{\frac{N}{d}}(1+\lambda)^{\frac{N}{2}},
$$

as claimed.
We now turn to the third bound in (1). Fix a perfect matching of G joining a set of vertices $A \subseteq V(G)$ of size $N / 2$ to the set $B:=V(G) \backslash A$.

Let f be the bijection from subsets of A to subsets of B that moves the set along the chosen matching. Every independent set in G of size t is of the form $I_{A} \cup I_{B}$ where $I_{A} \subseteq A, I_{B} \subseteq B, f(A) \cap B=\emptyset$ and $|A|+|B|=t$. We therefore count all the independent sets of size t (and more) by choosing a subset of A of size $t\left(\binom{N / 2}{t}\right.$ choices) and a subset of this set to send to B via $f\left(2^{t}\right.$ choices).

To obtain the first bound in (2), we introduce a probabilistic framework and use Markov's inequality. If we divide a set of size $N / 2$ into $N / 2 d$ blocks of size d and choose a uniform subset of size t, then the probability that this set misses a particular block is $\binom{N / 2-d}{t} /\binom{N / 2}{t}$. Let X be a random variable representing the number of blocks that the t-set misses. Let b_{k} equal the number of t-sets which miss exactly k blocks. Then $\mathbb{P}(X=k)=b_{k} /\binom{N / 2}{t}$. Let χ_{A} be the indicator variable for the event A. Then

$$
X=\sum_{i=0}^{\frac{N}{2 d}} \chi_{\{\text {block i empty }\}}
$$

and by linearity of expectation the expected number of blocks missed satisfies

$$
\begin{equation*}
\mu:=\mathbb{E}(X)=\frac{N}{2 d} \frac{\binom{\frac{N}{2}-d}{t}}{\binom{\frac{N}{2}}{t}} \leq \frac{N}{2 d}\left(1-\frac{2 t}{N}\right)^{d} . \tag{11}
\end{equation*}
$$

From Markov's inequality we have

$$
\sum_{k=0}^{c \mu} \mathbb{P}(X=k)=\mathbb{P}(X \leq c \mu) \geq\left(1-\frac{1}{c}\right)
$$

We substitute the previously discussed value for $\mathbb{P}(X=k)$, yielding the inequality

$$
\begin{equation*}
\sum_{k=0}^{c \mu} b_{k} \geq\left(1-\frac{1}{c}\right)\binom{\frac{N}{2}}{t} \tag{12}
\end{equation*}
$$

How many independent sets of size t does $D K_{N, d}$ have? To choose an independent set from $D K_{N, d}$ of size t, we first create a bipartition $\mathcal{E} \cup \mathcal{O}$ of $D K_{N, d}$ by choosing (arbitrarily) one of the bipartition classes of each of the $N / 2 d K_{d, d}$'s of $D K_{N, d}$ to be in \mathcal{E}. We then choose a subset of \mathcal{E} of size t. The number of subsets of \mathcal{E} which have empty intersection with exactly k of the $K_{d, d}$'s that make up $D K_{N, d}$ is precisely b_{k}. Each of these subsets corresponds
to $2^{\frac{N}{2 d}-k}$ independent sets in $D K_{N, d}$. Combining this observation with (11) and (12) we obtain the first bound in (2):

$$
\begin{aligned}
i_{t}\left(D K_{N, d}\right) & =2^{\frac{N}{2 d}} \sum_{k \geq 0} 2^{-k} b_{k} \\
& \geq 2^{\frac{N}{2 d}-c \mu} \sum_{k=0}^{c \mu} b_{k} \\
& \geq\left(1-\frac{1}{c}\right)\binom{\frac{N}{2}}{t} 2^{\frac{N}{2}\left(\frac{1}{d}-\frac{c}{d}\left(1-\frac{t}{M}\right)^{d}\right)} .
\end{aligned}
$$

Finally we turn to the second bound in (2). We obtain the claimed bound by considering all of the independent sets whose intersection with each component of $D K_{N, d}$ has size either 0 or 1:

$$
i_{t}\left(D K_{N, d}\right) \geq(2 d)^{t}\binom{\frac{N}{2 d}}{t}
$$

After a little algebra, the right hand side above is seen to be exactly the right hand side of the second bound in (2).

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience [John Wiley \& Sons], New York, 2 edition, 2000. Wiley-Interscience Series in Discrete Mathematics and Optimization.
[2] B. Bollobás. Modern Graph Theory, volume 184. Springer-Verlag, New York, 1998. Graduate Texts in Mathematics.
[3] L. M. Brégman. Certain properties of nonnegative matrices and their permanents. Dokl. Akad. Nauk SSSR, 211:27-30, 1973.
[4] R. Diestel. Graph Theory, volume 173. Springer-Verlag, Berlin, 3 edition, 2005. Graduate Texts in Mathematics.
[5] E. Friedgut. Hypergraphs, entropy, and inequalities. Amer. Math. Monthly, 111(9):749-760, 2004.
[6] S. Friedland, E. Krop, P. Lundow, and K. Markström. On the number of matchings in regular graphs. The Electronic Journal of Combinatorics, 15: \#R110, 2008.
[7] S. Friedland, E. Krop, P. Lundow and K. Markström. On the Validations of the Asymptotic Matching Conjectures. J. Stat. Phys., 133:513-533, 2008.
[8] D. Galvin and P. Tetali. On weighted graph homomorphisms. Graphs, morphisms and statistical physics, 63:97-104, 2004. DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
[9] O. Heilmann and E. Lieb. Theory of monomer-dimer systems. Comm. Math. Phys., 25:190232, 1972.
[10] J. Kahn. An entropy approach to the hard-core model on bipartite graphs. Combin. Probab. Comput., 10(3):219-237, 2001.
[11] M. Madiman and P. Tetali. Information inequalities for joint distributions, with interpretations and applications. IEEE Trans. on Information Theory, to appear.
[12] I. Wanless. A lower bound on the maximum permanent in Λ_{n}^{k}. Linear Algebra Appl. 373:153-167, 2003.

[^0]: *Mathematics Department, St. Norbert College, De Pere WI.
 ${ }^{\dagger}$ Department of Mathematics, University of Notre Dame, South Bend IN
 ${ }^{\ddagger}$ School of Mathematics \& School of Computer Science, Georgia Institute of Technology, Atlanta GA. Research supported in part by NSF grant DMS-0701043.

