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ABSTRACT OF THE DISSERTATION

Two problems involving the notion of phase transition

by David James Galvin

Dissertation Director: Jeffry Kahn

The first problem we consider is from statistical physics. Write I = I(Σ) for the set of

independent sets of the graph Σ. For Σ finite and λ > 0, the hard-core measure with

activity λ on I is given by

µ(I) = λ|I|/Z ∀I ∈ I,

where Z =
∑{λ|I| : I ∈ I} is the appropriate normalizing constant. We say that this

measure is hc(λ).

For infinite Σ a measure µ on I is hc(λ) if for I chosen from I according to µ and

for all finite W ⊆ V = V (G), the conditional distribution of I∩W given I∩ (V \W ) is

(µ-a.s.) hc(λ) on the independent sets of {w ∈ W : w 6∼ I ∩ (V \W )}. There is always

at least one such measure. If there is more than one, the model is said to have a phase

transition.

Dobrushin [9] (and later, independently, Louth [21]) showed that there is a phase

transition in the hard-core model on (the usual nearest neighbor graph on) Zd for

sufficiently large values of λ (depending on d). In other words, they showed that

λ(d) := sup



λ :

the hard-core model with activity λ on

Zd does not have a phase transition



 < ∞.

Up to now, all known bounds for λ(d) increased rapidly with d. However, it has

been widely conjectured that λ(d) → 0 as d →∞. This is what we prove.
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The second problem we consider comes from discrete probability. It was introduced

by Benjamini, Häggström and Mossel [2] (and, in a different context, by Athanasiadis

[1]).

Write F for the set of homomorphisms from the d-dimensional Hamming cube

{0, 1}d to (the Hamming graph on) Z which send 0 (the all-zero string) to 0 and F≤5

for those which take on five or fewer values. (A homomorphism between graphs is an

adjacency preserving map between vertex sets.) We show that |F| ∼ |F≤5| ∼ 2e22d−1
,

proving a conjecture of Kahn [15].

This result can be viewed as a “phase transition” statement: with high probability,

a randomly chosen f ∈ F will be either predominantly 0 on the even vertices of the cube

(those vertices whose l1 distance from 0 is even), with occasional ±2’s, or predominantly

1 (resp. −1) on the odd vertices, with occasional −1’s and 3’s (resp. −3’s and 1’s).
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Chapter 1

Introduction and background

In this chapter, we introduce the two problems with which the thesis is concerned

and state the results that we prove. In Chapter 2, we establish the notation and

conventions that will be used throughout, list the results from the literature that we

will be drawing on, and derive some isoperimetric inequalities and a combinatorial

fact with a topological flavor that will be used in subsequent chapters. In Chapter

3 we introduce some notions of “approximation” that will play a role in both of the

problems under consideration in the thesis. In Chapter 4, we deal with the problem

of phase transition in the hard-core model on Zd, and in Chapter 5 we consider the

problem of homomorphisms from the Hamming cube to Z.

For graph theory basics, see e.g. [5], [8]. For basics of the combinatorics of the

Hamming cube, see e.g. [4].

1.1 Phase transition in the hard-core model on Zd

Write I(Σ) for the collection of independent sets of a graph Σ. (An independent set is

a set of vertices, no two of which are joined by an edge.)

For Σ finite and λ > 0, the hard-core measure with activity (or fugacity) λ on

I = I(Σ) (or “on Σ”) is given by

µ(I) = λ|I|/Z for I ∈ I,

where Z is the appropriate normalizing constant (partition function),

Z =
∑

{λ|I′| : I ′ ∈ I}.

(For good introductions to the hard-core model see [3], [13]; see also [11] for more general

background. The more usual etiquette here considers probability measures on {0, 1}V (Σ)
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supported on indicators of independent sets; but the present usage is convenient for us,

and we adhere to it throughout.)

In particular λ = 1 gives uniform distribution. One may also assign different activ-

ities λv to the different vertices v and take µ(I) proportional to
∏

v∈I λv, but we will

not do so here; again see [3], [13].

We will also say the above measure is hc(λ). For infinite Σ a measure µ on I(Σ) is

hc(λ) if, for I chosen according to µ and for each finite W ⊆ V = V (Σ), the conditional

distribution of I ∩ W given I ∩ (V \ W ) is µ-a.s. hc(λ) on the independent sets of

{w ∈ W : w 6∼ I∩ (V \W )} (the vertices of W that can still be in I given I∩ (V \W )).

General considerations (see [11]) imply that there is always at least one such µ; if there

is more than one, the model is said to have a phase transition.

The canonical (and by far most studied) case of the hard-core model is that of (the

Hamming, or nearest neighbor graph on) Zd, with all activities equal (to λ). Here the

seminal result is due to Dobrushin [9], who proved that there is a phase transition for

sufficiently large λ, depending on d. (Dobrushin’s result was rediscovered by Louth [21]

in the context of communications networks.)

The λ required in [9] grows as d grows, and attempted improvements have been the

subject of considerable effort — if not publication — in both the statistical mechanics

and discrete mathematics communities in recent years.

That the required λ increases with d is a little strange, since one expects that as

d grows, phase transition should get “easier”, in the sense that for a given λ, phase

transition in dimension d should imply phase transition in all higher dimensions; but

this remains open.

Also open is the existence of a “critical” activity, λc = λc(d), such that one has

phase transition for λ > λc(d) but not for λ < λc(d). While this seems certain to be

true for Zd, a cautionary note is sounded in [7], where it is shown that there are graphs

(even trees) for which there is no such critical activity.
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As a temporary substitute one might instead define

λ(d) := sup



λ :

the hard-core model with activity λ on

Zd does not have a phase transition



 < ∞.

So Dobrushin says that λ(d) is finite, while “easier as dimension grows” would imply

λ(d) = O(1). A particular question that has received much of the attention devoted to

this problem is whether λ(d) ≤ 1 for large d.

But in fact it has been generally believed (despite some early guesses to the contrary)

that λ(d) tends to zero. This is what we prove:

Theorem 1.1.1 λ(d) = O(d−1/4 log3/4 d).

This bound is undoubtedly not best possible; O(log d/d) and O(1/d) are seemingly

natural guesses at the true value of λ(d).

Much of the inspiration for our approach to this problem was provided by the

beautiful ideas of A. A. Sapozhenko [23], which he used to give, for example, relatively

simple derivations of Korshunov’s [19] description of the asymptotics for Dedekind’s

Problem (in [25]), and, in [24], of the asymptotics for the number of independent sets

(“codes of distance 2”) in the Hamming cube {0, 1}n originally established in [20].

Some of our tools also come from [23]: Lemma 3.3.3 is an improved version of one

of Sapozhenko’s arguments, and our uses of Lemmas 2.4.1-2.4.4 are similar to his.

1.2 Homomorphisms from the Hamming cube to Z

Write Qd for the d-dimensional Hamming cube (the graph whose vertex set is {0, 1}d

and in which two vertices are joined by an edge if they differ in exactly one coordinate).

Set

F = {f : V (Qd) → Z : f(0) = 0 and u ∼ v ⇒ |f(u)− f(v)| = 1}

(That is, F is the set of graph homomorphisms from Qd to Z, normalized to vanish at

0.)

In [2], this set of functions is studied from a probabilistic point of view, a motivating

idea being that a typical element of F should exhibit stronger concentration behavior
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than an arbitrary element. Put uniform probability measure on F , and define the

function R on F by R(f) = {f(v) : v ∈ V (Qd)} (R is the range of f). In [2] the

following conjecture is made about the concentration of |R|:

Conjecture 1.2.1 For each t > 0, P(|R| > td) → 0 as d →∞.

In [15], something stronger is proved, and something stronger still conjectured:

Theorem 1.2.2 There is a constant b such that P(|R| > b) = e−Ω(d).

Conjecture 1.2.3 P(|R| > 5) = e−Ω(d) and P(|R| = 5) = Ω(1).

In Chapter 5, we prove Conjecture 1.2.3 by (asymptotically) counting the number

of homomorphisms with various ranges. Specifically, if we set

Fi = {f ∈ F : |R(f)| = i},

we prove

Theorem 1.2.4

∣∣∣|F| − 2e22d−1
∣∣∣ = e−Ω(d)22d−1

∣∣∣|F3| − (2)22d−1
∣∣∣ = e−Ω(d)22d−1

∣∣∣|F4| − (4
√

e− 4)22d−1
∣∣∣ = e−Ω(d)22d−1

∣∣∣|F5| − (2e− 4
√

e + 2)22d−1
∣∣∣ = e−Ω(d)22d−1

(1.1)

Setting F≤5 = ∪i≤5Fi, we see that Theorem 1.2.4 has the following weaker but more

elegantly formulated consequence:

Corollary 1.2.5 |F| ∼ |F≤5| ∼ 2e22d−1
.

Corollary 1.2.5 makes sense: a little thought suggests that a typical member of F
should be constant on either even or odd vertices of the cube, except for a small set of

“blemishes” on which it takes values 2 away from the predominant value, and take just

two values on vertices of the other parity.
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The problem under discussion is equivalent to the question of the number of rank

functions on the Boolean lattice 2[d] (here [d] = {1, . . . , d}). A rank function is an

f : 2[d] −→ N satisfying f(∅) = 0 and f(A) ≤ f(A ∪ x) ≤ f(A) + 1 for all A ∈ 2[d] and

x ∈ [d]. An easy lower bound on the number of rank functions is 22n−1
(consider those

functions which take the value k/2 on each element of the kth level of the Boolean lattice

for each even k). Athanasiadis [1] conjectured that the total number of rank functions is

22n−1(1+o(1)). This conjecture is proved in [16], where it is further conjectured that the

number is in fact O(22d−1
). Theorem 1.2.4 answers this conjecture in the affirmative; for,

as observed in [15], there is a bijection from the set of rank functions to F : identifying a

subset A of [n] with a vertex of Qd in the natural way, the bijection is given by g −→ f

where f(A) = 2g(A)− |A|.
As with the problem of phase transition in the hard-core model, our work on this

problem is inspired by the papers of Sapozhenko. Our Lemma 3.3.4 is a modification

of a lemma in [23], and our overall approach is similar to [24]. Indeed, Theorem 1.2.4

contains the main result of [24] (and [20]), which states that the number of independent

sets in Qd is asymptotically 2
√

e22d−1
. The short derivation of this from Theorem 1.2.4

is given in Section 5.7.
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Chapter 2

Notation, conventions and preliminary material

In this chapter we establish the notation that we will use throughout the rest of the

thesis, gather together all the existing results that we will be drawing on and derive

the isoperimetric inequalities in the lattice and the cube that we will need in Chapters

4 and 5. We also present a topological proof of a combinatorial fact that will be used

in Chapter 4.

2.1 Notation and conventions

Let Σ be a graph on vertex set V = V (Σ). For u, v ∈ V and A,C ⊆ V we write u ∼ v

if there is an edge in Σ joining u and v, ∇(A) for the set of edges having exactly one

end in A and (when A∩C = ∅) ∇(A,C) for the set of edges having one end in each of

A,C.

Set N(u) = {w ∈ V : w ∼ u} (N(u) is the neighborhood of u), N(A) = ∪w∈AN(w),

NC(u) = {w ∈ C : w ∼ u}, NC(A) = ∪w∈ANC(w), d(u) = |N(u)| and dC(u) =

|NC(u)|. Write ρ(u, v) for the length of the shortest u-v path in Σ, and set ρ(u,A) =

minw∈A{ρ(u,w)} and ρ(A,C) = minw∈A,w′∈C{ρ(w, w′)}. Set B(A) = {v ∈ V : N(v) ⊆
A}.

We define the boundary of A by ∂A = N(A) \A and the internal boundary of A by

∂?A = {w ∈ A : N(w) 6⊆ A}.
We define the closure of A to be [A] = {v ∈ V : N(v) ⊆ N(A)} and say that A is

closed if [A] = A.

We say that A is k-linked if for every u, v ∈ A there is a sequence u = u0, u1, . . . , ul =

v in A with ρ(ui, ui+1) ≤ k for i = 0, . . . , l − 1. Note that for any k, A is the disjoint

union of its maximal k-linked subsets — we call these the k-components of A.
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For integers a < b we define [a, b] = {a, . . . , b}.
We often abuse notation by failing to distinguish between a graph and its set of

vertices; so for instance we might use “component” where we should really say “set of

vertices of a component.”

When the difference makes no difference, we pretend that all large numbers are

integers. We use “ln” for the natural logarithm and “log” always means the base 2

logarithm. The implied constants in the O and Ω notation are absolute (independent

of d). We always assume that d is large enough to support our assertions. No attempt

has been made to optimize constants.

2.2 Notation specific to the lattice

In Chapter 4 we will mainly be concerned with the Hamming (or nearest neighbor)

graph on Zd. This is a (2d)-regular, bipartite graph. Write X for the set of odd

vertices of Zd (those vertices whose distance from the origin 0 is odd) and Y for the set

of even vertices.

For N ∈ N, set ΛN = Zd ∩ [−N, N ]d, and write Γ = ΓN for the discrete torus

obtained from ΛN by setting N = −N and identifying vertices accordingly. Write ∆

for the image of ∂?ΛN under the natural projection ΛN 7→ Γ, and 0 for the image of 0 in

Γ. As with Zd, we use X and Y for the sets of odd and even vertices of Γ. This should

not cause confusion, as it should always be clear which graph is under consideration.

2.3 Notation specific to the cube

All our work in Chapter 5 will be with Qd, the d-dimensional Hamming cube. This is a

d-regular, bipartite graph. Write V for the vertex set of the cube, E for the set of even

vertices (those whose `1 distance from 0 is even) and O for the set of odd vertices. Set

M = 2d−1 = |E| = |O|.
For A ⊆ V , we say that A is small if |A| < αd for a certain constant α < 2 that

will be discussed in Section 5.1 (and large otherwise), sparse if all the 2-components

of A are singletons (and non-sparse otherwise), and nice if A is small, 2-linked and
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not a singleton. Write C ≺ A if C is a 2-component of A and c(A) for the number of

2-components of A. All sets A that we will consider will satisfy either A ⊆ E or A ⊆ O.

2.4 External ingredients

We list here the main results that we will be drawing on throughout the rest of the

thesis.

We begin with a lemma bounding the number of connected subgraphs of a graph.

The infinite ∆-branching rooted tree contains precisely
(
∆n
n

)
/((∆ − 1)n + 1) rooted

subtrees with n vertices (see e.g. Exercise 11 (p. 396) of [17]) and this implies that if G

is a graph with maximum degree ∆ and vertex set V (G) then the number of n-vertex

subsets of V (G) which contain a fixed vertex and induce a connected subgraph is at

most (e∆)n. (This fact is rediscovered in [23].) We will use the following easy corollary.

Lemma 2.4.1 Let Σ be a graph with vertex set V (Σ) and maximum degree ∆. For

each fixed k, the number of k-linked subsets of V (Σ) of size n which contain a fixed

vertex is at most 2O(n log ∆).

This follows from the fact that a k-linked subset of Σ is connected in a graph with all

degrees O(∆k+1).

We will need the following fundamental result due to Lovász [22] and Stein [26].

Recall that a hypergraph is a collection H of subsets of a “vertex set” V (H). The vertex

cover number τ(H) of H is the least size of a set of vertices meeting all edges of H; the

fractional vertex cover number τ∗(H) is

min

{∑
t(v) | t : V (H) → R+,

∑

v∈A

t(v) ≥ 1 ∀A ∈ H
}

;

and the degree of a vertex in V (H) is the number of edges of H containing it. (See [10]

for more hypergraph background.)

Lemma 2.4.2 For any hypergraph H with all degrees at most ∆,

τ(H) ≤ τ∗(H)(1 + ln ∆).
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In this thesis all uses of Lemma 2.4.2 take the following form. For a bipartite graph

Σ with bipartition X ∪ Y , we say that Y ′ ⊆ Y covers X if each x ∈ X has a neighbor

in Y ′.

Lemma 2.4.3 If Σ as above satisfies |N(x)| ≥ a for each x ∈ X and |N(y)| ≤ b for

each y ∈ Y , then X is covered by some Y ′ ⊆ Y with |Y ′| ≤ (|Y |/a)(1 + ln b).

(To apply Lemma 2.4.2, take H = {N(x) : x ∈ X}, noting that the constant function

t(y) = 1/a ∀y ∈ Y gives τ∗(H) ≤ |Y |/a.)

The next lemma is from [23] (see Lemma 2.1); the reader should have no difficulty

supplying a proof.

Lemma 2.4.4 If Σ is a graph on vertex set V (Σ) and A,C ⊆ V (Σ) satisfy

(i) A is k-linked

and

(ii) ρ(u,C) ≤ l for each u ∈ A and ρ(v,A) ≤ l for each v ∈ C

then B is (k + 2l)-linked.

The main step from the proof of Theorem 1.2.2 in [15] (obtained via entropy argu-

ments) will also be used here. For f ∈ F , set C(f) = {v ∈ V (Qd) : f |N(v) is constant}.
From [15], we get

Lemma 2.4.5 For u ∼ v and f drawn uniformly from F , P(|{u, v} ∩ C(f)| = 1) =

1− e−Ω(d).

We also make use of some known results concerning isoperimetry in the lattice and

the cube.

For x ∈ Zd write |x| for the `1-norm of x, and set B(r) = {x ∈ Zd : |x| ≤ r},
S(r) = {x ∈ Zd : |x| = r}, b(r) = |B(r)| and s(r) = |S(r)|.

Lemma 2.4.6 Let C be a subset of Zd with

|C| = b(r) + αs(r + 1),
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where 0 ≤ α < 1. Then

|∂C| ≥ (1− α)s(r + 1) + αs(r + 2).

This is an immediate consequence of a corresponding inequality for the torus ΓN (for

even N), given by Bollobás and Leader in [6, Cor. 5]. The case α = 0 of Lemma 2.4.6

was proved by Wang and Wang [27].

A Hamming ball centered at x0 in Qd is any set of vertices B satisfying

{u ∈ V : ρ(u, x0) ≤ k} ⊆ B ⊂ {u ∈ V : ρ(u, x0) ≤ k + 1}

for some k < d. An even (resp. odd) Hamming ball is a set of vertices of the form B∩E
(resp. B ∩ O) for some Hamming ball B. We use the following result of Körner and

Wei [18].

Lemma 2.4.7 For every C ⊆ E (resp. O) and D ⊆ V , there exists an even (resp. odd)

Hamming ball C ′ and a set D′ such that |C ′| = |C|, |D′| = |D| and ρ(C ′, D′) ≥ ρ(C,D).

2.5 Isoperimetry in the lattice

In this section, we use Lemma 2.4.6 to establish lower bounds for the neighborhood size

of a single-parity set in the d-dimensional lattice Zd. As before, we write X for the set

of odd vertices of the lattice.

Lemma 2.5.1 Suppose A ⊆ X is finite. Then (writing N for N(A))

|A| ≤




O(1/d)|N | if |A| < dO(1)

(
1− Ω

(|N |−1/d/d
)) |N | for all A.

Proof: For the first bound, notice that for r < O(1),

s(r) = 2rdr/r! + O(dr−1),

which in view of Lemma 2.4.6 implies that for C ⊆ Zd with |C| < dO(1),

|∂C| = Ω(|C|d).

Applying this with C = A immediately gives |A| ≤ O(1/d)|N |.
For the second bound, the main thing we have to show is
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Proposition 2.5.2 With b(r) and s(r) as defined before Lemma 2.4.6,

s(r) = Ω
(
b(r)1−1/d

)
.

Notice that this, combined with Lemma 2.4.6, implies that for any C ⊆ Zd,

|∂C| = Ω
(
|C|(d−1)/d

)
. (2.1)

Before proving Proposition 2.5.2, we complete the proof of Lemma 2.5.1. Write N0

for ∂?(A ∪ N) (= {y ∈ N : N(y) 6⊆ A}). We consider the possibilities |N0| > |A|
and |N0| ≤ |A| separately, in both cases using the fact that |N0| ≤ |∇(N, X \ A)| =

d(|N | − |A|).
If |N0| > |A|, then |A| < d(|N | − |A|), so that

|A| ≤ d|N |/(d + 1)

≤
(
1− Ω

(
|N |−1/d/d

))
|N |.

If, on the other hand, |N0| ≤ |A|, then we have (using (2.1) and the fact that N0 =

∂((N \N0) ∪A))

|A| ≤ |N | − |N0|/d

≤ |N | − Ω
(
|(N \N0) ∪A|(d−1)/d

)
/d

≤ |N | − Ω
(
|N |(d−1)/d/d

)

=
(
1− Ω

(
|N |−1/d/d

))
|N |.

Proposition 2.5.2 is something for which one would hope to just give a reference;

but we could not find one, or even give the short proof that seems called for.

Proof of Proposition 2.5.2: Consider the average number of nonzero entries in an ele-

ment of S(q),

t(q) := s(q)−1
∑

x∈S(q)

|supp(x)|.

This is a useful quantity because, setting

N(q) = |{(x, y) ∈ S(q)× S(q + 1) : x ∼ y}|,
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we have

s(q)(2d− t(q)) = N(q) ≤ s(q + 1)min{q + 1, d},

implying
s(q)

s(q + 1)
≤ min{q + 1, d}

2d− t(q)
. (2.2)

This already implies Proposition 2.5.2 for, say, r ≤ .9d, since in this case we have

b(r) ≤ s(r)
r∑

i=0

(r)i

(2d− r + i)i
≤ s(r)

∑

i≥0

(
r

2d− r

)i

= O(s(r)).

For larger r we will have to work harder. Here we first show, for q = βd with β > .9,

t(q) < (1− 1/(20β))d. (2.3)

Let

S(q, t) = {x ∈ S(q) : |supp(x)| = t},

s(q, t) = |S(q, t)|, and define B(q, t) and b(q, t) similarly. Then

f(q, t) :=
s(q, t + 1)

s(q, t)
= 2

(d− t)(q − t)
(t + 1)t

.

Set t0 = t0(q) = d(1− 1/(4β))de. Then t ≥ t0 implies

f(q, t) ≤ 2
(1/(4β))(β − 1 + 1/(4β))

(1− 1/(4β))2

= 2
(

2β − 1
4β − 1

)2

<
1
2
.

Thus

t(q) = s(q)−1
∑

t≤q

ts(q, t)

< t0 +
∑

i≥1

i2−i = t0 + 2.

This gives (2.3) provided β ≤ d/15. For larger β we just use

s(q, d− 1)
s(q, d)

=
d(d− 1)

2(βd− d + 1)
>

d− 1
2β

,

whence

d− t(q) = s(q)−1
∑

(d− i)s(q, i) ≥
∑

i<d

s(q, i)/(
∑

i≤d

s(q, i))

≥ s(q, d− 1)/(s(q, d− 1) + s(q, d)) ≥ (d− 1)/(2β + d− 1),
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which again gives (2.3).

Now let r = γd ≥ .9d. By (2.3) and (2.2) we have, for r − i ≥ .9d,

s(r − i) ≤ s(r)
i∏

j=1

d

d + d2/(20(r − j))
< s(r)(1− Ω(1/γ))i,

so

b(r) ≤ s(r)
r−.9d∑

i=0

(1− Ω(1/γ))i + b(.9d) = O(γs(r)) (2.4)

(since we know b(.9d) = O(s(.9d)) = O(s(r))).

On the other hand, with t0 = t0(r), we have

b(r) > b(r, t0) = 2t0

(
d

t0

)(
r

t0

)
> exp[t0 log(r/t0)],

and b(r)1/d > exp[(1− 1/(4γ)) log(r/t0)] = Ω(γ); and this with (2.4) gives the proposi-

tion.

2.6 Isoperimetry in the cube

The aim of this section is to put some lower bounds on the neighborhood size of a small

set in the Hamming cube Qd. We begin with

Lemma 2.6.1 For all A ⊆ E or A ⊆ O small, |A| ≤ (1− Ω(1))|N(A)|.

Proof: By symmetry, we need only prove this when A ⊆ E . Let small A ⊆ E be given.

Applying Lemma 2.4.7 with C = A and D = V \ (A∪N(A)), we find that there exists

an even Hamming ball A′ with |A′| = |A| and |N(A)| ≥ |N(A′)|. So we may assume

that A is a small even Hamming ball.

We consider only the case where A is centered at an even vertex, w.l.o.g. 0, the

other case being similar. In this case,

{v ∈ E : ρ(v, 0) ≤ k} ⊆ A ⊂ {v ∈ E : ρ(v, 0) ≤ k + 2}

for some even k ≤ d/2− Ω(d) (the bound on k coming from the fact that A is small).

For each 0 ≤ i ≤ (k + 2)/2, set Bi = A ∩ {v : ρ(v, 0) = 2i}, and N+(Bi) = N(Bi) ∩
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{u : ρ(u, 0) = 2i + 1}. It’s clear that N(A) = ∪0≤i≤(k+2)/2N
+(Bi) and that for i =

0, . . . , (k + 2)/2

|Bi|
|N+(Bi)| ≤ 2i + 1

d− 2i
(2.5)

= 1− Ω(1), (2.6)

from which the lemma follows. The inequality in (2.6) comes from the bound on k. The

inequality in (2.5) is actually an equality except when i = (k + 2)/2, in which case it

follows from the observation that each vertex in Bk+2 has exactly d− (k +2) neighbors

in N+(Bk+2), and each vertex in N+(Bk+2) has at most (k +2)+1 neighbors in Bk+2.

Lemma 2.6.1 is true for all small A, but can be strengthened considerably when we

impose stronger bounds on |A|. In this direction, we only need the simple

Lemma 2.6.2 If |A| < dO(1), then |A| ≤ O(1/d)|N(A)|, and if |A| ≤ d/2, then

|N(A)| ≥ d|A| − 2|A|(|A| − 1).

Note that the second statement is true for all A, but vacuously so for |A| > d/2.

Proof of Lemma 2.6.2: If |A| < dO(1), then we have k = O(1) in the notation of Lemma

2.6.1, and repeating the argument of that lemma we get |A| ≤ O(1/d)|N(A)|.
For the second part, note that each u ∈ A has d neighbors, of which at least

d−2(|A|−1) must be unique to it, since a pair of vertices in the cube can have at most

two common neighbors.

2.7 Topology

In this section we write Ω for the nearest-neighbor graph on Zd and for S ⊆ Zd we

write Ω[S] for the subgraph of Ω induced by S. Recall that we write X (resp. Y ) for

the odd (resp. even) vertices of Ω. The purpose of the section is to prove the following

combinatorial proposition.
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Proposition 2.7.1 Let R∪B be a decomposition of V (Ω) (= Zd), with both Ω[R] and

Ω[B] connected and R finite. Suppose G := R∩B is contained in Y and is the internal

boundary of each of R, B. Then G is 2-linked.

Remark: We will actually show that G is 2-linked in each of R and B.

We could not see a simple combinatorial proof of this proposition; our proof, which

is considerably longer than we would wish and unrelated to the methods in the rest of

the thesis, might profitably be skipped on a first reading. We present it here (rather

than in Section 4.3, where the proposition will be used) in order not to interrupt the

flow of the main argument in Chapter 4. The proof requires a topological detour, based

on

Lemma 2.7.2 If U, V are connected subsets of X = Rn or Sn, n > 1, with U∪V = X,

U closed and V compact, then U ∩ V is connected.

(As usual, Sn is the unit sphere {x ∈ Rn+1 :
∑

x2
i = 1}. We also write Bn+1 for the

corresponding unit ball.)

The (presumably well-known) proof of Lemma 2.7.2 is given at the end of this

section.

Proof of Proposition 2.7.1: With Ω embedded in Rd in the natural way, we extend

R and B to closed connected subsets R∗ and B∗ of Rd so that R∗ ∪ B∗ = Rd and

G∗ := R∗ ∩ B∗ is path-connected. We then derive the 2-linkedness of G from the

path-connectedness of G∗.

We view Rd as the union of Zd-translates of [0, 1]d (the cells of Rd), and define

R∗ and B∗ cell by cell. Within a cell we proceed by dimension, first defining the

extensions for 0-dimensional faces (the vertices of Ω), 1-dimensional faces (the edges

of Ω), and 2-dimensional faces, and then continuing inductively. (As usual a face of

a cell is the intersection of the cell with some supporting hyperplane. Henceforth we

use “k-face” for “k-dimensional face”.) For the inductive step, we need a topological

lemma (Lemma 2.7.5), for the statement of which it’s convenient to introduce two local

definitions. Let us say that a subset of a topological space is civilized if it is closed, has

only finitely many components, and each of its components is path-connected.
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Definition 2.7.3 A decomposition X = R∪B of a topological space X, with R∩B = G,

is nice if it satisfies:

(i) G = ∂R = ∂B;

(ii) each of R, B, G is civilized; and

(iii) each of R, B — and so each component of R and B — is the closure of the union

of finitely many open, path-connected sets.

If X = R ∪ B is a nice decomposition, and R′, B′ are obtained from R, B by adding

finitely many points, then we also call the decomposition X = R′ ∪B′ nice.

(Of course there is some redundancy in conditions (i)-(iii).)

We say that two nice decompositions X1 = R1 ∪ B1 and X2 = R2 ∪ B2 are com-

patible if R1 ∩ X1 ∩ X2 = R2 ∩ X1 ∩ X2 and B1 ∩ X1 ∩ X2 = B2 ∩ X1 ∩ X2. It is

straightforward to check that nice decompositions of different spaces can be combined

if they are compatible:

Lemma 2.7.4 Suppose X = X1 ∪ · · · ∪Xm with each Xi closed. If Xi = Ri ∪ Bi are

pairwise compatible, nice decompositions, then (∪Ri)∪ (∪Bi) is a nice decomposition of

X.

We now state the topological lemma alluded to above, deferring its proof until after

the derivation of Proposition 2.7.1. (Recall Bn+1 and Sn are the unit ball and sphere

in Rn+1.)

Lemma 2.7.5 Assume n > 1. If R ∪B is a nice decomposition of Sn, then there is a

nice decomposition R∗ ∪ B∗ of Bn+1, with R∗ ∩ Sn = R, B∗ ∩ Sn = B, and such that

if C is any component of R∗ (resp. B∗, G∗), then C ∩ Sn is a component of R (resp.

B, G).

(This is easily seen to fail for n = 1. It may be worth pointing out that for R and B,

condition (iii) of Definition 2.7.3 refers to sets that are open in Sn; similarly ∂R and

∂B are boundaries relative to Sn, while ∂R∗ and ∂B∗ are boundaries relative to Bn+1.)
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Of course Lemma 2.7.5 still applies if we replace the Bn+1 by any of its homeo-

morphic images (and Sn by the corresponding homeomorphic copy); in our case the

relevant image will be [0, 1]d.

We now fix a cell, and begin defining our extensions. For vertices and edges we do

the natural things: R∗ ∩ V (Ω) = R, B∗ ∩ V (Ω) = B; and we put (the interior of) an

edge in R∗ (resp. B∗) iff both its ends are in R∗ (resp. B∗), noting that exactly one of

these possibilities occurs, since ∇(G,G) = ∅.

Next, we deal with 2-dimensional faces. If the vertices of such a face are all in R

(resp. B), then put the interior of the face in R∗ (resp. B∗). Otherwise, the face has

two opposite corner vertices (v1, v3, say) in G, with one of its remaining two vertices

(v2) in R\B and the other (v4) in B \R. Put the interior of the convex hull of v1, v2, v3

in R∗, the interior of the convex hull of v1, v3, v4 in B∗, and the interior of the diagonal

joining v1 and v3 in R∗ ∩B∗. It is easy to check that these (R∗, B∗)-decompositions of

the 2-dimensional faces are nice. (It may be worth observing that a 2-dimensional face

contained in R∗ may still have one or two of its vertices in B∗, and vice versa.)

We now proceed by induction, assuming the decomposition has been defined on

faces of dimension less than k ∈ {3, . . . , d}. Each k-face F is homeomorphic to Bk, and

is bounded by the union of finitely many (k− 1)-dimensional faces. The decomposition

of each of these bounding faces is nice, and the decompositions on any two faces are

compatible (since we are defining the decomposition from lower dimensions up). So,

by Lemma 2.7.4, we have a nice decomposition of the boundary of F . We now apply

Lemma 2.7.5 to extend to a nice decomposition of the entire face. Once we have a nice

decomposition of each cell, we get the full decomposition Rd = R∗ ∪ B∗ by combining

the decompositions of the cells, again appealing to Lemma 2.7.4 for “nice.” (For formal

applicability of the lemma, we can use a single Xi = Bi for the union of all cells not

meeting R.)

It is clear from the construction that R∗ and B∗ are closed, R∗ is bounded, and

R∗∪B∗ = Rd. To see that R∗ is connected, notice that by construction, any component

of R∗ contains an edge of Ω[R], and that every edge of Ω[R] is contained in a component

of R∗; connectivity of R∗ then follows from connectivity of Ω[R]. The same argument
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shows that B∗ is connected.

Lemma 2.7.2 now shows that G∗ is connected, which, since G∗ is also civilized (since

R∗ ∪B∗ is nice), implies that it is actually path-connected.

It remains to show that the 2-linkedness of G follows from the path-connectedness

of G∗. It is enough to show that for each pair of vertices u, v ∈ G, there is a path

connecting them in G∗ which is supported entirely on the 2-dimensional faces of Rd;

for, by the construction of R∗ and B∗, such a path is supported on diagonals (of 2-

dimensional faces) connecting pairs of vertices from G, and such diagonals correspond

to steps of length 2 in Ω. (This also justifies the remark following Proposition 2.7.1.)

So, consider a (u, v)-path P in G∗ given by the continuous function f : [0, 1] → Rd.

If P is supported on 2-dimensional faces of Rd, then we are done. Otherwise, let k > 2

be the maximum dimension of a face whose interior meets P . It’s enough to show that

we can replace P by a path meeting the interiors of fewer k-faces than P and no faces

of dimension more than k.

To do this, choose a k-face F and component C of G∗ ∩ F with C ∩ F 0 ∩ P 6= ∅
(where F 0 is the interior of F ). Let p = inf{x ∈ [0, 1] : f(x) ∈ C ∩ F 0} and q =

sup{x ∈ [0, 1] : f(x) ∈ C ∩ F 0}. Then f(p), f(q) ∈ C ∩ ∂F , which, by construction, is

path-connected. So we may replace f([p, q]) in P by a path contained in ∂F .

Proof of Lemma 2.7.5: To avoid confusion, we now write ∂X, ∂ ′X and ∂ ′′X for

the boundaries of X relative to, respectively, Rn+1, Bn+1 and Sn.

We may assume neither R nor B contains isolated points: otherwise we can simply

delete such points, produce R∗ and B∗ for the resulting “reduced” R and B, and then

add the deleted points of R (B) to R∗ (B∗).

We use (R, B)-component to mean a component of either R or B, and proceed by

induction on the number of (R,B)-components in the decomposition of Sn.

If there is exactly one such component (a component of R, say), then R = Sn, and

B = ∅. Setting R∗ = Bn+1 and B∗ = ∅, we get a nice decomposition of Bn+1 which

satisfies the conditions of the lemma.
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Otherwise, there must be at least one (R,B)-component T for which Sn \ T 0 is

connected. For suppose Sn \ T 0 is disconnected for every (R,B)-component T . Choose

an (R,B)-component T0 (⊆ R, say) such that one of the components of Sn \ T 0
0 , C

say, contains as few (R,B)-components as possible, and let T1 be an (R, B)-component

of C (i.e. contained in C, noting that each (R, B)-component other than T0 is either

contained in or disjoint from C). Now Sn \C0 is connected in Sn \T 0
1 , so Sn \T 0

1 (which

by assumption is not connected) contains a component whose (R,B)-components form

a proper subset of the (R,B)-components of C, contradicting the choice of T0.

Let T , then, be an (R,B)-component with Sn \T 0 connected. We may assume that

T is a component of R. Applying Lemma 2.7.2 with X = Sn, U = T and V = Sn \ T 0,

we find that ∂ ′′T is connected, so that T meets exactly one component, say C, of B

(and C ⊇ ∂ ′′T ).

Set T ∗ = {λx : x ∈ T, λ ∈ [1/2, 1]}. This will be one component of R∗. It is easy to

see that T ∗ is closed and path-connected (so civilized), as is ∂′T ∗, and that T ∗∩Sn = T ,

a component of R.

Now let (T ∗)0 be the relative interior of T ∗ with respect to Bn+1 (namely, (T ∗)0 =

{λx : x ∈ T 0, λ ∈ (1/2, 1]}), P = ∂(Bn+1 \ (T ∗)0) (= (Sn \ T 0) ∪ ∂ ′T ∗), and Q =

Bn+1 \ (T ∗)0. Then (Q,P ) is (easily seen to be) homeomorphic to (Bn+1, Sn).

Let, further, R1 = R \ T , B1 = B ∪ ∂ ′T ∗, and C1 = C ∪ ∂ ′T ∗. Then

(i) the components of R1 are precisely the components of R other than T

and

(ii) the components of B1 are C1 and the components of B other than C,

and it is easy (if tedious) to deduce that R1 ∪B1 is a nice decomposition of P .

Our inductive hypothesis thus gives a nice decomposition R∗
1∪B∗

1 of Q, and we obtain

the desired decomposition, R∗ ∪ B∗, of Bn+1 by setting B∗ = B1 and R∗ = R1 ∪ T ∗

(again an easy verification using (i) and (ii)).
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Proof of Lemma 2.7.2: We first establish a corresponding statement for open sets: if

U, V are connected, open subsets of X = Rn or Sn, n > 1, with U ∪V = X, then U ∩V

is connected.

Proof: We use the Mayer-Vietoris sequence. If X is a topological space, and U and

V are open subsets of X whose union is X, then this is a long exact sequence of group

homomorphisms ending with

· · · → H1(X) → H0(U ∩ V ) → H0(U)⊕H0(V ) → H0(X) → 0,

where Hm is the mth homology group. We apply this with X = Rn or Sn. Using the

facts that Hm(Rn) = 0 whenever m ≥ 1 and that if O is an open subset of Rn or Sn,

then H0(O) ∼= Z ⇐⇒ O is connected, this long exact sequence becomes

0 → H0(U ∩ V ) → Z⊕ Z → Z → 0.

From the exactness of this sequence, it follows that H0(U ∩ V ) ∼= Z, so that U ∩ V

is connected.

Now let U, V be as in the lemma, and for each ε > 0, set Uε = {x ∈ X : d(x,U) < ε}
and Vε = {x ∈ X : d(x, V ) < ε}. These are open, connected sets whose union is X, so

by Lemma 2.7.2, Uε ∩ Vε is connected. Thus Uε ∩ Vε is connected; it is also closed and

bounded, so compact. So U ∩ V = ∩ε>0Uε ∩ Vε is the intersection of a nested sequence

of compact, connected sets and so is itself connected.



21

Chapter 3

Approximations

In this chapter, we introduce the notions of approximation that will play a role in the

two main results of the thesis.

The basic idea is the following. To obtain an upper bound on the size of a set A,

we produce a set C with the properties that |C| is “small” and that each α ∈ A is

approximated in an appropriate sense by some γ ∈ C. We may then bound |A| by, for

example, putting a bound b on the number of possible α ∈ A that can be approximated

by any γ ∈ C can approximate, so that |A| ≤ b|C|.

This is exactly the approach we take in the problem of counting homomorphisms

from the Hamming cube to Z. For the problem of phase transition in the hard-core

model, we have to proceed slightly differently, because we are controlling not sizes of

sets but weighted sums. But even in this case, we begin exactly as described above by

producing a small set C of approximations to members of A.

In both of our applications, the set C is itself produced by an approximation process

— we first produce a small set B with the property that each α ∈ A is weakly approx-

imated (in an appropriate sense) by some β ∈ B, and then show that for each β there

is a small set Bβ with the property that for each α ∈ A that is weakly approximated

by β, there is a γ ∈ Bβ which approximates α; we then take C = ∪β∈BBβ.

After setting up the notation and conventions for the chapter in Section 3.1, we

introduce, in Section 3.2, the notions of approximation that we will use. We state the

main results of the chapter in Section 3.3, and the remaining sections are devoted to

the proofs of these results.
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3.1 Setup

Throughout this chapter we work in a finite `-regular bipartite graph Σ with bipartition

V = V (Σ) = X ∪ Y and distinguished vertex v0 ∈ X. Many of our results hold at

this level of generality, though we sometimes need to impose further conditions on Σ.

Specifically, we will sometimes want Σ to satisfy

∀ A ⊆ X, |A| ≤




O(1/`)|N(A)| if |A| < `O(1)

(
1− Ω

(|N(A)|−2/`/`
)) |N(A)| always

(3.1)

and

∀ v ∼ w ∈ V and L ⊆ N(v), |N(w) ∩N(L)| ≥ |L|. (3.2)

Notice that the discrete torus Γ (defined in Section 2.2) satisfies both of these conditions.

(Lemma 2.5.1 gives (3.1) for Σ = Γ, and to see (3.2), notice that for v ∼ w in Γ, the

subgraph of Γ induced by (N(v)∪N(w)) \ {v, w} is a matching of all but one vertex of

N(v) and all but one vertex of N(w).)

We always take A to be a closed set of a single parity. Given A, set G = G(A) =

N(A), B = B(A), H = H(A) = N(B), G0 = G0(A) = ∂?(G ∪ A) and W = W (A) =

G∪A. In what follows, G, B, H, G0 and W are always understood to be G(A), B(A),

H(A), G0(A) and W (A) for whatever A is under discussion. Note that B ⊆ G is a

closed set and H ⊆ A. Note also that under the assumption that A is closed, A and G

determine each other (G = N(A) and A = {v ∈ V : N(v) ⊆ G}).
As with Σ, we sometimes wish to impose additional conditions on A, specifically

A is 2-linked, (3.3)

v0 ∈ A (3.4)

and

G0 is 2-linked (3.5)

We always use a for |A|, g for |G|, b for |B| and h for |H|. Given a, g, b and h we

take t = g − a and write

G(t) = {A ⊆ X : |G| − |A| = t},
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G(a, g) = {A ⊆ X : A satisfies (3.4) and (3.5), |A| = a and |G| = g} (⊆ G(t))

and

H(g) = {A ⊆ X : A satisfies (3.3) and |G| = g}.

Notice that there is a certain duality preserving t: if A ∈ G(t) then Y \G belongs to

the analogue of G(t) obtained by reversing the roles of X and Y in Σ — but of course

a and g, unlike t, are not usually preserved by this switch.

The following simple observation will be useful. For A ∈ G(t)

|∇(W,V \W )| (= |∇(G,X \A)| = |∇(G0, X \A)|) = t`. (3.6)

3.2 Notions of approximation

Before stating the main results of this chapter, we introduce the three notions of ap-

proximation that we will be working with. The first notion depends on a parameter

τ > 0.

Definition 3.2.1 A τ -approximation for A ⊆ X is a pair (F ′, S′) ∈ 2Y ×2X satisfying

F ′ ⊆ G, S′ ⊇ A (3.7)

and

|F ′ \G|, |S′ \A| < τ. (3.8)

Definition 3.2.2 A covering approximation for A ⊆ X is a pair (F ′, P ′) ∈ 2Y × 2X

satisfying

F ′ ⊆ G, P ′ ⊆ H

and

N(F ′) ⊇ A,N(P ′) ⊇ B.

The third notion of approximation depends on a parameter ψ, 0 < ψ < `.

Definition 3.2.3 A ψ-approximating pair for A ⊆ X is a pair (F, S) ∈ 2Y × 2X

satisfying (3.7) (with (F, S) in place of (F ′, S′)) as well as

dF (u) > `− ψ ∀u ∈ S (3.9)
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and

dX\S(v) > `− ψ ∀v ∈ Y \ F. (3.10)

For A ⊆ Y , we define the notion of a ψ-approximating pair similarly (reversing the

roles of X and Y in the above definition). A ψ-approximating quadruple for A ⊆ X is

a quadruple (F, S, P,Q) ∈ 2Y × 2X × 2X × 2Y with (F, S) a ψ-approximating pair for A

and (P,Q) a ψ-approximating pair for B.

Note that if x is in A then all of its neighbors are in G, and if y is in Y \G then all of

its neighbors are in X \A. If we think of S as “approximate A” and F as “approximate

G”, (3.9) says that if x ∈ X is in “approximate A” then almost all of its neighbors are

in “approximate G”, while (3.10) says that if y ∈ Y is not in “approximate G” then

almost all of its neighbors are not in “approximate A”.

Before continuing, we note a property of ψ-approximating pairs that will be of use

in Chapter 5.

Lemma 3.2.4 Given g and ψ, if (F, S) is a ψ-approximating pair for A then

|S| ≤ |F |+ 2gψ/(`− ψ). (3.11)

Proof: Observe that |∇(S, G)| is bounded above by `|F | + ψ|G \ F | and below by

`|A|+ (`− ψ)|S \A| = `|S| − ψ|S \A|, giving

|S| ≤ |F |+ ψ|(G \ F ) ∪ (S \A)|/`,

and that each u ∈ (G \ F ) ∪ (S \A) contributes more than `− ψ edges to ∇(G), a set

of size g`, giving

|(G \ F ) ∪ (S \A)| ≤ 2g`/(`− ψ).

These two observations together give (3.11).

An immediate corollary of this is

Lemma 3.2.5 Given g, h and ψ, if (F, S, P,Q) is a ψ-approximating quadruple for A

then we have (3.11) and

|Q| < |P |+ 2hψ/(`− ψ). (3.12)
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3.3 Statement of the results

The main lemma we need for the application in Chapter 4 applies to any Σ satisfying

(3.1) and (3.2):

Lemma 3.3.1 In any Σ satisfying (3.1) and (3.2), and for any a and g, there is a

family U = U(a, g) ⊆ 2Y × 2X with

|U| < exp[O(t`−1/2 log3/2 `)] (3.13)

such that every A ∈ G(a, g) has a
√

`-approximating pair in U .

This follows from the next two lemmas. (Take ψ =
√

` and τ = ct
√

` log ` (for

an appropriate constant c) in Lemma 3.3.3. The expression in the exponent of (3.13)

is the maximum of the corresponding expressions from (3.14) and (3.15).) Note that

Lemma 3.3.2 requires a good deal of structure on Σ, whereas Lemma 3.3.3 holds in

some generality.

Lemma 3.3.2 For any a, g and τ = O(t
√

` log `), and in any Σ satisfying (3.1) and

(3.2), there is a family S = S(a, g, τ) ⊆ 2Y × 2X with

|S| < exp[O(t`−1/2 log3/2 `)] (3.14)

such that every A ∈ G(a, g) has a τ -approximation in S.

Lemma 3.3.3 Given t, τ , (F ′, S′) ∈ 2Y × 2X and 0 < ψ < `, there is a family

T = T (F ′, S′, τ, t, ψ) ⊆ 2Y × 2X with

|T | < exp[O(((τ/`) + (t/ψ)) log `)] (3.15)

such that every A ∈ G(t) for which (F ′, S′) is a τ -approximation has a ψ-approximating

pair in T .

The main lemma we need for the application in Chapter 5 requires no conditions

on Σ beyond those mentioned at the beginning of Section 3.1:
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Lemma 3.3.4 For any g, there is a family X = X (g) ⊆ 2Y × 2X × 2X × 2Y with

|X | ≤ |Y |2O(g log `/
√

`)

such that every A ∈ H(g) has a
√

`-approximating quadruple in X .

This follows from the next two lemmas. (Take ψ =
√

` in Lemma 3.3.6.)

Lemma 3.3.5 For any g, there is a family V = V(g) ⊆ 2Y × 2X with

|V| ≤ |Y |2O(g log2 `/`)

such that each A ∈ H(g) has a covering approximation in V.

Lemma 3.3.6 For any (F ′, P ′) ∈ 2Y × 2X , ψ satisfying Ω(1) ≤ ψ ≤ o(`) and g there

is a family W = W(F ′, P ′, g, ψ) ⊆ 2Y × 2X × 2X × 2Y with

|W| ≤ 2O(g log `/ψ)

such that any A ∈ H(g) for which (F ′, P ′) is a covering approximation has a ψ-

approximating quadruple in W.

In Sections 3.4 and 3.5 we prove Lemmas 3.3.2 and 3.3.5. In Section 3.6 we present

an algorithm which is central to the proofs of Lemmas 3.3.3 and 3.3.6; we give these

proofs in Sections 3.7 and 3.8. The idea for the algorithm in Section 3.6 is from [23].

3.4 Proof of Lemma 3.3.2: covering the boundary

We say that a set C ⊆ V separates P, Q ⊆ V if any path meeting both P and Q also

meets C.

We begin the proof of Lemma 3.3.2 by showing that there is a “small” collection

of subsets of V , at least one of which separates W (= G ∪ A) and V \ W for each

A ∈ G(a, g).

Let

G′
0 = {v ∈ G : dA(v) ≤ `/2} (⊆ G0),
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B′
0 = {v ∈ X \A : dY \G(v) ≤ `/2} (⊆ B0 := (X \A) ∩N(G)),

G′′
0 = G0 \G′

0 and B′′
0 = B0 \B′

0. Then

∇(G′′
0, B

′′
0 ) = ∅. (3.16)

(The more general statement here is: if v ∈ G0, w ∈ B0 and v ∼ w, then (by (3.2) with

L = N(v) ∩A) dG(w) ≥ dA(v) (= `− dX\A(v)), implying dX\A(v) + dG(w) ≥ `.)

Notice that (3.16) implies

G′
0 ∪B′

0 separates W and V \W (3.17)

(equivalently, ∇(W,V \W ) ⊆ ∇(G′
0) ∪∇(B′

0)).

Lemma 3.4.1 In any Σ satisfying (3.2), for any A ∈ G(t) there exists U ⊆ N(G′
0∪B′

0)

satisfying

N(U) ⊇ G′
0 ∪B′

0 (3.18)

and

|U | < O(t
√

log `/`). (3.19)

Before proving this, we observe that it does accomplish the first goal stated at the

beginning of this section (the existence of a small set of separations). For A and U as

in Lemma 3.4.1, we have

N(U) separates W and V \W (3.20)

(by (3.17) and (3.18)). So we just need to limit the number of possibilities for U when

A ∈ G(a, g).

To do so, notice that

U is 6-linked. (3.21)

This follows from Lemma 2.4.4 and (3.5), once we observe that ρ(u,G0) ≤ 2 ∀u ∈ U

(since U ⊆ N(G′
0 ∪B′

0)), and that (3.16) and (3.18) imply ρ(v, U) ≤ 2 ∀v ∈ G0.

Before bounding the number of possibilities for U , we show that there is a small

(size O(g`2)) set of vertices meeting all possible U ’s. Fix a linear ordering ¿ of Y

satisfying

ρ(v0, y1) < ρ(v0, y2) =⇒ y1 ¿ y2,
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and let C be the initial segment of ¿ of size g. We claim that C ∩G0 6= ∅. If C = G,

this is clear; if not, consider a shortest y − v0 path in Σ for some y ∈ C \G. This path

intersects G (since N(v0) ⊆ G). Let y′ be the largest (with respect to ¿) vertex of G

on the path; then y′ ∈ G0 ∩C, establishing our claim. There are at most g possibilities

for y′ ∈ G0 ∩ C, so at most g`2 possibilities for a vertex x′ with ρ(x′, y′) ≤ 2; and by

(3.16) and (3.18) U must contain such an x′.

In view of (3.19) and (3.21), Lemma 2.4.1 then gives a bound of

g`2 exp[O(t`−1/2 log3/2 `)] = exp[O(t`−1/2 log3/2 `)] (3.22)

on the number of possibilities for U . Here we use (3.1) for the equality in (3.22).

Proof of Lemma 3.4.1: By “duality” (see the end Section 3.1) it is enough to show the

existence of S ⊆ N(G′
0) with

N(S) ⊇ G′
0 (3.23)

and

|S| < O(t
√

log `/` ). (3.24)

Define Q = {v ∈ G0 : dA(v) ≤ √
` log `}, K = G0 \Q, and P = N(Q)∩A. By (3.2),

dG0(v) ≥ `−
√

` log ` ∀v ∈ P. (3.25)

Let P ′ = {v ∈ P : dK(v) ≥ `/2}, P ′′ = P \ P ′, Q′ = Q ∩ N(P ′), Q′′ = Q \ Q′ and

R = {v ∈ B0 ∩N(G′
0) : dG0(v) >

√
` log `}.

Now P ′′ is a cover of Q′′ of size O(t
√

log `/` ), the size bound following from |Q| ≤
t`/(` − √

` log ` ) = O(t) (using (3.6)), dP ′′(v) ≤ dA(v) ≤ √
` log ` ∀v ∈ Q, and

dQ(v) > `/2−√` log ` ∀v ∈ P ′′ (using (3.25) and the definition of P ′′).

On the other hand, we can cover G′
0 \Q′′ by a similarly small subset of R, as follows.

From (3.2) we have N(K) ∩N(G′
0) ∩ B0 ⊆ R. This gives dR(v) > `/2 for v ∈ G′

0 \Q,

while for v ∈ Q′,

dR(v) ≥ |N(v) ∩N(K)| − |N(v) ∩A| ≥ `/2−
√

` log `

(the second inequality following from (3.2) and the definitions of Q′ and Q). So, noting

that |R| < t
√

`/ log ` (again using (3.6)), Lemma 2.4.3 says that we can cover G′
0 \Q′′
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by some T ⊆ R of size at most

|R|(1 + log `)/(`/2−
√

` log ` ) < O(t
√

log `/` ).

(And note P ⊆ N(G′
0) since Q ⊆ G′

0, and R ⊆ N(G′
0) by definition, so S := P ′′ ∪ T ⊆

N(G′
0).)

We now complete the proof of Lemma 3.3.2. Given U as above, set L = N(U).

Then |L| = O(t
√

` log `).

Say a component C of Σ−L is small if |C| ≤ ` and large otherwise. (Note that this

definition — which will only be used in this section — is unrelated to the definition of

“small” given in Section 2.3.) From (3.1) we have

|∇(C, L)| = |∇(C)| ≥ |∂C| = Ω(|C|`)

for small C (actually also for considerably larger C), and

|∇(C, L)| = Ω(`2)

for large C. But |∇(L)| ≤ 2`|L| = O(t`3/2
√

log `), so

the number of large components is O(t`−1/2
√

log `), (3.26)

and the number of vertices in small components is O(t
√

` log `).

It follows that if A is any (closed) subset of X for which L separates W and V \W ,

then a τ -approximation (F ′, S′) for A with τ = O(t
√

` log `) is given by

F ′ = P ∩ Y and S′ = (P ∪Q ∪ L) ∩X, (3.27)

where P is the union of those large components of Σ− L that meet (equivalently, are

contained in) W , and Q is the union of (all) the small components. In particular this

is true if A is any member of G(a, g) for which Lemma 3.4.1 applied to A produces U .

By (3.26) the number of possibilities (given L) for (F ′, S′) as in (3.27) is at most

exp[O(t`−1/2
√

log `)], and combining this with the bound (3.22) on the number of U ’s

we have Lemma 3.3.2.
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3.5 Proof of Lemma 3.3.5

For each A ∈ H(g) we obtain a covering approximation for A by taking F ′(A) ⊆ G to be

a cover of minimum size of A in the graph induced by G∪A and P ′(A) ⊆ H to be a cover

of minimum size of B in the graph induced by H ∪B. Note that P ′(A) ⊆ N(F ′(A)).

By Lemma 2.4.4, F ′(A) is 4-linked (A is 2-linked, ρ(x, F ′(A)) = 1 for each x ∈ A and

ρ(y, A) = 1 for each y ∈ F ′(A)). By Lemma 2.4.3, |F ′(A)| ≤ g(1+ln `)/` = O(g log `/`)

and |P ′(A)| ≤ h(1 + ln `)/` = O(g log `/`) (noting that h ≤ g).

We may therefore take V to be the set of all pairs (F ′, P ′) ∈ 2Y ×2X with F ′ 4-linked

and P ′ ⊆ N(F ′), and F ′, P ′ both of size at most O(g log `/`). By Lemma 2.4.1, there

are at most |Y |2O(g log2 `/`) possibilities for F ′ (the factor of |Y | is for the choice of a

fixed vertex in F ′), and, given F ′, a further

∑

i≤O(g log `/`)

(|N(F ′)|
i

)
= 2O(g log2 `/`)

choices for P ′. The lemma follows.

3.6 The degree algorithm

Fix 0 < ξ < ` and A ⊆ X closed. We give an algorithm which, for input (F ′, S′) ∈
2Y ×2X satisfying (3.7) produces an output (F, S) ∈ 2Y ×2X that is a ξ-approximating

pair for A. This algorithm will be central to the proofs of Lemmas 3.3.3 and 3.3.6.

Fix a linear ordering ¿ of V .

Step 1: If {u ∈ A : dG\F ′(u) ≥ ξ} 6= ∅, pick the smallest (with respect to ¿) u in this

set and update F ′ by F ′ ←− F ′ ∪N(u). Repeat this until {u ∈ A : dG\F ′(u) ≥ ξ} = ∅.
Then set F ′′ = F ′ and S′′ = S′ \ {u ∈ X : dY \F ′′(u) ≥ ξ} and go to Step 2.

Step 2: If {w ∈ Y \G : dS′′(w) ≥ ξ} 6= ∅, pick the smallest (with respect to¿) w in this

set and update S′′ by S′′ ←− S′′\N(w). Repeat this until {w ∈ Y \G : dS′′(w) ≥ ξ} = ∅.
Then set S = S′′ and F = F ′′ ∪ {w ∈ Y : dS(w) ≥ ξ} and stop.
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Claim 3.6.1 The output of this algorithm is a ξ-approximating pair for A.

Proof: To see that F ⊆ G and S ⊇ A, first observe that F ′′ ⊆ G (since F ′ ⊆ G, and

the vertices added to F ′ in Step 1 are all in G) and that S′′ ⊇ A (or Step 1 would not

have terminated). We then have S ⊇ A since Step 2 deletes from S′′ only neighbors of

Y \G, and F ⊆ G since the vertices added to F ′′ at the end of Step 2 are all in G (or

Step 2 would not have terminated).

To verify (3.9) and (3.10), note that dF ′′(u) > `− ξ ∀u ∈ S′′ by definition, S ⊆ S′′,

and F ⊇ F ′′, so that dF (u) > `− ξ ∀u ∈ S; and if w ∈ Y \F then dS(w) < ξ (again by

definition), so that dX\S(w) > `− ξ ∀w ∈ Y \ F .

In the next two sections, the algorithm described above will be referred to as the

degree algorithm.

3.7 Proof of Lemma 3.3.3

For each A ∈ G(t) for which (F ′, S′) is a τ -approximation we produce a ψ-approximating

pair for A by a two-stage procedure. Stage 1 runs the degree algorithm of Section 3.6

with (F ′, S′) as input and with ξ = `/2. Stage 2 runs it with the output of Stage 1 as

the input and with ξ = ψ. (Note that by Lemma 3.6.1 the output of Stage 1 is a valid

input for Stage 2, and the output of Stage 2 is a ψ-approximating pair for A.)

Claim 3.7.1 The procedure described above has at most

exp[O(((τ/`) + (t/ψ)) log `)]

outputs as the input runs over those A ∈ G(t) for which (F ′, S′) is a τ -approximation.

Taking T to be the set of all possible outputs of the algorithm, Lemma 3.3.3 follows.

Proof of Claim 3.7.1: Writing S′0 = S′ ∩N(Y \F ′) and E′
0 = (Y \F ′)∩N(S′) we have

|S′0|, |E′
0| < τ + `τ (3.28)
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(since S′0 ⊆ (S′ \A) ∪N(G \ F ′), and similarly for E′
0).

The output (F, S) of Stage 1 is determined by the sets of u’s used in Step 1 and w’s

used in Step 2. Since each iteration in Step 1 shrinks |G \F ′| by at least ξ, the number

of iterations is at most τ/ξ = 2τ/`. Moreover, each u used in Step 1 lies in N(E′
0). So

the number of possibilities for the set of u’s used in Step 1 is less than

∑

i≤τ/ξ

(
`|E′

0|
i

)
< exp[O((τ/`) log `)]

(using (3.28)).

We perform a similar analysis for Step 2. Each iteration in Step 2 reduces |S′′ \ A|
by at least ξ, and each w is drawn from N(S′0). So the number of possibilities for the

set of w’s used in Step 2 is at most

exp[O((τ/`) log `)].

At the end of Step 1 we have w ∈ S′′ ⇒ dF ′′(w) > ` − ξ = `/2, which, since

|∇(S′′ \ A,F ′′)| ≤ t` (see (3.6)), gives |S′′ \ A| < 2t. Step 2 only decreases this, so at

the end of Stage 1 we have |S \ A| < 2t. A similar calculation gives that |G \ F | < 2t

at this point.

Repeating the analysis above for Stage 2, with (3.28) replaced by

|S0|, |E0| < 2t(1 + `)

(where S0 = S ∩ N(Y \ F ) and E0 = (Y \ F ) ∩ N(S)), we find that the number of

possible outputs of Stage 2, for a given output of Stage 1, is at most exp[O((t/ψ) log `)].

So the number of possible outputs of the entire procedure is no more than

exp[O(((τ/`) + (t/ψ)) log `)].

3.8 Proof of Lemma 3.3.6

For each A ∈ H(g) for which (F ′, P ′) is a covering approximation, we produce a ψ-

approximating quadruple for A by a two-stage procedure. In both stages we take
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ξ = ψ. Stage 1 runs the degree algorithm with (F ′, X) as input. Stage 2 runs it

with (P ′, Y ) as input and with the roles of X and Y reversed. By Lemma 3.6.1, the

quadruple (F, S, P, Q), where (F, S) is the output of Stage 1 and (P, Q) the output of

Stage 2, is a ψ-approximating quadruple for A.

Claim 3.8.1 The procedure described above has at most 2O(g log `/ψ) outputs as the input

runs over those A ∈ H(g) for which (F ′, P ′) is a covering approximation.

Taking W to be the set of all possible outputs of the algorithm, Lemma 3.3.6 follows.

Proof of Claim 3.8.1: The output of Stage 1 of the algorithm is determined by the

set of u’s whose neighborhoods are added to F ′ in Step 1, and the set of w’s whose

neighborhoods are removed from S′′ in Step 2.

Each iteration in Step 1 removes at least ψ vertices from G, so there are at most

g/ψ iterations. The u’s in Step 1 are all drawn from A and hence N(F ′), a set of size

at most `g. So the total number of outputs for Step 1 is at most

∑

i≤g/ψ

(
`g

i

)
= 2O(g log `/ψ).

We perform a similar analysis on Step 2. Each u ∈ S′′ \ A contributes more than

` − ψ edges to ∇(G), so initially |S′′ \ A| ≤ g`/(` − ψ) = O(g). Each w used in Step

2 reduces this by at least ψ, so there are at most O(g/ψ) iterations. Each w is drawn

from N(S′′), a set which is contained in the fourth neighborhood of F ′ (S′′ ⊆ N(G) by

construction of S′′, G = N(A) and A ⊆ N(F ′)) and so has size at most `4g. So as with

Step 1, the total number of outputs for Step 2, and hence for Stage 1, is 2O(g log `/ψ).

Noting that h ≤ g, a similar analysis applied to Stage 2 gives that that stage also

has at most 2O(g log `/ψ) outputs, and the claim follows.
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Chapter 4

Phase transition in the hard-core model on Zd

In this chapter, we will be concerned with the hard-core model on Zd. See Section 1.1

for an introduction to this model and the problem under consideration. Specifically,

we will prove Theorem 1.1.1, which states that the hard-core model on Zd with all

activities equal to λ exhibits a phase transition for λ = ω(d−1/4 log3/4 d).

4.1 Finitizing the problem

The problem of showing existence of a phase transition may be finitized as follows. Let

ΛN = Zd ∩ [−N,N ]d = X ∪ Y (with X and Y the sets of odd and even vertices). Let

µN be the hard-core measure with activity λ on ΛN , and let µe
N be µN conditioned on

the event {I ⊇ ∂?ΛN ∩ Y }, where ∂?ΛN = [−N,N ]d \ [−(N − 1), N − 1]d. (That is, if

we set

J = {I ⊆ ΛN : I independent, ∂?ΛN ∩ Y ⊆ I},

then

µe
N (I = I) ∝ w(I) := λ|I| for I ∈ J .)

Define µo
N similarly, with the even boundary condition replaced by an odd boundary

condition.

In [3] it is shown (inter alia) that the sequences {µe
N} and {µo

N} converge weakly

to hc(λ) limits, called µe and µo, and that there is a phase transition iff these limits

are different. (This is mainly based on the FKG Inequality, and applies to general

bipartite graphs Σ, provided we allow {ΛN} to be an arbitrary nested sequence with

∪ΛN = V (Σ).)

It is thus enough (for showing phase transition) to exhibit any statistic distinguishing
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µe from µo. We will show µe(0 ∈ I) 6= µo(0 ∈ I), i.e.

lim
N→∞

µe
N (0 ∈ I) 6= lim

N→∞
µo

N (0 ∈ I). (4.1)

(Of course we are only using the trivial direction of “phase transition iff µe 6= µo.” It

can also be shown that (4.1), too, is equivalent to phase transition.)

To establish (4.1) (assuming at least λ = Ω(1/d), which is easily seen to be necessary

for phase transition) it is in turn enough to show that for v0 ∈ ΛN ,

µe
N (v0) = o(1/d) if v0 is odd,

µo
N (v0) = o(1/d) if v0 is even.

For then

µe
N (0 ∈ I) = µe

N (N(0) ∩ I = ∅)µe
N (0 ∈ I|N(0) ∩ I = ∅)

= (1− o(1))λ/(1 + λ),

so that µe(0 ∈ I) = (1− o(1))λ/(1 + λ), whereas µo(0 ∈ I) = o(1/d).

So in particular the next theorem, whose proof is the main business of this chapter,

contains Theorem 1.1.1.

Theorem 4.1.1 For

λ = ω(d−1/4 log3/4 d), (4.2)

N arbitrary, and v0 an odd vertex of ΛN ,

µe
N (v0 ∈ I) < (1 + λ)−(1−o(1))2d. (4.3)

The same result holds if we reverse the roles of even and odd.

Remark. It is easy to see that

µe
N (v0 ∈ I) = µe

N (N(v0) ∩ I = ∅)µe
N (v0 ∈ I|N(v0) ∩ I = ∅)

> (1 + λ)−2d λ

1 + λ
,

so that (4.3) actually gives the asymptotics of log µe
N (v0 ∈ I).
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It will be convenient to replace the box ΛN by the discrete torus Γ = ΓN (as

described in Section 2.2). Replacing ∂?ΛN by ∆ in the definition of J (that is, setting

J = {I ⊆ Γ : I independent, ∆ ∩ Y ⊆ I})

and defining µe
N , µo

N as before, we may regard Theorem 4.1.1 as referring to Γ, a change

which clearly does not affect its meaning. (The torus is a more convenient graph to

work with than the box mainly because it is degree regular.)

The proof of Theorem 4.1.1 is a sort of “Peierls argument” (see e.g. [12]): we try

to associate with each I ∈ J containing v0 a “contour” — some kind of membrane

separating the outer even region from an inner odd region containing v0 — and then

use this to map I to a large set of J ’s, also from J but not containing v0, each obtained

from I by some modification of the inner region.

This is no surprise: almost every attempt at settling this problem that we’re aware

of has attacked it more or less along these lines. (The one exception is the entropy

approach of [14], which for now seems unlikely to get us to anything like what is proved

here.)

The main difficulty in all these attempts has been getting some kind of control

over the set of possible contours. In the next section, we give an informal outline of

our approach to this difficulty; this section also serves as an outline of the rest of the

chapter.

4.2 Outline of the proof of Theorem 4.1.1

Throughout the rest of the chapter, we assume that λ satisfies (4.2), and take v0 to

be a fixed odd vertex of Γ. We prove only the first part of Theorem 4.1.1; switching

“even” and “odd” throughout the argument gives the proof of the second part.

We will show something slightly stronger than (4.3): for I ∈ J let Z = Z(I) be the

set of vertices that are connected to ∆ in Γ− (I ∩X), and set I = {I ∈ J : v0 6∈ Z(I)}.
We will show ∑

I∈I w(I)∑
J∈J w(J)

< (1 + λ)−(1−o(1))2d (4.4)
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(Here and throughout the rest of this chapter, we use I for members of I and J for

general members of J ). Note that if v0 ∈ ∆ ∪ N(∆) then I = ∅, so we may assume

that v0 6∈ ∆ ∪N(∆).

We prove (4.4) by producing a “flow” ν : I × J → [0, 1] satisfying

∑

J

ν(I, J) = 1 ∀I ∈ I (4.5)

and
∑

I

w(I)
w(J)

ν(I, J) < (1 + λ)−(1−o(1))2d ∀J ∈ J . (4.6)

This gives (4.4):

∑

I∈I
w(I) =

∑

I∈I
w(I)

∑

J∈J
ν(I, J)

=
∑

J∈J
w(J)

∑

I∈I

w(I)
w(J)

ν(I, J)

< (1 + λ)−(1−o(1))2d
∑

J∈J
w(J).

Our point of departure for the specification of ν is the observation that each I ∈ I
is in “even phase” (i.e., consists predominantly of even vertices) near the boundary

∆ and in “odd phase” near v0, so there must be an unoccupied two-layer membrane

separating the two phases. We will associate with each I a W (I) ⊆ V which will play

the role of the inner odd phase. We refer to W (I) as the “volume” of I, and write

G0(I) for ∂?W (I) and refer to it as the “contour” of I. The construction and salient

properties of W (I) are given in Section 4.3.

The thickness of the separating membrane gives us room to modify I inside W (I)

in such a way that the resulting set is still independent, and can be extended to many

different independent sets by the addition of various subsets of G0(I). In this way we

get a one-to-many map

I 3 I −→ ϕ(I) ⊆ J .

When we define the flow ν, we require that

J 6∈ ϕ(I) ⇒ ν(I, J) = 0. (4.7)
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To specify the modification of I inside W (I) we first associate with I a direction j(I)

from among the 2d fundamental directions in the lattice (given by the d standard basis

vectors and their negatives). The modification then takes the form of a “shift” inside

the volume — a unit distance translation of I∩W (I) in direction j(I). We then identify

a set Gj
0 ⊆ G0 of vertices which have no edges to the modified I; ϕ(I) then consists of all

those sets obtained by adding subsets of Gj
0 to the modified I. We choose the direction

of the shift essentially to be one which makes |Gj
0| (and so |ϕ(I)|) large, though there

are some additional considerations. The precise definition of the shift operation is given

in Section 4.4, and in Section 4.5 we specify j(I) and ϕ(I).

An important property of ϕ(I) is that given J ∈ ϕ(I), W (I) and j(I), I can be

uniquely reconstructed. This is significant because for each J ∈ J we have, setting

ν ′(I, J) = ν(I, J)w(I)/w(J),

∑

I

ν ′(I, J) =
∑

W

∑

j

∑

I

{ν ′(I, J) : W (I) = W, j(I) = j, I ∈ ϕ−1(J)},

and the reconstructibility of I implies that the inner sum consists of at most one term

for each choice of W and j. This suggests that
∑

I ν ′(I, J) may usefully be bounded

above by, for each n ∈ N, bounding the number of volumes W of size n (using, for

example, Lemma 2.4.1) and uniformly bounding the quantity ν ′(I, J) on the set of I’s

whose associated volumes have size n, and then summing the products of these two

bounds over all n (we must also sum over all possible directions, but this only adds a

relatively insignificant factor of 2d). This approach (with, for example, ν(I, J) defined

to be |ϕ(I)|−1 if J ∈ ϕ(I) and 0 otherwise) is enough to give phase transition, but only

for values of λ that grow exponentially in d.

To get phase transition for smaller values of λ, we have to be more careful both with

the way in which we control the volumes and with the definition of ν. We approach the

former task via the notion of “approximations” introduced in Chapter 3 — with each

volume I we associate a pair (F (I), S(I)) which approximates W (I) in an appropriate

sense. The two main properties we aim for in the set of possible approximations are

that it is “small” and that given J ∈ J and a particular approximation (F, S), the set

of I’s with I ∈ ϕ−1(J) and (F, S) = (F (I), S(I)) contributes little to
∑

I ν ′(I, J). We
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may then bound
∑

I ν ′(I, J) (for each J ∈ J ) by

∑

I

ν ′(I, J) ≤
∑

(F,S)

∑

I

{ν ′(I, J) : (F, S) = (F (I), S(I)), I ∈ ϕ−1(J)}. (4.8)

The construction of a ν for which the inner sum is small is made possible by the accuracy

of the approximations. Note that there is a trade-off here: requiring greater accuracy

in the approximations restricts the number of I’s which contribute to the inner sum in

(4.8), but forces us to use a larger number of (F, S)’s.

We define the flow ν in Section 4.5. The proof that it behaves as desired is given in

Section 4.6, and we are then able to swiftly complete the proof of (4.6) in Section 4.7.

4.3 Volumes

In this section, we describe how to associate with each I ∈ I a volume W , which we

think of as the odd phase of I near v0, and a contour G0 which separates the volume

from the outer even phase of I. All but one of the salient properties of these objects

are easily derived from the construction in Section 4.3; the one remaining property —

the 2-linkedness of G0 — is a consequence of Proposition 2.7.1.

The following observation is used several times, so we record it as a lemma; its easy

proof is left to the reader.

Lemma 4.3.1 Let Σ be a graph, S ⊆ V (Σ), and T (the vertex set of) some component

of Σ− (S \ ∂?S). Then ∂?T ⊆ ∂?S.

Let I ∈ I, Z = Z(I) be as in Section 4.2, and set Z0 = ∂?Z. By the definition of

Z, it is clear that Z0 ⊆ Y and Z0 ∩ I = ∅. Let W ′ be the component of v0 in the graph

Γ− (Z \ Z0). By Lemma 4.3.1, ∂?W ′ ⊆ W ′ ∩ Z0 ⊆ Y .

Let W ′′ = W ′∪{x ∈ X|N(x) ⊆ W ′}. This is clearly connected, with ∂?W ′′ ⊆ ∂?W ′.

Now consider Γ− (W ′′ \ ∂?W ′′). This breaks into a number of components, one of

which, C say, contains ∆. Again using Lemma 4.3.1, we have ∂?C ⊆ C∩∂?W ′′. Finally,

set W = Γ \ (C \ ∂?C), G = W ∩ Y , A = W ∩ X, and G0 = ∂?W . As mentioned in

Section 4.2 we refer to W = W (I) as the volume of I, and G0 = G0(I) as the contour

of I.
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The next proposition collects the relevant properties of these objects. Once we have

these properties, we will not be concerned with how G,A etc. were derived from I.

Proposition 4.3.2

v0 ∈ A (4.9)

both C and W are connected; (4.10)

G0 = ∂?C; (4.11)

G = N(A) and A = {x ∈ X|N(x) ⊆ G}; (4.12)

G0 is 2-linked (4.13)

G0 ∩ I = ∅; (4.14)

N(G0) ∩ I ⊆ A; (4.15)

G0 ⊆ N(A ∩ I). (4.16)

Proof: Both (4.9) and the connectivity of C are immediate. To see that W is connected,

notice that each component of Γ − (W ′′ \ ∂?W ′′) must meet ∂?W ′′ (or it would be a

component of the connected graph Γ). Thus W is the union of the connected set W ′′

and a number of other connected sets each of which meets W ′′, so is itself connected.

So we have (4.10).

For (4.11): ∂?C ⊆ W ∩ Y and the connectivity of C give

x ∈ ∂?C ⇒ ∅ 6= N(x) ∩ C ⊆ C ∩X ⊆ C \W ⇒ x ∈ ∂?W,

so ∂?C ⊆ ∂?W ; and Lemma 4.3.1 and the connectivity of W give the reverse contain-

ment.

Connectivity of W and the fact that G0 ⊆ Y give G = N(A). That A ⊆ {x ∈
X|N(x) ⊆ G} follows from G = N(A) (or just ∂?W ⊆ Y ). For the reverse containment,

notice that x 6∈ W ⇒ N(x) ∩ W ⊆ G0 ⊆ W ′, whereas N(x) ⊆ W ′ would imply

x ∈ W ′′ ⊆ W ; so x 6∈ W ⇒ N(x) 6⊆ W .

The 2-linkedness of G0 follows from Proposition 2.7.1 (using (4.10) and (4.11).

For (4.14) recall that G0 = ∂?C ⊆ ∂?W ′′ ⊆ ∂?W ′ ⊆ Z0 and Z0 ∩ I = ∅.
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That N(G0) ∩ I ⊆ A follows from G0 ⊆ ∂?W ′, since N(∂?W ′) ∩ I ⊆ A.

Finally, v ∈ G0 ⇒ v ∈ Z0 ⇒ v ∼ I, so (4.16) follows from (4.15).

4.4 Shifts and ϕj

In this section, we define the shift operation, and take the first step towards defining

ϕ, the one-to-many map from I to J . We fix I ∈ I and take W,G, A and G0 to be as

in Section 4.3.

For j ∈ [−d, d] \ {0}, define σj , the shift operation in direction j, by

σj(v) = v + ej ,

where ej is the jth standard basis vector if j > 0 and ej = −e−j if j < 0, and set

Gj
0 = {v ∈ G0 : σ−1

j (v) 6∈ A} = G0 ∩ σj(X \A).

Proposition 4.4.1 For each j, the sets I \W , σj(I ∩W ) and Gj
0 are pairwise disjoint,

and their union is an independent set.

Proof: Trivially, σj(I)∩I = ∅, so in particular (I \W )∩σj(I∩W ) = ∅; (I \W )∩Gj
0 = ∅

is trivial (because Gj
0 ⊆ W ); and σj(I ∩W )∩Gj

0 = ∅ follows from the definition of Gj
0.

So the union is disjoint.

Clearly (I \W ), σj(I ∩W ) and Gj
0 are all independent sets. To show independence

of the union, we must show that there are no edges between any two of them. Since

∇(I \W,W ) = ∅ (by (4.15)) and σj(I∩W ) ⊆ W (by (4.14)), we have ∇((I \W ), (σj(I∩
W ) ∪Gj

0)) = ∅.
This leaves ∇(σj(I ∩ W ), Gj

0). Suppose, for a contradiction, that y ∈ Gj
0 and

σk(y) ∈ σj(I ∩ W ) for some k. Then z := σ−1
j (σk(y)) ∈ I ∩ W ∩ Y ⊆ G \ G0 (by

(4.14)), implying σ−1
j (y) = σ−1

k (z) ∈ A, contrary to the assumption y ∈ Gj
0. So

∇(σj(I ∩W ), Gj
0) = ∅.
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Define σ∗j (I) = (I \W ) ∪ σj(I ∩W ) and

ϕj(I) = {J : σ∗j (I) ⊆ J ⊆ σ∗j (I) ∪Gj
0}.

Then Proposition 4.4.1 implies

ϕj(I) ⊆ J .

Notice also that we recover I from j, J (∈ ϕj(I)) and W = W (I); namely, if we are

given W , j, and J ∈ ϕj(I), then

I = (J \W ) ∪ σ−1
j (J ∩ (W \Gj

0)). (4.17)

4.5 Defining the flow ν

If W , G, A and G0 are produced from I ∈ I as in Section 4.3, we write W (I), G(I),

A(I) and G0(I), noting that a given W etc. may correspond to more than one I.

Noting that A(I) determines W (I), G(I), and G0(I) we set

A = {A ⊆ X : A = A(I) for some I ∈ I}.

We always use a for |A| and g for |G| and set t = g − a. For each a and g set

I(a, g) = {I ∈ I : |A(I)| = a, |G(I)| = g}

and

A(a, g) = {A ⊆ X : A = A(I) for some I ∈ I(a, g)}.

Our tasks are to define ν, for which (4.5) will turn out to be obvious, and establish

(4.6).

Let us call I ∈ I small if |G(I)| ≤ d3 (we could get by with d9/4; see (4.42)), and

large otherwise. (Note that this definition — which will only be used in this chapter —

is unrelated to any previous definition of “small”.)

Most of our work (including everything in Sections 4.6) is geared towards large I

(though often valid in general). For most of our discussion we fix a and g, and aim to

bound the contribution of I(a, g) to (4.6). Of course these contributions must eventually

be summed, but this turns out not to add anything significant.
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For small I — an easy case, as we will see in Section 4.7 — we simply choose j = j(I)

to maximize |Gj
0(I)|, so that, since

∑

j

|Gj
0| = |∇(G,X \A)| = 2td, (4.18)

we have

|Gj
0| ≥ t. (4.19)

We then set

ν(I, J) = λ|J |−|I|(1 + λ)−|G
j
0| ∀J ∈ ϕ(I). (4.20)

(Note this satisfies (4.5). The separate treatment of small I is unnecessary if we only

want phase transition, but is needed for the “correct” bound in (4.3).)

To deal with large I, we appeal to the notions of approximation introduced in

Chapter 3. From now until Section 4.7 we fix a and g, set ψ =
√

2d and always take

I ∈ I(a, g) and A ∈ A(a, g).

We apply Lemma 3.3.1 to produce a set U = U(a, g) ⊆ 2Y × 2X with

|U| < exp[O(td−1/2 log3/2 d)] (4.21)

and a map π : A(a, g) −→ U such that for each A ∈ A(a, g), π(A) is a ψ-approximating

pair for A. (As noted in Section 3.1, the graph Γ satisfies the hypothesis of Lemma

3.3.1 with ` = 2d, and by (4.9), (4.12) and (4.13) we have A(a, g) ⊆ G(a, g).)

From now until the end of this chapter, we make the following convention: for

whatever G,A, F, S we have under discussion, we set H = Y \G, B = X \A, E = Y \F ,

T = X \ S, B0 = B ∩N(G), S0 = S ∩N(E), and E0 = E ∩N(S).

Now consider some (F, S) ∈ U . Notice that, for any A ∈ A(a, g) for which (F, S) is

a ψ-approximating pair,

Q := S0 ∪ E0

contains all the vertices of Γ whose locations in the partition Γ = G∪H ∪A∪B are as

yet unknown; namely, we have

F ⊆ G, T ⊆ B, S \ S0 ⊆ A, E \ E0 ⊆ H
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(the first two containments are just (3.7); S \ S0 ⊆ A follows from F ⊆ G, (4.12) and

the definition of S0, and E \E0 ⊆ H is similar).

From now on, whenever we are given an (F, S), we take Q to be as defined in the

preceding paragraph, and write ΓQ for the subgraph induced by Q.

We are now in a position to define ν (for large I). We fix (F, S) ∈ U and write

I ∼ (F, S) if (F, S) = π(A(I)).

To define ν(I, ·) for I ∼ (F, S), we first need to choose a direction j = j(I). Fix

such an I and let G = G(I), A = A(I), etc. The choice of j will depend only on A.

Observe that (using (3.9) and (3.10))

∑

j

|σj(S0 ∩A) ∩ E0| = |∇(S0 ∩A,G ∩ E0)| < |G ∩ E0|ψ

and
∑

j

|σ−1
j (E0) ∩ (S0 \A)| = |∇(E0, S0 \A)| < |S0 \A|ψ.

But (3.9), (3.10) and (3.6) imply |G ∩ E0|+ |S0 \A| < 2td/(2d− ψ), so that

∑

j

|σj(S0) ∩ E0| =
∑

j

(|σj(S0 ∩A) ∩ E0|+ |σ−1
j (E0) ∩ (S0 \A)|)

< 2tdψ/(2d− ψ). (4.22)

We assert that we can choose j so that

|Gj
0| > .8t (4.23)

and

|σj(S0) ∩ E0| < 5|Gj
0|ψ/d. (4.24)

To see this, let

P = {j ∈ [−d, d] \ {0} : |σj(S0) ∩ E0| ≥ 5|Gj
0|ψ/d}.

Then (4.22) gives

∑

j∈P

|Gj
0| ≤

d

5ψ

∑
|σj(S0) ∩ E0| < t

2d2

5(2d− ψ)
,
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so (using (4.18))
∑

j 6∈P

|Gj
0| > (1− d/(5(2d− ψ)))2td.

So there exists j 6∈ P with (say) |Gj
0| > .8t, which is what we want.

Having chosen j satisfying (4.23) and (4.24), we turn to defining ν(I, ·). Let

C = Cj(I) = Gj
0 ∩ F ∩ σj(S0) (= σj(S0 \A) ∩ F ),

and

D = Dj(I) = Gj
0 ∩ (σj(T ) ∪ (σj(S0) ∩ E0)).

Then

C ∪D is a partition of Gj
0. (4.25)

Setting α = α(λ) = λ/(1 + λ)2 and β = β(λ) = 1− αλ = (1 + 2λ)/(1 + λ)2, define

ν(I, J) =





(αλ)|C∩J |β|C\J |(λ/(1 + λ))|D∩J |(1 + λ)−|D\J |

= w(J)
w(I) α

|C∩J |β|C\J |(1 + λ)−|D| if j ∈ ϕj(I)

0 otherwise.

Then
∑

J

ν(I, J) = 1 ∀I (4.26)

(because of (4.25)). On the other hand we will show, for any J ∈ J ,

∑

I∼(F,S)

w(I)
w(J)

ν(I, J) ≤ 2dβt/2. (4.27)

4.6 Proof of (4.27)

We need one easy lemma. Given a bipartite graph Σ on P ∪ R and U ⊆ R, say that

a (vertex) cover K ∪ L ∪M of Σ with K ⊆ P , L ⊆ U and M ⊆ R \ U is legal (with

respect to U) if it is a minimal cover and

K = N(U \ L).

(Note that minimality implies K = N(R \ (L ∪M)).)
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Lemma 4.6.1 With notation as above, let K ∪L∪M be a legal cover with |K ∪L| as

small as possible. Then

(a) ∀K ′ ⊆ K |N(K ′) ∩ (U \ L)| ≥ |K ′|

and

(b) ∀L′ ⊆ L |N(L′) \K| ≥ |L′|.

Proof: (a) Given K ′ ⊆ K, let S = N(K ′) ∩ (U \ L),

K ′′ = {v ∈ K : N(v) ∩ U ⊆ S ∪ L} (⊇ K ′),

and T = N(K ′′) ∩ (R \ U). Then

(i) (K \K ′′) ∪ (L ∪ S) ∪ (M ∪ T ) is a minimal cover

(a straightforward verification using the fact that each vertex of K \K ′′ has a neighbor

in U \ (L ∪ S)), and

(ii) K \K ′′ = N(U \ (L ∪ S)).

Minimality of |K ∪L| thus implies |K \K ′′|+ |L∪S| ≥ |K|+ |L|, so |S| ≥ |K ′′| ≥ |K ′|.

(b) This is similar. Given L′ ⊆ L, let W = N(L′) \K and

L′′ = {u ∈ L ∪M : N(u) ⊆ K ∪W} (⊇ L′).

Then

(i) K ∪W ∪ ((L ∪M) \ L′′) is a minimal cover, and

(ii) K ∪W = N(U \ (L \ L′′)).

Minimality of |K∪L| thus implies |K∪W |+ |L\L′′| ≥ |K|+ |L|, and |W | ≥ |L′′| ≥ |L′|.

Proof of (4.27): Given (F, S), J and j, set

I? = I?(F, S, J, j) = {I ∼ (F, S) : j(I) = j, J ∈ ϕj(I)}.
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We will show
∑

I∈I?

w(I)
w(J)

ν(I, J) < βt/2,

which of course gives (4.27).

Set U = σ−1
j (J) ∩ S0. Suppose I ∈ I?, and set G = G(I), A = A(I), and

K = K(I) = G ∩ E0,

L = L(I) = U \A

and

M = M(I) = (S0 \ U) \A.

Then K ∪L∪M (= (G∪B)∩Q) is a minimal cover of ΓQ. (That it is a cover follows

from (4.12); for minimality, notice (e.g.) that each v ∈ G ∩ E0 has a neighbor in A,

which must be in S0 (using A ⊆ S and the definition of S0).) Moreover, we assert,

K = NΓQ
(U \ L). (4.28)

Proof: We show that each side of (4.28) contains the other. The obvious direction is

NΓQ
(U \ L) = NΓQ

(U ∩A) ⊆ N(A) ∩ E0 = G ∩ E0 = K.

For the reverse containment, suppose v ∈ K. Since K ⊆ G0, (4.16) says that v has a

neighbor u ∈ A ∩ I. Then u ∈ S0 (because v ∈ E0 6∼ S \ S0), implying u ∈ U (since

u ∈ A ∩ I ⇒ σj(u) ∈ J). And of course u 6∈ L (since u ∈ A).

Thus K∪L∪M is a legal cover of ΓQ with respect to U in the sense of Lemma 4.6.1.

Now fix K0 ∪L0 ∪M0, a legal cover of ΓQ with respect to U with |K0 ∪L0| as small

as possible.

Given I ∈ I?, let K = K(I) etc. be as above and set K ′ = K0 \K, L′ = L0 \ L.

Then by Lemma 4.6.1,

|L| ≥ |K ′|+ |L0 \ L′|, |K| ≥ |L′|+ |K0 \K ′|. (4.29)
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Furthermore, we assert,

K = (K0 \K ′) ∪NΓQ
(L′). (4.30)

The point of this is that it says that (K ′, L′) determines G (so also A), and therefore

I ∈ I? (because of (4.17)).

To see (4.30), just observe that the only point requiring proof is K \K0 ⊆ NΓQ
(L0 \

L), and that this follows from (4.28) once we notice that ∇(K \K0, U \ (L0 ∪ L)) = ∅
(since K0 ∪ L0 covers ∇(E0, U)).

Now with C = Cj(I), D = Dj(I) as in the discussion preceding (4.25), observe that

C ∩ J = σj(L \ σ−1
j (E0)) and C \ J = σj(M \ σ−1

j (E0)),

and that we may partition D as

D = (σj(T ) ∩ F ) ∪ (K \ σj(S0 \ (L ∪M))).

Thus, with inequalities justified below,

w(I)
w(J)

ν(I, J) = α|σj(L\σ−1
j (E0))|β|σj(M\σ−1

j (E0))|

· (1 + λ)−(|σj(T )∩F |+|K\σj(S0\(L∪M))|)

≤ α|L|β|M |(1 + λ)−(|K|+|σj(T )∩F |)

· α−(|σj(S0∩A)∩K|+|σ−1
j (E0)∩(S0\A)|) (4.31)

≤ α|L|(1 + λ)−|K|β|G
j
0|−(|K|+|L|)α−O(|Gj

0|ψ/`) (4.32)

≤ βδg/2α|L|(1 + λ)−|K|β−(|K|+|L|) (4.33)

= βδg/2

(
1 + λ

1 + 2λ

)|K|( λ

1 + 2λ

)|L|

≤ βδg/2

(
1 + λ

1 + 2λ

)|L′|+|K0\K′|( λ

1 + 2λ

)|K′|+|L0\L′|
(4.34)

= βδg/2

(
1 + λ

1 + 2λ

)|K0|( λ

1 + 2λ

)|L0|( λ

1 + λ

)|K′|−|L′|
.

(In (4.31) we used α−1 = max{α−1, β−1, 1 + λ}; in (4.32) we used Gj
0 ⊆ σj(L ∪M) ∪

K ∪ (σj(T )∩F ), (1+λ)−1 < β and (4.24); (4.33) is from (4.23), using (ψ/`) log(1/α) =

o(log(1/β)), which is a consequence of

λ2 = ω((ψ/d) log(1/λ)) (4.35)
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for small λ, and easily verified when λ is larger; and (4.34) comes from (4.29).)

Thus, recalling — see the remark following (4.30) — that each (K ′, L′) corresponds

to at most one I ∈ I?,

∑

I∈I?

w(I)
w(J)

ν(I, J) ≤ βt/2

(
1 + λ

1 + 2λ

)|K0|( λ

1 + 2λ

)|L0| ∑

K′⊆K0

∑

L′⊆L0

(
λ

1 + λ

)|K′|−|L′|

= βt/2.

And then varying (F, S) and j we find (referring to (4.21)) that for λ ≤ 2 (say),

∑

I∈I(a,g)

w(I)
w(J)

ν(I, J) =
∑

(F,S)∈U

∑

j

∑
{w(I)
w(J)

ν(I, J) : I ∈ I?(F, S, j, J)}

≤ 2|U|dβt/2

< 2d exp[{O(d−1/2 log3/2 d)− Ω(λ2)}t]

< exp[−Ω(λ2t)], (4.36)

while for larger λ,
∑

I∈I(a,g)

w(I)
w(J)

ν(I, J) < λ−Ω(t).

4.7 Proof of (4.6)

Now fixing J ∈ J , we are ready to verify (4.6) (thus completing the proofs of Theo-

rems 4.1.1 and 1.1.1).

Before we begin, we note that Lemma 2.5.1 has the following consequences for t:

t =





Ω(g1−1/d/d) for all g

g −O(g/d) if g = dO(1).
(4.37)

We deal first with large I’s (recall I is large if |G(I)| > d3). Here we have already

done the work: Assuming first that λ ≤ 2, and with justifications to follow, we have

∑

I large

w(I)
w(J)

ν(I, J) =
∑

g>d3

∑
t

∑

I∈I(a,g)

w(I)
w(J)

ν(I, J)
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=
∑

g>d3

∑
t

exp[−Ω(λ2t)] (4.38)

≤
∑

g>d3

∑
{exp[−Ω(λ2t)] : t ≥ Ω(d−1g1−1/d)} (4.39)

≤
∑

g>d3

exp[−Ω(λ2(d−1g1−1/d))] (4.40)

< exp[−Ω(λ2d3(1−1/d)−1)] (4.41)

< exp[−ω(λd)]. (4.42)

The main inequality (4.38) is just (4.36), and (4.39) comes from (4.37). In (4.40) we

have absorbed a factor λ−2 in the exponent. One way to see the inequality in (4.41) is

to use

(1− ε)g1−δ
< (1− ε)tK1−δ

for t1/(1−δ)K < g ≤ (t + 1)1/(1−δ)K

with K = d3, δ = 1/d and 1− ε = exp[−Ω(λ2d−1)].

For λ > 2 a similar analysis gives

∑

I large

w(I)
w(J)

ν(I, J) ≤ λ−Ω(d2). (4.43)

Finally we turn to the easy case of small I. For a (nonempty) I(a, g) with g <

d3, (4.37) gives a = O(g/d), so that, since each A(I) is 2-linked and contains v0,

Lemma 2.4.1 bounds the number of possibilities for A ∈ A(a, g) by

exp[O((g/d) log d)].

But we also know (see (4.17)) that, given J and j, I ∈ ϕ−1
j (J) is determined by

A(I), and that (by (4.20), (4.19), and again (4.37))

w(I)
w(J)

ν(I, J) = (1 + λ)−|G
j
0(I)|

≤ (1 + λ)−t

= (1 + λ)−(1−O(1/d))g.

So finally, noting that A(I) 6= ∅ implies |G(I)| ≥ 2d, we have

∑

I∈I(a,g)

w(I)
w(J)

ν(I, J) < 2d exp[O((g/d) log d)](1 + λ)−(1−O(1/d))g

< (1 + λ)−(1−o(1))g
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and

∑

I small

w(I)
w(J)

ν(I, J) =
∑

2d≤g≤d3

∑

a≤g

∑

I∈I(a,g)

w(I)
w(J)

ν(I, J)

<
∑

2d≤g<d3

g(1 + λ)−(1−o(1))g

≤ (1 + λ)−(1−o(1))2d;

and combining this with (4.42) or (4.43) gives (4.6).
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Chapter 5

Homomorphisms from the Hamming cube to Z

In this chapter, we consider the problem of (asymptotically) counting homomorphisms

from the Hamming cube Qd to the Hamming graph on Z. (See Section 1.2 for a detailed

introduction to the problem.)

In Section 5.1 we use Lemma 2.4.5 to reduce Theorem 1.2.4 to the problem of

counting the number of homomorphisms which are predominantly 0 on E . The easy

lower bounds on the number of homomorphisms which take on four and five values

are given in Section 5.2. In Section 5.3 we examine a general type of sum over small

subsets of E and establish some of its properties. In Section 5.4 we write down an

explicit sum of the type examined in Section 5.3 for the number of homomorphisms

which are predominantly 0 on E . The rest of the chapter is devoted to estimating this

sum. In Section 5.5 we arrive at the heart of the matter, using the results of Chapter

3 to show that the set of “nice” subsets of E can be “well-approximated” in a precise

sense by a “small” collection; this allows us to swiftly complete the proof of Theorem

1.2.4 in Section 5.6. Finally, in Section 5.7 we elaborate on a comment made in the

introduction to this problem to the effect that Theorem 1.2.4 contains the asymptotics

of the number of independent sets in Qd originally derived in [24] (and [20]).

5.1 Reduction to mostly constant

We begin the proof of Lemma 1.2.4 by using Lemma 2.4.5 to reduce the problem to

that of counting homomorphisms which mainly take a single value on E .

There is an inherent odd-even symmetry in the problem; we now reformulate slightly

to make use of this. Write

A = {f : V → Z : u ∼ v ⇒ |f(u)− f(v)| = 1}
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and write B for the quotient of A by the equivalence relation

f ≡ g ⇐⇒ f − g is constant on V .

For each f ∈ A write [f ] for the equivalence class of f in B. Noting that R is constant

on equivalence classes, we may define

Bi = {[f ] ∈ B : |R(f)| = i}.

Clearly |Bi| = |Fi| for each i (F is a complete set of representatives for B).

For f ∈ A, we say that f is mostly constant on E if there is some c such that

{v ∈ E : f(v) 6= c} is small (see Section 2.1 for the definition of small; the constant

α in that definition will be specified in the proof of Lemma 5.1.2). We define mostly

constant on O analogously. These definitions respect the equivalence relation, so we

may define

BE = {[f ] ∈ B : f is mostly constant on E}.

Define BO analogously. By symmetry, |BE | = |BO| (any automorphism of Qd that sends

E to O induces a bijection between the two sets).

Lemma 5.1.1

|BE ∩ BO| = e−Ω(d)|B|.

Proof: To specify an [f ] ∈ BE ∩ BO we first specify the predominant values of the

representative f on E and O. W.l.o.g. we may assume that the predominant value on

E is 0, and so the predominant value on O is one of ±1. We then specify the small sets

from E and O on which f does not take the predominant values, and finally the values

of f on these small sets. Noting that once f(v) has been specified for any v ∈ V there

are most 2d + 1 values that f can take on any other vertex and that 2M is a trivial

lower bound on |B|, we get

|BE ∩ BO| ≤ 2
∑

i,j≤αd

(
M

i

)(
M

j

)
(2d + 1)i+j

≤ e−Ω(d)|B|.
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Lemma 5.1.2

|B| = (2± e−Ω(d))|BE |.

Proof: For f ∈ A, set C(f) = {v ∈ V : f |N(v) is constant} (extending the definition

given in Section 2.4). We choose a uniform member [f ] of B by choosing f uniformly

from F . For [f ] and u, v ∈ V , let Qu be the event {u ∈ C(f)}, Quv = Qu ∩ Qv and

Quv = Qu ∩Qv. Write Ku = Ku(f) for the set of vertices that can be reached from u

in C(f) via steps of size exactly 2, and let Q∗
uv be the event {v ∈ Ku}. (Note that if

f, g ∈ A are equivalent then C(f) = C(g), so all these events are well defined.)

Let u and v be two vertices of the same parity. We claim that Quv ∪ Q∗
uv occurs

with probability 1− e−Ω(d). For, let ua1a2 . . . a2k−1v be a u-v path of length at most d

(the diameter of Qd). Writing a0 for u and a2k for v, we have

Quv ∪Q∗
uv ⊇ ∩2k−1

i=0 (Qaiai+1 ∪Qaiai+1).

By Lemma 2.4.5, P(Qaiai+1 ∪Qaiai+1) = 1− e−Ω(d) for each i. Hence P(Quv ∪Q∗
uv) ≥

1− de−Ω(d) = 1− e−Ω(d), as claimed.

We therefore have, for fixed u ∈ V and any v of the same parity as u, P(Q∗
uv|Qu) >

1− c−d, where c > 1 is fixed. So, conditioning on Qu, we have

E(|{v : ρ(u, v) even, v 6∈ Ku}|) ≤ (2/c)d,

so that, by Markov’s Inequality (with the constant c′ chosen so that 2/c < c′ < 2),

P(|Ku| < M − (c′)d|Qu) ≤ (2/cc′)d = e−Ω(d). (5.1)

If u 6∈ C(f), then Ku(f) = ∅, so that P(|Ku| < M − (c′)d|Qu) = 1. By symmetry,

P(Quv) is the same for every adjacent u and v, and this together with Lemma 2.4.5

gives 1/2 + e−Ω(d) > P(Qu),P(Qu) > 1/2− e−Ω(d). Combining these observations with

(5.1), we get

P(|Ku| < M − (c′)d) ≤ 1/2 + e−Ω(d).

Noting that f is constant on the neighborhood of Ku, this says (taking u to be any

vertex in O) that there is a constant β < 2 such that

P(f is constant on a subset of E of size at least M − βd) > 1/2− e−Ω(d).
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Taking α = β in the definition of small, this says

|BE | ≥ (1/2− e−Ω(d))|B|.

The lemma now follows from Lemma 5.1.1.

It is now convenient to choose as a complete set of representatives for BE the col-

lection

FE = {f ∈ A : E \ f−1(0) is small}.

Set

FEi = {f ∈ FE : |R(f)| = i}.

Noting that |FE3 | ≥ 2M , we see that Theorem 1.2.4 will now follow from

Theorem 5.1.3

|FE | ≤ (e + e−Ω(d))2M (5.2)

|FE4 | ≥ (2
√

e− 2− e−Ω(d))2M (5.3)

|FE5 | ≥ (e− 2
√

e + 1− e−Ω(d))2M . (5.4)

It is this that we proceed to prove.

5.2 Lower bounds on |FE
4 | and |FE

5 |

The aim of this section is to prove (5.3) and (5.4).

With each sparse A ⊆ E of size at least 2 we associate a subset FE5 (A) ⊆ FE5 of size

(2|A| − 2)2M−d|A| = 2MM−|A|(1− 2−|A|+1)

consisting of those f ∈ FE5 for which R(f) = [−2, 2] and f−1({±2}) = A (on A, choose

values for f from {±2}, choosing at least one 2 and at least one −2; on E \A give f value

0; and on O \N(A) choose values from {±1}, all choices made independently). Then

FE5 (A)∩FE5 (B) = ∅ whenever A 6= B. Noting that there are at least
(
M
k

)−Md2
(
M−2
k−2

)
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sparse subsets of E of size k, and that for k ≤ d, this number is (1 − e−Ω(d))
(
M
k

)
, we

can lower bound |FE5 | by

∣∣FE5
∣∣ ≥ 2M

∑

k≥2

|{A ⊆ E : A sparse, |A| = k}|M−k(1− 2−k+1)

≥ 2M (1− e−Ω(d))
d∑

k=2

(
M

k

)
M−k(1− 2−k+1)

≥ 2M (1− e−Ω(d))
d∑

k=2

(1/k!)(1− 2−k+1)

≥ 2M (1− e−Ω(d))((e− 2)− 2(
√

e− 3/2))

≥ 2M (e− 2
√

e + 1− e−Ω(d)),

so we have (5.4).

We do something similar for (5.3). With each nonempty, sparse A ⊆ E we associate

a subset FE4 (A) ⊆ FE4 of size

21+M−d|A| = 2MM−|A|2−|A|+1

consisting of those f ∈ FE4 for which either R(f) = [−2, 1] or R(f) = [−1, 2] and

f−1({±2}) = A (choose a value from ±2 for f to take on A; on E \ A give f value 0;

and choose values from ±1 on O \N(A), all choices made independently). So we have

∣∣FE4
∣∣ ≥ 2M

∑

k≥1

|{A ⊆ E : A sparse, |A| = k}|M−k2−k+1

≥ 2M (2
√

e− 2− e−Ω(d)).

5.3 Sums over small subsets of E

In this section, we examine a certain kind of sum that will arise when we try to write

down an explicit expression for |FE |. Specifically, we prove

Lemma 5.3.1 Suppose that g : 2E → R+ satisfies

g(A) =
∏
{g(Ai) : Ai ≺ A}, (5.5)

g({y}) = c2−d ∀y ∈ E for some constant c > 0 (5.6)
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and
∑

A nice
g(A) = e−Ω(d). (5.7)

Then ∣∣∣∣∣∣
∑

A ⊆ D, A small
g(A)− (1 + c2−d)|D|

∣∣∣∣∣∣
= e−Ω(d) ∀D ⊆ E .

Proof: All summations below are restricted to subsets of D. We begin by observing

that (1 + c2−d)|D| =
∑

A c|A|2−d|A| and that if A is sparse then g(A) = c|A|2−d|A|, so

that∣∣∣∣∣∣
∑

A small
g(A)− (1 + c2−d)|D|

∣∣∣∣∣∣
≤

∑′g(A) +
∑′′c|A|2−d|A| +

∑′′′c|A|2−d|A|, (5.8)

where
∑′ is over A small and non-sparse,

∑′′ is over A large and
∑′′′ is over A non-

sparse.

We bound each of the terms on the right-hand side of (5.8). For the first we have

∑′g(A) ≤
∑{

g(A′)g(A′ \A) : A′ nice, A small, A′ ≺ A
}

≤
∑

A′ nice
g(A′)

∑

A small
g(A)

= e−Ω(d)
∑

A small
g(A). (5.9)

For the second we have

∑′′c|A|2−d|A| ≤
∑

|A|≥d

c|A|2−d|A|

≤
|D|∑

i=d

(|D|
i

)
(c2−d)i

≤
∑

i≥d

ci/i!

= e−Ω(d). (5.10)

Finally, for the third we have

∑′′′c|A|2−d|A| ≤
∑

x,x′∈D, ρ(x,x′)=2

c22−2d
∑

A

c|A|2−d|A|

≤ |D|c2d22−2d(1 + c2−d)|D|

= e−Ω(d). (5.11)
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Combining (5.9), (5.10) and (5.11) we get
∣∣∣∣∣∣

∑

A small
g(A)− (1 + c2−d)|D|

∣∣∣∣∣∣
= e−Ω(d)


 ∑

A small
g(A) + 1


 (5.12)

= e−Ω(d). (5.13)

(We get (5.13) from (5.12) because the latter implies that
∑

A small g(A) is bounded.)

The most important g that we will be considering is

g(A) = 2−|N(A)|+|B(A)|.

It’s easy to see that this satisfies (5.5) and (5.6) (with c = 1). It is far from obvious

that it satisfies (5.7); Sections 5.5 and 5.6 are devoted to the proof of this fact, which

we state now for use in Section 5.4.

Theorem 5.3.2
∑

A ⊆ E nice
2−|N(A)|+|B(A)| = e−Ω(d).

5.4 Proof of (5.2)

In this section, we write an explicit sum of the type introduced in Section 5.3 for |FE |
and use Lemma 5.3.1 to estimate it, modulo Theorem 5.3.2. This will give (5.2).

For each small A ⊆ E , set

FE(A) = {f ∈ FE : f−1(0) = E \A}.

We specify f ∈ FE(A) by the following procedure. First, noting that f must be either

always positive or always negative on a 2-component of A, we specify a sign (±) for

each such 2-component. Next, we specify a nested sequence

A = C2 ⊇ C4 ⊇ . . . ⊇ C2[d/2].

For each i = 1, . . . , [d/2], C2i = {u ∈ E : |f(u)| ≥ 2i}. Because the diameter of Qd is d,

we have |f(u)| ≤ 2[d/2] ∀u ∈ E , so this second step completes the specification of f on

E . Note that not every sequence of C2i’s gives rise to a legitimate f ∈ FE .
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To specify f on O, first specify a value from ±1 on each vertex of O \ N(A),

and then, for each i = 1, . . . , [d/2], specify a value from 2i ± 1 for |f(u)| for each

u ∈ B(C2i) \N(C2i+2) (note that the sign of f(u) for such u has been determined by

the specification of signs on A). To see that this completes the specification of f on O,

note that we have a choice for the value of |f | at u ∈ N(A) iff f is constant on N(u) iff

u ∈ B(C2i) \N(C2i+2) for some 1 ≤ i ≤ [d/2] (setting C2[d/2]+2 = ∅), and that in this

case we can choose from two possible values, 2i± 1.

So, noting that N(C2i+2) ⊆ B(C2i) for each i = 1, . . . , [d/2], we have

|FE(A)| = 2c(A)+M−|N(A)|+|B(A)|∑
[d/2]∏

i=2

2−|N(C2i)|+|B(C2i)|

where the sum — here and in the next line — is over all legitimate choices of C2 ⊇
. . . ⊇ C2[d/2]. Setting

h(A) = 2c(A)−|N(A)|+|B(A)|∑
[d/2]∏

i=2

2−|N(C2i)|+|B(C2i)|

we get

|FE | = 2M
∑

A ⊆ E small
h(A).

It is easy to check that h satisfies (5.5) and (5.6) (with c = 2). To see that it satisfies

(5.7), note that for each A ⊆ E small, each C2i is a small subset of A, and so we can

crudely upper bound h(A) by

h(A) ≤ 2c(A)−|N(A)|+|B(A)|


 ∑

C ⊆ A small
2−|N(C)|+|B(C)|




[d/2]

≤ 2c(A)−|N(A)|+|B(A)|
(
(1 + 2−d)αd

+ e−Ω(d)
)[d/2]

(5.14)

≤ (1 + o(1)) 2c(A)−|N(A)|+|B(A)|.

The inequality in (5.14) is obtained by applying Lemma 5.3.1 and Theorem 5.3.2, and

(5.7) for h now follows directly from Theorem 5.3.2.

We can now easily establish (5.2), thus completing the proofs of Theorems 5.1.3 and

1.2.4. Applying Lemma 5.3.1, we have (where
∑′ is over A ⊆ E small)

∣∣|FE | − e2M
∣∣ ≤ 2M

(∣∣∣
∑′h(A)− (1− 2−d+1)|E|

∣∣∣ +
∣∣∣(1− 2−d+1)|E| − e

∣∣∣
)

= e−Ω(d)2M .
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5.5 Using approximation

We now begin the proof of Theorem 5.3.2. The approach will be to partition the set of

A’s over which we are summing according to the sizes of [A], N(A), B(A) and N(B(A))

(note that the summand in Theorem 5.3.2 is constant on each partition class). The

bulk of the work will be in bounding the sizes of the partition classes.

Given A ⊆ E , set G = G(A) = N(A), B = B(A) and H = H(A) = N(B). In what

follows, G, B and H are always understood to be G(A), B(A) and H(A) for whatever

A is under discussion. Note that B ⊆ G is a closed set, and H ⊆ A.

Given a, g, b and h, set

H = H(a, g, b, h) = {A ⊆ E 2-linked: |[A]| = a, |G| = g, |B| = b and |H| = h} .

The aim of this section is to prove

Lemma 5.5.1 For each a, g, b and h,

|H| < M2g−b−Ω(g/ log d).

Proof: By Lemma 3.3.4 there is a family X ∈ 2O × 2E × 2E × 2O with

|X | ≤ 2O(g log d/
√

d)

such that for each A ∈ H there is a
√

d-approximating quadruple (F, S, P, Q) for [A] in

X (here we are using the fact that if A is 2-linked then [A] is also). By Lemma 3.2.5

each such (F, S, P, Q) satisfies

|S| ≤ |F |+ O(g/
√

d) (5.15)

and

|Q| ≤ |P |+ O(h/
√

d). (5.16)

Lemma 5.5.1 now follows from

Lemma 5.5.2 For each (F, S, P,Q) ∈ 2O × 2E × 2E × 2O satisfying (5.15) and (5.16),

there are at most 2g−Ω(g/ log d)−b A’s in H satisfying

F ⊆ G,S ⊇ [A], P ⊆ H and Q ⊇ B. (5.17)
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Proof: By Lemma 2.6.1, there is an absolute constant γ > 0 (independent of a, g, b

and h) such that

g − a > γg and h− b > γh. (5.18)

Say that Q is small if |Q| < b + γh/(4 log d), and large otherwise, and that S is small if

|S| < g− γg/(4 log d) and large otherwise. (Note that this definition — which will only

be used in this section — is unrelated to any previous definition of “small”.)

We can obtain all A ∈ H(a, g, b, h) satisfying (5.17) as follows.

We begin by identifying a subset D of A which can be specified relatively “cheaply”:

if Q is small, we pick B ⊆ Q with |B| = b and take D = N(B); if Q is large, we simply

take D = P (recalling that P ⊆ H ⊆ A).

If S is small, we complete the specification of A by choosing A \D ⊆ S \D. If S

is large, we first complete the specification of G by choosing G \ F ⊆ N(S) \ F . Note

that in this case, (5.15) implies

|G \ F | < γg/(3 log d). (5.19)

We then complete the specification of A by choosing A \D ⊆ [A] \D (noting that we

do know [A] \D at this point).

This procedure produces all possible A’s (and more). Before bounding the number

of outputs, we gather together some useful observations.

From (5.15) and (5.16) we have

|S| = O(g) and |Q| = O(h). (5.20)

If Q is small then there are at most

∑

i≤γh/(4 log d)

( |Q|
|Q| − i

)
≤ 2γh/3 (5.21)

possibilities for D, and in this case |D| = h; while if Q is large there is just one possibility

for D, and in this case (using (5.16))

|D| = |P | > |Q| − Ω(h/
√

d)

> b + γh/(4 log d)− Ω(h/
√

d)

≥ b + γh/(5 log d). (5.22)
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If S is large then (since |N(S) \ F | ≤ d|S| ≤ O(dg); see (5.20)) the number of

possibilities for G \ F is at most

∑

i<γg/(3 log d)

(
O(gd)

i

)
≤ 2γg/2. (5.23)

We now bound the number of outputs of the procedure, considering separately the

four cases determined by whether S and Q are large or small.

If S and Q are both small then the number of possibilities for A is at most

2γh/3+g−γg/(4 log d)−h < 2g−γg/(4 log d)−b−2γh/3 (5.24)

(using (5.21) and the first part of (5.18)). If S is small and Q is large then the total is

at most

2g−γg/(4 log d)−b−γh/(5 log d) (5.25)

(using (5.22)).

If Q is small then |[A] \ D| = a − h, so that if S is large (and Q small) then the

number of possibilities for A is at most

2γh/3+γg/2+a−h < 2g−γg/2−b−2γh/3 (5.26)

(here using (5.21), (5.23) and both parts of (5.18)). Finally, if Q is large then |[A]\D| ≤
a − b − γh/(5 log d) (see (5.22)), so that if S and Q are both large the number of

possibilities for A is at most

2γg/2+a−b−γh/(5 log d) < 2g−γg/2−b−γh/(5 log d). (5.27)

Noting that h ≤ g, the lemma follows from (5.24), (5.25), (5.26) and (5.27).

5.6 Proof of Theorem 5.3.2

We say that a nice A ⊆ E is of type I if |[A]| < d/2, of type II if d/2 ≤ |[A]| < d2 and of

type III otherwise. We consider the portions of the sum in Theorem 5.3.2 corresponding

to type I, II and III A’s separately.
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If A is of type I, then |A| < d/2 and by Lemma 2.6.2, |N(A)| ≥ d|A|−2|A|(|A|−1).

Note also that in this case, B(A) = ∅. By Lemma 2.4.1, for each 2 ≤ i < d/2, there are

at most M2O(i log d) < 2d+O(i log d) 2-linked subsets of E of size i. So

∑

A of type I
2−|N(A)|+|B(A)| ≤

d/2∑

i=2

2d+O(i log d)−di+2i(i−1)

= e−Ω(d). (5.28)

We do something similar if A is of type II. Here Lemma 2.6.2 gives |N(A)| ≥ Ω(d)|A|
and |B(A)| ≤ O(1/d)|A| (recalling that N(B) ⊆ A), and so

∑

A of type II
2−|N(A)|+|B(A)| ≤

d2∑

i=d/2

2d+O(i log d)−Ω(d)i+O(1/d)i

= e−Ω(d). (5.29)

We partition the set of A’s of type III according to the sizes of [A], N(A), B(A) and

H(A)(= N(B(A))) and use Lemma 5.5.1 to bound the sizes of the partition classes. In

this case we have |N(A)| ≥ d2. So (summing only over those values of a, g, b and h for

which H(a, g, b, h) 6= ∅ and g ≥ d2, and with the inequalities justified below)

∑

A of type III
2−|N(A)|+|B(A)| =

∑

a,g,b,h

|H(a, g, b, h)|2−g+b

≤ M
∑

a,g,b,h

2−Ω(g/ log d) (5.30)

< M4
∑

g≥d2

2−Ω(g/ log d) (5.31)

≤
(
M4/(1− 2−Ω(1/ log d))2

)
2−Ω(d2/ log d)

= e−Ω(d). (5.32)

Here (5.30) is from Lemma 5.5.1 and in (5.31) we use the fact that there are fewer than

M choices for each of a, b and h.

Combining (5.28), (5.29) and (5.32) we have Theorem 5.3.2.

5.7 Independent sets in the cube

As mentioned in the introduction, we may quickly derive from Theorem 1.2.4 the asymp-

totics of the number of independent sets in Qd established in [20] and [24]. This reflects
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the fact that our approach is very similar to that of [24]. The main difference is our

use of Lemma 2.4.5. The analog of Theorem 5.3.2 in [24] is

∑{
2−|N(A)| : A ⊆ E , A 2-linked, |A| > 1, |[A]| < M/2

}
= e−Ω(d);

Lemma 2.4.5 allows us to replace M/2 by (2−Ω(1))d here, which considerably simplifies

the proof of Lemma 3.3.5.

Write I = I(Qd) for the set of independent sets in Qd, and for each a < b ∈ Z set

F[a,b] = {f ∈ F : R(f) ⊆ {a, . . . , b}}.

There is a bijection from F[−1,2] ∪ F[0,3] to I given by

f −→




f−1({−1, 2}) if f ∈ F[−1,2]

f−1({0, 3}) if f ∈ F[0,3]

.

By inclusion-exclusion and symmetry, we have

|F4| = |F[−3,0]|+ |F[−2,1]|+ |F[−1,2]|+ |F[0,3]|

−2(|F[−2,0]|+ |F[−1,1]|+ |F[0,2]|) + |F[−1,0]|+ |F[0,1]|

= 2(|F[−1,2]|+ |F[0,3]|)− 2|F≤3| − 2|F[−1,0]|

= 2|I| − 2|F≤3| − 2

and so by Theorem 1.2.4
∣∣|I| − 2

√
e2M

∣∣ = e−Ω(d)2M .
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