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Abstract
We define the notion of an ultrafilter on a set, and present three applications. The

first is an alternative presentation of the Banach limit of a bounded sequence. The
second is a proof of Arrow’s Theorem, with an amusing corollary for infinite societies.
The third is Glazer’s startling proof of Hindman’s Theorem from Ramsey Theory.

These notes were prepared to accompany the author’s lectures for a Combinatorics
and Logic reading seminar at the University of Notre Dame in fall 2009.

1 Introduction

What constitutes a “large” subset of a set? That is, if F is the collection large subsets of a
set X, what properties might we expect F to satisfy?

Here are two quite natural properties:

• X ∈ F and ∅ 6∈ F , and

• If F ∈ F and F ′ ⊇ F then F ′ ∈ F .

Other properties might be open to debate. Two possibilities are

• There cannot be F ∈ F and G ∈ F with F ∩G = ∅, and

• If F ∈ F and F ′ 6∈ F for some F ′ ⊆ F , then F \ F ′ ∈ F .

This last property proposes a “robustness”: a large set cannot become non-large by the
removal of a non-large set. A consequence is that if F,G ∈ F then so is F ∩ G. For if
F ∩G 6∈ F then both F \ (F ∩G), G \ (F ∩G) ∈ F ; but these sets are disjoint.

The notion of an ultrafilter, introduced by Riesz [11] in a talk at the 4th ICM, captures
exactly the sense of largeness suggested by these four properties. In the next two sections we
formally define and derive some properties, basic and otherwise, of ultrafilters. In the last
three sections we present applications of ultrafilters to analysis, voting and combinatorics.

∗Department of Mathematics, University of Notre Dame, 255 Hurley Hall, Notre Dame IN 46556;
dgalvin1@nd.edu.
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2 Filters and Ultrafilters

Definition 2.1 A filter on a set X is a set of subsets F ⊆ 2X satisfying

1. X ∈ F and ∅ 6∈ F

2. If A ∈ F and B ∈ F then A ∩B ∈ F

3. If A ∈ F and B ⊇ A then B ∈ F .

An ultrafilter is a maximal filter.

More generally, filters may be defined on any partially ordered set. There is a slight confusion
of terminology here; many combinatorics textbooks define a filter to be an F ⊆ 2X satisfying
only the third of our conditions above.

Example 2.2 For ∅ 6= S ⊆ X, the set F(S) = {A : S ⊆ A} is a filter. It is not an
ultrafilter unless S = {x} is a singleton. In this case we write F(x) for F(S); F(x) is called
the principle ultrafilter on x.

Our first result is that every filter extends to an ultrafilter. This requires the axiom of
choice and one definition.

Definition 2.3 A non-empty family I ⊆ 2X of subsets of X has the finite intersection
property (FIP) if the intersection of any finite collection of elements from I is non-empty.

For example, a filter has the FIP.

Lemma 2.4 If F is a non-empty family of subsets of X with the FIP then there is an
ultrafilter F ′ ⊇ F . In particular, every filter is contained in an ultrafilter.

Proof: Let X be the collection of subsets of 2X that contain F and have the FIP. X is a
non-empty poset (partially ordered by inclusion). The union of the elements of a chain in
this poset is also in the poset (for any finite collection of sets from the union, there must be
some element of the chain that contains all of them, so they have non-empty intersection).
So every chain has an upper bound and by Zorn’s lemma there is a maximal element F ′,
which we claim is an ultrafilter. We have X ∈ F ′ since if not we could add it, contradicting
maximality of F ′, and since F ′ has the FIP, ∅ 6∈ F ′. For any A ∈ F ′ and B ⊇ A we must
have B ∈ F ′, for if not we could add B without damaging the FIP, a contradiction since F ′
is maximal. For the same reason, for A,B ∈ F ′ we have A∩B ∈ F ′. So F ′ is an filter. It is
maximal (as a filter) since if we add any set we get something which does not have the FIP
and so cannot be a filter. 2

Remark 2.5 We could have presented a simpler argument: if X is the set of filters that
contain F , partially ordered by inclusion, then X is non-empty and every chain in X has
an upper bound (the union of an increasing sequence of filters is a filter) and so by Zorn’s
lemma there is a maximal filter containing F . We give the more involved argument as it will
be helpful when we want to derive some further properties of ultrafilters.
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Corollary 2.6 Let F and G be ultrafilters on a set X.

1. If B is such that A ∩B 6= ∅ for all A ∈ F then B ∈ F .

2. If A and B are such that A ∪B ∈ F then at least one of A,B ∈ F .

3. If F 6= G then there are A ∈ F , B ∈ G with A ∩B = ∅.

Proof: For the first statement, observe that B = {A∩B : A ∈ F} is non-empty and has the
FIP, so extends to an ultrafilter F ′. We have B ∈ B so B ∈ F ′. But also F ⊆ F ′ (for each
A ∈ F we have A ∩B ∈ B, so A ∩B ∈ F ′, so A ∈ F ′) and so F = F ′ and B ∈ F .

For the second statement, if we have both A,B 6∈ F then (by the first statement) there
are C,D ∈ F with A ∩ C = ∅ and B ∩ D = ∅, so (A ∪ B) ∩ (C ∩ D) = ∅, so A ∪ B 6∈ F
(since C ∩D ∈ F).

For the last statement, there must be B ∈ G with B 6∈ F (else G ⊆ F) and so A∩B = ∅
for some A ∈ F (by the first statement). 2

By induction, we can extend the second statement above: if ∪iAi ∈ F (where the union
is finite), then Ai ∈ F for some i. If the Ai are disjoint, then Ai ∈ F for exactly one i. Thus
ultrafilters are “robust under partitioning”.

Corollary 2.7 If F is an ultrafilter and A ∈ F , then whenever we write

A = A1 ∪ . . . ∪ An
as a disjoint union of finitely many sets, exactly one of the Ai is in F .

We now give some alternate characterizations of ultrafilters. We write Ac for X \ A.

Lemma 2.8 A set F ⊆ 2X is an ultrafilter if and only if it satisfies

1. X ∈ F and ∅ 6∈ F

2. If A ∈ F and B ∈ F then A ∩B ∈ F

3. For all A ⊆ X, either A ∈ F or Ac ∈ F .

A filter F on X is an ultrafilter if and only if exactly one of A,Ac ∈ F for all A ⊆ X.

Proof: First characterization: if F is an ultrafilter then it is a filter and so satisfies the first
two conditions. The last condition is a special case of the previous corollary.

Conversely, suppose F satisfies the given conditions, and pick A ∈ F . If there is B ⊇ A
with B 6∈ F , then Bc ∈ F , a contradiction since then A ∩ Bc = ∅. So F is a filter, and by
the third condition it is maximal.

Second characterization: if a filter F is such that exactly one of A,Ac ∈ F for all A, then
F satisfies all the conditions of the lemma above and so is an ultrafilter.

Conversely, if F is an ultrafilter then it is a filter, and exactly one of A,Ac ∈ F for all A
by the lemma. 2

Our third characterization captures the notion of an ultrafilter being the set of “large”
subsets of a set, via the notion of a finitely-additive measure.
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Definition 2.9 A 0-1 finitely-additive measure on X is a 0-1 function µ : 2X → {0, 1} that
satisfies

1. µ(X) = 1

2. If A1, . . . , An are pairwise disjoint, then µ(∪iAi) =
∑

i µ(Ai).

Lemma 2.10 There is a bijection from the set of ultrafilters on X to the set of 0-1 finitely
additive measures on X given by F → µF where

µF(A) =

{
1 if A ∈ F
0 if A 6∈ F .

Proof: We first verify that µF is a finitely-additive measure. Certainly µF(X) = 1. For the
second condition, it is enough to prove µF(A ∪ B) = µF(A) + µF(B) for disjoint A,B (the
general statement follows by induction). If A ∈ F but B 6∈ F , or vice versa, then both right
and left hand side are 1. Since A and B are disjoint, we cannot have A,B ∈ F . So there
remains the case A,B 6∈ F . In this case we have Ac ∩ Bc = (A ∪ B)c ∈ F (since F is an
ultrafilter) and so A ∪B 6∈ F , and both right- and left-hand side are 0.

To see that the map is a bijection, note that the inverse is given by µ→ Fµ where

Fµ = {A ⊆ X : µ(A) = 1}.

2

Remark 2.11 The measure corresponding to an ultrafilter is not necessarily countably ad-
ditive. We will see in a moment that when X is countably infinite there are ultrafilters
on X that have no finite sets. For these ultrafilters, the corresponding measure µ satisfies
µ (∪x∈X{x}) = µ(X) = 1 whereas

∑
x∈X µ ({x}) = 0.

We now distinguish between two very different types of ultrafilters: principle (trivial)
and non-principle (highly non-trivial).

Definition 2.12 An ultrafilter on X is called non-principal if it is not F(x) for some x ∈ X.

Lemma 2.13 Let F be an ultrafilter on X. The following are equivalent.

1. F is a non-principle ultrafilter

2. F has no finite sets.

3. µF(A) = 0 for finite A.

Proof: The last two conditions are clearly equivalent. If F is an ultrafilter with no finite sets,
then it must be non-principle. If there is A ∈ F with |A| = 1 then F is principle. If |A| > 1
and A is finite then we claim that there is B ∈ F with |B| < |A|, and so by repeating this
observation we get that F is principle. To see the claim, note that if B is any proper subset
of A then either B,Bc ∈ F , and so also is either A ∩B or A ∩Bc = A \B. 2

Are there any non-principle ultrafilters? Yes, in the presence of the Axiom of Choice.
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Lemma 2.14 Let X be infinite. Then there is a non-principle ultrafilter on X.

Proof: For infinite X the collection of cofinite subsets (sets whose complement is finite) has
the FIP and so is contained in a (clearly non-principle) ultrafilter. 2

3 The space βN
We write βX for the set of all ultrafilters on X. If X is finite then |X| = |βX| with a
natural bijection: x→ F(x). If X is infinite, βX again contains a copy of X (the collection
of principle ultrafilters {F(x) : x ∈ X}), but is considerable richer. We’ll just consider the
simple case X = N (this is the one that is relevant for our discussion of Ramsey theory),
although most of the discussion makes sense for more general spaces and in particular for
discrete spaces.

We begin by putting a topological structure on βN. For each A ⊆ N set

A? = {F ∈ βN : A ∈ F}.

Lemma 3.1 The set B = {A? : A ⊆ N} is a basis for a compact Hausdorff topology on βN.

Proof: We first verify that B is a valid basis. Since each F ∈ βN is non-empty, there is
A? ∈ B with F ∈ A?, so ∪A? = βN. It remains to show that if F ∈ A?∩B? then there is C?

with F ∈ C? and C? ⊆ A? ∩B?. We may take C = A∩B, since in fact (A∩B)? = A? ∩B?.
For if F ′ ∈ (A ∩B)? then A ∩B ∈ F ′, so A,B ∈ F ′, so F ′ ∈ A? ∩B?; if F ′ ∈ A? ∩B? then
A,B ∈ F ′, so A ∩B ∈ F ′, so F ′ ∈ (A ∩B)?.

For compactness, we will show that any collection of closed sets in βN with the FIP has
a non-empty intersection. We begin by noting that each basic open set is also closed, since
A? = (Ac)?. It follows that any closed set in βN, being of the form (∪Oi)

c = ∩Oc
i for some

collection of basis elements {Oi}, is an intersection of basis elements.
Let now {Fi} be a collection of closed sets with the FIP. Each Fi consists of all ultrafilters

that include all of a collection Fi of subsets of N. The FIP is equivalent to the statement
that for every finite collection of Fi’s, there is an ultrafilter that extends ∪iFi. Since this
ultrafilter has the FIP, it follows that ∪iFi has the FIP and so ∪Fi (where the union is over
the whole collection) has the FIP, and so there is an ultrafilter extending ∪Fi and ∩Fi 6= ∅.

To show that βN is Hausdorff we note that if F 6= G then there is A ∈ F , B ∈ G with
A ∩B = ∅ and so F ∈ A?, G ∈ B? and A? ∩B? = ∅. 2

Remark 3.2 The topology we have put on βN is called the Stone-Čech compactification of
N. It is a compact extension of N (identified with the set of principle ultrafilters) in which N
is dense. It is the unique compact Hausdorff space X extending N in which N is dense and
for which every bounded real-valued function on N extends to a continuous function on X.

We next put an algebraic structure on βN. We define a binary operation + : βN×βN→
22N

as follows. For F ,G ∈ βN,

F + G = {A ⊆ N : {n ∈ N : A− n ∈ G} ∈ F}
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where A− n = {a− n : a ∈ A}. For example, consider two principle ultrafilters F(n1) and
F(n2). We claim that F(n1) + F(n2) = F(n1 + n2). Indeed

A ∈ F(n1) + F(n2) ⇐⇒ {n ∈ N : A− n ∈ F(n2)} ∈ F(n1)

⇐⇒ n1 ∈ {n ∈ N : A− n ∈ F(n2)}
⇐⇒ A− n1 ∈ F(n2)

⇐⇒ n2 ∈ A− n1

⇐⇒ n2 + n1 ∈ A
⇐⇒ A ∈ F(n1 + n2).

Lemma 3.3 For each F ,G ∈ βN, F + G ∈ βN (so + is a binary operation on βN). It is
an associative operation.

Proof: We have {n : X − n ∈ G} = {n : X ∈ G} = X ∈ F so X ∈ F + G, and similarly
{n : ∅ − n ∈ G} = {n : ∅ ∈ G} = ∅ 6∈ F so ∅ 6∈ F + G.

Suppose A,B ∈ F + G. Then A′ := {n : A − n ∈ G}, B′ := {n : B − n ∈ G} ∈ F so
A′∩B′ ∈ F . We claim that A′∩B′ ⊆ {n : A∩B−n ∈ G} (so that A∩B ∈ F +G). Indeed,

m ∈ A′ ∩B′ ⇒ A−m,B −m ∈ G
⇒ A ∩B −m ∈ G (because A−m ∩B −m = A ∩B −m)

⇒ m ∈ {n : A ∩B − n ∈ G}.

Suppose A 6∈ F + G. Then {n : A − n ∈ G} 6∈ F and so {n : A − n 6∈ G} ∈ F . Since
(A− n)c = Ac − n this is the same as {n : Ac − n ∈ G} ∈ F and so Ac ∈ F + G.

This shows that F + G is an ultrafilter. To see that + is associative, note that

A ∈ F + (G +H) ⇐⇒ {n : {m : A− n−m ∈ H} ∈ G} ∈ F

and
A ∈ (F + G) +H ⇐⇒ {m : {n : A− n ∈ H} −m ∈ G} ∈ F

and that {n : A− n ∈ H} −m = {n : A− n−m ∈ H}; indeed

x ∈ {n : A− n ∈ H} −m ⇐⇒ x+m ∈ {n : A− n ∈ H}
⇐⇒ A− x−m ∈ H
⇐⇒ x ∈ {n : A− n−m ∈ H}.

2

Having put a topological and algebraic structure on βN, we now connect the two.

Lemma 3.4 For fixed G, the map +G : βN→ βN given by +G(F) = F + G is continuous.
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Proof: We show that the inverse image of a basic open set is open. Indeed,

+−1
G (A?) = {F : F + G ∈ A?}

= {F : A ∈ F + G}
= {F : {n : A− n ∈ G} ∈ F}
= {n : A− n ∈ G}?.

2

The significance of continuity of addition is that it allows us to conclude that βN has
an idempotent (an element F satisfying F + F = F). The proof works for any compact
semigroup with one-sided continuous addition.

Lemma 3.5 (Idempotent lemma) There is F ∈ βN with F + F = F .

Proof: Let A be the set of compact semigroups that are contained in βN. Because βN ∈ A it
is non-empty. It is partially ordered by inclusion. Every chain C has ∩C∈CC as a non-empty
lower bound (it is non-empty and compact since all the C’s are compact, and is easily seen
to be a semigroup). By Zorn’s lemma, there is a minimal compact semigroup A. We claim
that any F ∈ A is idempotent.

We first observe that A + F is a compact (by left continuity of addition) semigroup (if
F1 +F and F2 +F are elements of A+F then so is (F1 +F)+(F2 +F) = (F1 +F+F2)+G).
Since A+ F ⊆ A, we have that A+ F = A by minimality.

Now set B = {G ∈ A : G+F = F}. Because A = A+F , B is non-empty. By continuity
it is compact. It is also a semigroup: G1 +F = F and G2 +F = F imply (G1 +G2) +F = F .
Since B ⊆ A, by minimality of A in fact B = A. So F ∈ B and F + F = F . 2

4 An application to analysis — the Banach limit of a

sequence

Let {xi} be a bounded sequence of reals. We want to define a limit for this sequence, which
we will denote lim? xi, satisfying three properties:

• Agreement (A): If limxi exists in the usual sense, then lim? xi = limxi,

• Linearity (L): If {yi} is another bounded sequence and cx, cy are reals, then lim?(cxxi+
cyyi) = cx lim? xi + cy lim? yi, and

• Boundedness (B): If |xi| ≤ A for all i then | lim? xi| ≤ A.

In the presence of A and L, the boundedness condition is equivalent to the statement that
for a sequence satisfying xi ≥ 0 for all i, lim? xi ≥ 0.

The usual definition of limit of a bounded sequence {xi} of reals may be stated as follows:

limxi = `⇐⇒ ∀ε > 0, |N \ {i : |xi − `| < ε}| <∞
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(the limit is ` if for all ε > 0 all but finitely many of the xi are within ε of `). Since every
non-principle ultrafilter contains all cofinite sets (sets whose complements are finite), that
suggests the following approach to defining lim? xi. Fix a non-principle ultrafilter F . For
each bounded {xi}, ` ∈ R and ε > 0, set

Ux(`, ε) = {i : |xi − `| < ε}

(note that this depends on F , but we suppress this in the notation).

Definition 4.1 (Banach limit)

lim?xi = `⇐⇒ ∀ε > 0, Ux(`, ε) ∈ F .

We must show that this is a good definition; that for every bounded sequence of reals
there is a unique ` with lim? xi = `. Uniqueness is easy. For ` 6= `′ and any ε < (|`− `′|)/2
the sets Ux(`, ε) and Ux(`

′, ε) are disjoint and so at most one of them can be in F .
For existence, let L = sup |xi| and set I0 = [−L,L]. Divide I0 into two equal disjoint

intervals I ′0 = [−L, 0) and I ′′0 = [0, L]. Exactly one of {i : xi ∈ I ′0}, {i : xi ∈ I ′0} must
belong to F ; let I1 be the interval with that property. Inductively, we construct a nested
sequence of intervals I0, I1, . . . with the properties that for each n the length of In is 2L/2n

and {i : xi ∈ In} ∈ F . The first of these properties implies that ∩nĪn = {`} for some real `,
and the second implies that for all ε > 0 the set Ux(`, ε) is in F .

This shows that lim? xi is well defined. That it satisfies A and B is clear. For L, suppose
that lim? xi = `x and lim? yi = `y and fix ε > 0. The sets Ux(`x, ε/2cx) and Uy(`y, ε/2cy) are
both in F , and so their intersection is too. For i in the intersection we have |xi− `x| < ε/2cx
and |yi − `y| < ε/2cy and so, by the triangle inequality,

|(cxxi + cyyi)− (cx`x + cy`y)| ≤ ε.

It follows that Ucxx+cyy(cx`x + cy`y, ε) ∈ F . This gives L assuming neither of cx, cy = 0; if
either or both are 0 the argument is easily modified.

One issue with the definition of lim? xi is that it is sensitive to translation (changes
in indexing). For example, if F includes the set {1, 3, 5, . . .} and {xi} = {0, 1, 0, 1, . . .},
{yi} = {1, 0, 1, 0 . . .} then lim? xi = 0 whereas lim? yi = 1. There is a fix for this: set

lim??xi = lim?zi

where zi = (x1 + . . .+ xi)/i. One can check that lim?? xi satisfies all of A, L and B, as well
as translation invariance: if yi = xi+1 then lim?? xi = lim?? yi.

Remark 4.2 Our approach to defining a generalized limit is taken from [9], where it is
suggested that it is folklore. The more standard approach is the one taken originally by
Banach [2]. The set of bounded sequences of reals forms a normed vector space B over R
with the usual addition and scalar multiplication, and the norm given by ||{xi}|| = supi |xi|.
The set of convergent sequences forms a subspace C. The map f : C → R that takes a
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convergent sequence to its limit is a linear function with operator norm 1. By the Hahn-
Banach theorem this map extends to a linear map f ′ : C → R that also has operator norm
1. For {xi} ∈ B, f ′({xi}) is referred to as the Banach limit of {xi}. It satisfies the analog
of A because it extends f . It satisfies the analog of L because it is linear, and it satisfies the
analog of B because it has operator norm 1.

5 An application to voting — Arrow’s theorem

Let X be a set of voters (not necessarily finite) and let C = {c1, . . . , cn} be a finite set
of candidates. Each x ∈ X provides a permutation πx of C (thought of as x’s preference

ranking of the candidates). A social welfare function (SWF) is a function f : S
|X|
c → SC

(where SC is the set of permutations of C), which we think of as a way of aggregating the
individual rankings into a societal ranking.

Here are two properties that we might except a “fair” SWF to satisfy.

• Unanimity (U): If all individuals present the same permutation, then f produces that
permutation.

• Irrelevant alternatives (IA): The relative ranking of two candidates ci, cj in the output
of f depends only on the relative rankings of ci, cj in each individual input.

Together these two properties imply

• Local unanimity (LU): If all individuals present a permutation in which ci is ranked
above cj, then f produces a permutation in which ci is ranked above cj.

Indeed, if we rearrange all the input permutations so that they are identical, with ci ranked
first by everyone and cj second, then by U f ranks ci above cj, and by IA this is the relative
ranking of ci and cj originally.

We extend the idea of U in the following definition.

Definition 5.1 A set F ⊆ X is decisive if whenever all x ∈ F present the same permutation,
f outputs that permutation.

Note that U is the assertion that X is decisive. Are there other decisive sets? The following,
the main result of this section, answers this question. It is taken from [8], via [9].

Theorem 5.2 Suppose n ≥ 3. Let f be a SWF that satisfies U and IA. Then F = {F ⊆ X}
is an ultrafilter.

Proof: Say that F is block decisive if whenever all x ∈ F present the same permutation, and
all x ∈ F c present the same permutation (possibly different from that presented by those
x ∈ F), then the permutation presented by those x ∈ F is the outcome.

Lemma 5.3 If F is block decisive, then it is decisive.
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Proof: Suppose F is block decisive but not decisive, and consider an input in which all x ∈ F
present a permutation π in which ci is ranked above cj, the permutations presented by all
x ∈ V1 have ci above cj, the permutations presented by all x ∈ V2 have cj above ci (where
(F, V1, V2) is a partition of X), and the output ranks cj above ci. Pick a ck different from
ci, cj. Modify the input permutations so that ck is between ci and cj for all x ∈ F , and below
ci and cj for all other x. By IA, for this new input the output still ranks cj above ci. All
permutations in the new input ranks ci above ck, and so the output must too by LU). Now
modify the input again, by having all x ∈ V1 ∪ V2 present the same permutation in which cj
is ranked above ck. By IA, the output for this new input ranks cj above ck, contradicting
the block-decisiveness of F . 2

Clearly, if F is decisive it is block-decisive, so we have F = {block decisive F ⊆ X}. By
U we have X ∈ F and ∅ 6∈ F . We next show that if F 6∈ F , then F c is.

Lemma 5.4 If F is not block decisive, then F c is. Equivalently, if |X| = 2 there is a decisive
element.

Proof: We show that F c is ij-decisive for all i 6= j: the relative ranking of ci and cj in the
output agrees with the relative ranking in the permutation presented by all x ∈ F c. To see
this, we begin by noting that since F 6∈ F there is some pair i 6= j and a pair of permutations
π, τ with π ranking ci above cj and τ ranking cj above ci such that if all x ∈ F present π
and all x ∈ F c present τ , the outcome ranks cj above ci. By IA, whenever all x ∈ F rank ci
above cj and all x ∈ F c rank cj above ci, the outcome ranks cj above ci. Now pick k 6= i, j.
We present a list of seven inputs to the SWF, only mentioning the relative rankings of (some
subset of) ci, cj and ck for x ∈ F , x ∈ F c and for the output, with the output for the first
input being the conclusion we have just drawn, and the other outputs being easily deduced
from LU and IA. The interpretation of, for example, ijk, is that the particular permutation
under consideration ranks ci above cj above ck.

Column 1 2 3 4 5 6 7
x ∈ F ij ikj ik ijk jk jik ji
x ∈ F c ji kji ki kij kj ikj ij

Outcome ji kji ki kij kj ikj ij

The conclusion is that whenever all x ∈ F c rank ci above cj, so does the outcome. It follows
that F c is ij-decisive for this particular i, j. But, by column three above and the same
argument, it is also ik-decisive, and by column five above and the same argument F c is
jk-decisive. Since k was arbitrary, we can pick any ` 6= k, i, j and repeat the argument to
show that F c is k`-decisive and so decisive. 2

To complete the proof that F is an ultrafilter, we need to show that it is closed under
taking intersections. We’ll show that if F1 and F2 are any sets, then at least one of (F1 ∪
F2)

c, F2 \F1, F1 \F2 and F1∩F2 are (block) decisive (and so exactly one, since we can’t have
disjoint block decisive sets). If both F1 and F2 are decisive, then the only possibility for a
decisive set from among our list of four is F1 ∩ F2, as required.
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Lemma 5.5 One of (F1 ∪ F2)
c, F2 \ F1, F1 \ F2 and F1 ∩ F2 is block decisive. Equivalently,

if |X| ≤ 4 then there is a decisive element.

Proof: We have already dealt with |X| = 2. Now we deal with X = {x1, x2, x3, x4} (the same
argument will do for |X| = 3). If x1 and x2 present permutations as a block, and x3 and x4

also, then one of two is block decisive and so decisive; for definiteness say that it is x1 and
x2. Now if we fix a permutation π to be presented by x3 and x4, we get an SWF (depending
on π), in which one of x1, x2 is decisive; for definiteness say that it is x1. We claim that x1

is decisive in the original SWF. If not, there is i 6= j and inputs in which x1 ranks ci above
cj and x2 ranks cj above ci, as does the output (if x2 ranks ci above cj too, then so does the
output, by decisiveness of x1 and x2 as a block). If neither ci nor cj are at the bottom of π,
then we can do the following. Writing ck for the last element of π, modify x1 so that ck is
between ci and cj; modify x2 so that ck is below ci; and modify both x3 and x4 so that ck
is at the end of their rankings. By LU and IA the output has cj above ci above ck. Now if
we replace the inputs of x3 and x4 with π, the output (by IA) still ranks cj above ck even
though x1 ranks ck above cj, contradicting the decisiveness of x1 when x3 and x4 present
π. If one of ci, cj is at the bottom of π but the other is not at the top, the same argument
can be repeated in a symmetric manner with “bottom” replaced by “top”. If ci, cj occupy
the top and the bottom of π, then we can use the “replacement” process described in the
|X| = 2 argument to find an ` 6= i, j and inputs in which x1 ranks c` above cj and x2 ranks
cj above c`, as does the output (just do the first two steps of the seven step process). Since
it is not the case that c`, cj occupy the top and the bottom of π, we can proceed with the
above-described argument. 2

This completes the verification that the set of decisive sets of voters forms an ultrafilter.
2

What is the significance of this theorem? Well, a property that we would not expect a
fair SWF to satisfy is that if have a dictator, or an individual x with the property that the
outcome of f equals the input of x (and does not depend on the other inputs). A dictator is
exactly a decisive set of size 1. But if X is finite, then the ultrafilter F of decisive sets must
be of the form F(x) for some x ∈ X (a principle ultrafilter), and so contains {x}. We have
arrived at a celebrated result of economist Kenneth Arrow.

Theorem 5.6 (Arrow’s Theorem) If |X| < ∞ and n ≥ 3, the only SWF’s that satisfy U
and IA have a dictator. 2

Arrow did not use ultrafilters in his original proof [1]; if he had, he would have been able to
draw a comforting conclusion about voting in infinite societies. In the proof of our main result
in this section we took an SWF satisfying U and IA and corresponded to it an ultrafilter
on X. The correspondence goes the other way, too. Let F be an ultrafilter on X and define
an SWF f by declaring the output to be that unique permutation π with the property that
{x ∈ X : πx = π} ∈ F . Because X ∈ F , this SWF satisfies U. Because F cannot contain a
pair of disjoint sets, it satisfies IA. Indeed, fix two candidates ci and cj and two inputs to
f , in both of which all x ∈ A rank ci above cj and all x ∈ Ac rank cj above ci. If the first
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input results in ci being ranked above cj, then we have A ∈ F , and so, since we then can’t
have Ac ∈ F , it must be the case that the first input results in ci being ranked above cj.

If the ultrafilter F is non-principle (and so necessarily |X| =∞) then the corresponding
SWF cannot be a dictatorship, since for every x ∈ X there must be some A ∈ F with x 6∈ A
(consider X \ {x}: if this is not in F then x is and F = F(x) is principle). We have shown
the following.

Theorem 5.7 (Arrow’s Theorem’) Fix n ≥ 3. There is a one-to-one correspondence between

ultrafilters on X and SWF’s from S
|X|
n to Sn that satisfy U and IA. The non-dictatorship

SWF’s are those corresponding to non-principle ultrafilters. In particular, Arrow’s Theorem
is equivalent to the assertion that all ultrafilters on a finite set are principle.

Remark 5.8 The construction of an SWF that we have described picks out a “large” set
of inputs that are identical (the notion of “large” being determined by an ultrafilter), and
declares that to be the output. An obvious choice for a non-dictatorship SWF with |X| <∞
is to take as output the most commonly occurring input. This clearly satisfies U, but not IA:
consider the case where X = {x1, . . . , x7} and C = {c1, c2, c3}. If each of x1, x2, x3 input the
ranking c1 above c2 above c3, each of x4, x5 input the ranking c2 above c3 above c1, and each
of x6, x7 input the ranking c3 above c2 above c1, then the output is c1 above c2 above c3 and
so in particular c1 is above c2. But if x4, x5 change their ranking to c3 above c2 above c1 (not
changing the relative ranking of c2 and c1) then the output switches to c3 above c2 above c1
and so in particular c2 is above c1.

6 An application to combinatorics — Ramsey theory

Because of the correspondence with measures, an element of an ultrafilter may be viewed
as a “large” subset of X. Since Ramsey theory is concerned with finding classes in a parti-
tion which are “large” in the sense that they contain homogeneous substructures, it is not
unreasonable that there is a connection. We begin with the classical proof of the classical
Ramsey’s Theorem [10].

Theorem 6.1 (Ramsey’s Theorem) Whenever the edges of an infinite complete graph are
coloured with finitely many colours, there is an infinite complete monochromatic subgraph.

Proof: Pick x1 arbitrarily. At least one colour must leave x1 infinitely often; choose one such,
c1. From the vertices that are joined to x1 by an edge of colour c1, choose x2 arbitrarily.
At least one colour must leave x2 to an unchosen vertex infinitely often; choose one such,
c2. From the unchosen vertices that are joined to x2 by an edge of colour c2, choose x3

arbitrarily. Repeating, we get a sequence of vertices x1, x2, . . . , and a sequence of colours
c1, c2, . . . with the property that the colour of xixj (i < j) is ci. At least one colour must
occur infinitely often in the list of ci’s; choose one such, c say. The set {xi : ci = c} is the
vertex set of an infinite monochromatic graph. 2
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We now re-proof Ramsey’s theorem using ultrafilters. The proof (taken from [4]) is
“constructive” in the sense that we will use a non-principle ultrafilter to find a colour which
occurs “frequently”, and find an infinite monochromatic subset of that colour.

Proof of Ramsey’s theorem using ultrafilters: Fix a non-principle ultrafilter F on X, the
(infinite) vertex set of the graph. Fix x ∈ X. Foe each colour i set

Aix = {{x, y} ∈ X(2) : χ({x, y}) = i}

(where χ is the colouring of the edges). The sets Aix are disjoint and have X \ {x} as their
union, so the union is in F (F is non-principle). It follows that exactly there is exactly one
i with Aix in F . By the same reasoning there is exactly one i with the property that

B := {x : Aix ∈ F} ∈ F .

We find an infinite monochromatic subset of colour i by the following inductive construction.
Choose a1 ∈ B arbitrarily. Having chosen a1, . . . , an with the property that χ({as, at}) = i
for all 1 ≤ s 6= t ≤ n, set

S = B ∩ ∩ns=1{y : χ({as, y}) = i}.

S is a finite intersection of sets in F so is in F . Choose an+1 ∈ S distinct from {a1, . . . , an}
(possible since F is non-principle and so S is infinite). 2

An observation of Hindman (presented in [4]) draws a rather strong connection between
Ramsey Theory and ultrafilters.

Lemma 6.2 Let G be a family of non-empty subsets of X. Then the following are equivalent.

1. Whenever X is finitely coloured, there is a monochromatic G ∈ G.

2. There is an ultrafilter F on X with the property that for each A ∈ F there is a G ∈ G
with G ⊆ A.

Proof: Suppose we have such an ultrafilter. In any partition of X into finitely many pieces,
there is one such piece, A say, in F . Any G ∈ G with G ⊆ A is monochromatic.

Suppose, on the other hand, that we have the Ramsey property. Set

B = {A ⊆ X : A ∩G 6= ∅ for all G ∈ G}.

and let B+ be the set of all finite intersections of elements of B. We claim that B+ is an
intersecting family. It is clear that if A,B ∈ B+ then A ∩ B ∈ B+ and X ∈ B+, so it
remains to show that ∅ 6∈ B+. So, let A1, . . . , Ak be elements of B. Partition X into 2k

pieces {CS}S⊂{1,...,k} via

x ∈ CS ⇐⇒ x ∈ ∩i∈SAi ∩ ∩i 6∈SAci .
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By the Ramsey property, there’s S ⊆ {1, . . . , k} and G ∈ G with G ⊆ ∩i∈SAi ∩∩i 6∈SAci . But
since Ai∩G 6= ∅ for all i, it must be the case that G ⊆ ∩ki=1Ai and so in particular ∩iAi 6= ∅.

Since B+ is intersecting there is an ultrafilter F ⊇ B+ on X. Fix A ∈ F . We have
Ac 6∈ F and so Ac 6∈ B+ and Ac 6∈ B. It follows that there is G ∈ G with G ∩ Ac = ∅ and so
G ⊆ A. 2

Example 6.3 The pigeon principle (whenever N is partitioned into finitely many pieces,
one of the pieces is infinite) corresponds to the situation where X = N and G = {A ⊆ N :
A infinite}. Any non-principle ultrafilter works for the corresponding F .

We now present Schur’s theorem [12], another gem of Ramsey theory, which can easily
be deduced from Ramsey’s theorem (and was first proved before Ramsey’s theorem).

Theorem 6.4 (Schur’s Theorem) Whenever the natural numbers are partitioned into finitely
many classes, it is possible to find x and y such that x, y and x + y all belong to the same
class (and so in particular it is possible to solve x+ y = z within a single partition class).

Proof: Let χ be the colouring (partitioning) of N. This induces a colouring on pairs of
natural numbers: the colour of the pair xy is χ(|x − y|). By Ramsey’s theorem there is an
infinite set {x1, . . .} with the property that χ(|xi − xj|) = c for some c for all i 6= j. Set
x = x3 − x2 and y = x2 − x1 (where without loss of generality we assume x3 > x2 > x1).
Then x, y and x+ y = x3 − x1 are all coloured c. 2

For an infinite set A = {x1, . . .} ⊆ N, write

FS(A) =

{∑
i∈X

xi : X ⊆ N, |X| <∞

}

for the set of finite sums of A. The following result of Hindman [6] vastly generalizes Schur’s
Theorem. The original proof was combinatorial and quite involved. Not long after its
publication, Glazer and Galvin (no relation) used ultrafilters to give a startlingly simple
proof, not much more than a corollary of the result that βN has an idempotent element.
The ultrafilter proof was first presented in [3]; for our presentation we have followed [4].

Theorem 6.5 (Hindman’s Theorem) Whenever the natural numbers are partitioned into
finitely many classes, it is possible to find an infinite set A with the property that FS(A) lies
entirely inside one partition class.

Proof: Fix a colouring χ. We’ll inductively construct sequences A0 ⊇ A1 ⊇ A2 ⊇ . . . and
(distinct) a1, a2, . . . with the properties that ai ∈ Ai−1, Ai ∈ F and ai+1 + Ai+1 ⊆ Ai, and
with χ constant on A0. This will give the result; for consider any finite sum from among the
ai’s, say

a7 + a4 + a3.
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We have a7 ∈ A6 ⊆ A5 ⊆ A4, so a7 + a4 ⊆ A3, so a7 + a4 + a3 ⊆ A2 ⊆ A1 ⊆ A0.
Fix an idempotent ultrafilter F ∈ βN. There is a unique colour i with A0 := {n ∈ N :

χ(n) = i}. Now for any B ⊆ N set B′ = {n : B − n ∈ F}. If B ∈ F then, since F is
idempotent, B′ ∈ F and so also B ∩B′ ∈ F .

Select a1 ∈ A0 ∩ A′0 and set A1 = A0 ∩ (A0 − a1)− {a1}, so A1 ⊆ A0, a1 + A1 ⊆ A0 and
A1 ∈ F (removing one element from a set in F does not take it out of F , since F is non-
principle). Having defined An, select an+1 ∈ An∩A′n and set An+1 = An∩(An−an+1)−{an+1},
so An+1 ⊆ An, an+1 + An+1 ⊆ An and An+1 ∈ F . 2

Remark 6.6 An easy corollary of Hindman’s theorem is that whenever the natural numbers
are partitioned into finitely many classes, it is possible to find an infinite set A with the
property that FP (A) lies entirely inside one partition class, where

FP (A) =

{∏
i∈X

xi : X ⊆ N, |X| <∞

}

(the given partition of {2n : n ∈ N} induces a partition of N in a natural way; apply the finite
sums theorem to that partition). That raises a natural question: is it the case that whenever
the natural numbers are partitioned into finitely many classes, it is possible to find an infinite
set A with the property that FS(A) ∪ FP (A) lies entirely inside one partition class? This
is an extremely hard problem, as it combines the additive and multiplicative structure of N.
Even the following seemingly simple case is open.

Conjecture 6.7 Whenever the natural numbers are partitioned into finitely many classes,
it is possible to find two numbers a and b such that a, b, a+ b and ab all lie in one partition
class.

This is only known (see [5]) when the number of classes is two! Even more astonishingly,
the conjecture remains open if we ignore the class of a and b (see [7]).

Conjecture 6.8 Whenever the natural numbers are partitioned into finitely many classes,
it is possible to find two numbers a and b such that a + b and ab both lie in one partition
class.
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