



## **Overview on**

# **Thermoelectronic Generators**

Jochen Mannhart

Max-Planck Institute for Solid State Research Stuttgart, Germany

2014 Workshop on Thermionic Energy Conversion for Space and Earth, 2014-10-14





## The Team

Cyril Stephanos<sup>1,2</sup>

Stefan Meir<sup>2</sup>

Ted Geballe<sup>3</sup>

Gerwin Hassink<sup>1</sup>,

Iman Rastegar<sup>1</sup>

Wolfgang Braun<sup>1</sup>

Robin Wanke<sup>1</sup>

- <sup>1</sup> MPI Solid State Research, Stuttgart, Germany
- <sup>2</sup> Augsburg University, Augsburg, Germany
- <sup>3</sup> Stanford University, USA

Thanks to H. Boschker, I. Hagel, R. Kneer, T. Kopp, H. Queisser, A. Reller, A. Schmehl, M. Schmid, and J. Weis





### **The Historical Origin of Thermionics**



Use of thermionic emission to generate electric power: proposal and first studies



Regarding its impact on life ..., science of energy is the most reliable and seminal of all sciences. (1918)

Hermann Theodor Simon (1870-1918)

### **The Historical Origin of Thermionics**



Use of thermionic emission to generate electric power: proposal and first studies



Hermann Theodor Simon (1870-1918)



Thesis of Wilhelm Schlichter (defense: August 2, 1914)

### **The Historical Origin of Thermionics**



#### Use of thermionic emission to generate electric power: proposal and first studies

#### **Results:**

- Pt is unsuitable cathode material
- radiation loss is the main problem
- 'glow-electric elements' can be economically feasible



#### Thesis of Wilhelm Schlichter (defense: August 2, 1914)



- Neutralization of space charge by positive ions (Cs<sup>+</sup>) practical (TOPAZ), but reduced efficiency, complex
- 2) *d*<sub>EC</sub> ~ 1-3 μm (see, *e.g.*, J.-H. Lee *et al*, APL 100, 173904 (2012))
  large-scale feasibility not obvious (yet)
- Grid to accelerate electrons out of the cloud not working

(see, e.g., G.N. Hatsopoulos et al., Thermionic Energy Conversion, Vol. 1 (1973))

#### **Accelerating Electrodes**





large  $I_{G}$ , small  $I_{EC}$ :

'... not practical at present', '... magnetic triode even more impractical than magnetic diode'

G.N. Hatsopoulos et al., Thermionic Energy Conversion, Vol. 1 (1973)

#### **Accelerating Electrodes**





electrons accelerated into the grid

E-C distances intrinsically too large

large  $I_G$ , small  $I_{EC}$ :

'... not practical at present', '... magnetic triode even more impractical than magnetic diode'

G.N. Hatsopoulos et al., Thermionic Energy Conversion, Vol. 1 (1973)









#### How to transfer the electrons without energy expenditure?











**T**<sub>c</sub>

Х

**Х**<sub>с</sub>

 $V^+$ 

Xe

any emission process also non-thermionic
 no ions, no "thermions"
 the electrons essential
 "thermoelectronic"



B = 0 T,  $V_g = 10$  V,  $d_{ec} = 100$  µm



*Coulomb*, Integrated Engineering Software



B = 1 T,  $V_g = 10$  V,  $d_{ec} = 100$   $\mu$ m



*Coulomb*, Integrated Engineering Software



B = 1 T,  $V_g = 10$  V,  $d_{ec} = 100$   $\mu$ m



*Coulomb*', Integrated Engineering Software

#### **Model Calculations**





annihilation of space charge due to electric field superposition and enhanced electron velocities

#### **Thermoelectronic Generator**







#### **Thermoelectronic Generator**





#### **Thermoelectronic Generator**





6 cm

**W-Grid** 





# **Experimental Setup**



#### **Flip-Chip Generators**





#### **Si-Grid**









#### **Si-Grid**





### Flexible Experimental Base - October 2014





#### **Measured Output Current Densities**









#### **Measured Output Power**









#### **Projected Power Densities**











#### **The Ultimate Efficiency Limit**





Ultimate efficiency limit for thermionic converters:



Efficiency of PV and thermoelectrics is limited well below Carnot:

- PV: bandgap, Shockley-Queisser
- thermoelectrics: simultaneously small  $\kappa$  and large  $\sigma$

#### **Projected Maximal Efficiencies**





Requested:

- optimized work functions for E and for C
- small IR-emissivity ε
- ► inertness at high T
- need for materials with designed work functions (diamonds?), heterostructures
- nano-tailored surfaces (nanotips? nanotubes?)
- novel electron emission and collection schemes

sizable potential









- (1) optimization of E, C, G materials, their nanostructures, IR-parameters, electron emission and collection processes
- (2) study, enhancement of long-time stability in working atmosphere
- (3) exploration of roads to *B*-reduction
- (4) device engineering, loss reduction, system integration
- ► all problems we see are technological, no roadblock from physics
- no fundamental limit to efficiency well below Carnot, such as Shockley-Queisser