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Thermionic Emission

• Operates at very high temperatures; 

generally >800ºC

• Robust

Boiling electrons from a metal:

Hot metal

e-
V

Boiling water:

• Input heat energy 

to overcome 

energy barrier to 

change liquid into 

gas

Overcome work-

function energy 

barrier



J  AT 2eE /kT

J = current density (Acm-2), 

E = emitter work function (eV)

(Richardson-Dushman law)



Two Key problems with TEC:

• need reasonable cathode fc to 

have decent voltage

• Need high temperature (>1200C) 

to overcome workfunction

• Still need small anode fA
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Space Charge

• Electrons take time to cross 

vacuum gap

• Electric field builds up, decreasing 

electron emission

• Current saturation given by Child-

Langmuir equation



The PETE Process

hν

Ec

Ev

semiconductor

Schwede et al, Nature Materials, 9 ,762–767, 2010

Photon-enhanced Thermionic Emission (PETE)

• Acts like a high-T PV cell: direct solar to electrical generation at 

high-T



Photon Enhanced Thermionic  Emission (PETE)

high-T

• Photo-excite carriers into conduction band

• Thermionically emit these excited carriers

• Overcome electron affinity barrier (not full work-function)

• Collected at low work-function anode

Schwede et al, Nature Materials, 9 ,762–767, 2010



Photon-independent Emission Energy

Energy distribution for 

different excitation energy

• Identical energy 

distributions

• 0.5 eV thermal voltage 

boost significant

• 400C = 0.056 eV

• efficiency ~10
-4

-10
-5

• Photon energy should not matter 

above band gap

• Very different from photoemission

• Green = just above gap

• Blue = well above gap, not above 

E
vac

3.3 eV

3.7 eV

Average energy: 

3.8 eV

Schwede et al, Nature Materials, 9 ,762–767, 2010



Making PETE more efficient

•Incomplete absorption

• Bulk recombination

• Surface 

recombination

Mechanisms that determine PETE efficiency:

• black body

• auger

• defects

• defects

• coatings

• intrinsic surface

• thin films

• reflectivity

• Space Charge



Reducing Surface Recombination

• Front-surface recombination directly competes with emission

• Surface coatings (Cs, etc) increase recombination

• Can lower c, but lose voltage

• High surface recombination in most cathode materials:

– 106 cm/s in GaAs

– Yield < 20% for T < 300°C, χ = 200 meV
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Heterostructure cathode for PETE

• Reduce recombination at surface by adding Al0.15Ga0.85As layer

– Very low recombination

– Excellent control over barrier height

• ΔECB ~= 220 meV, largely independent of temperature

• Coat front surface to be negative electron affinity

– little sensitivity to surface recombination 
Heterostructures grown by Tomas Sarmiento, Prof. James Harris

Absorber: GaAs, 1 μm thick

Emitter: Al0.15Ga0.85As, 70 nm thick



Heterostructured cathode performance

• Very strong temperature 

dependence

• Yield increases 10x from 313 K 

to 393

• PETE current dominates 

photoemission from GaAs layer

• Limited by thermal stability of 

CsO coating
Improved quantum yield 

from 10
-4

to 2.5%

Schwede et al, Nature Communications, 2013



Tantalizing performance with Temperature

• QY increases as calculated from RT to 120 C

• Sample surface degrades above 150C

• If we could get just to 400C with exactly these properties, would 

have >80% QY.

Schwede et al, Nature Communications, 2013



“Solid-state” GaInP PETE device

 Much larger temperature range is possible

 1000x improvement in current



Making PETE more efficient

•Incomplete absorption

• Bulk recombination

• Surface 

recombination

Mechanisms that determine PETE efficiency:

• black body

• auger

• defects

• defects

• coatings

• intrinsic surface

• thin films

• reflectivity

• Space Charge



The Space Charge Limit

Saturation Current

Maximum
Power Point

Space charge
limited current

Work function
limited voltage

V

• At a given T, current 

saturates due to 

space charge:

• Power generation occurs at negative 

anode potentials

Child-Langmuir Law

• Depends on output 

voltage, electrode 

separation distance



Optimal Gap Size
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Max. Efficiency=0.571

Space charge 

limit

Photon 

tunneling

Optimal Gap:

> 90% of Max. 

Eff.

TE=2000[K],TC=300[K],        =3[eV],       =0.7[eV],CE

J. Lee et al (Howe group), APS, 2012



MicroSphere Spacers

Low density 5 um 

Microspheres

Spray coating

• Current is severely space charge limited at 55 um gap

• At 9.5 um gap, conversion efficiency of 1.8% at mpp

– Does not account for heating losses, which are 

significant.

• Richardson constant 60-90 A/cm2K2, Impp > 1.5 A/cm2

• 5 um gap model predicts x2 increase in current and 

efficiency

Sahasrabuddhe et al ,EES, 2013



• Micro-bolometer arrays for uncooled IR imaging 

(Honeywell Research, 1980s – 1990s)

P. W. Kruse, et al., SPIE Proc., 3436, 572-577 (1998). 

> Temperature changes on the order of milli-K can be detected

> Renewed interest for heads-up night vision for automobiles 

Micro-fabrication Approach



Thermal Expansion and Isolation

U-trough suspension

1400 K

1000 K

600 K

max: 1470 K

min: 300 K

Pixel side 350 μm, 

U-trough wall height 10 μm, 

film thickness 1μm

COMSOL

With I. Bargatin and R. T. Howe, unpublished



Vacuum-Encapsulated Micro-TECs

J. H. Lee, et al, Hilton Head 2012



Stanford University Howe Group

U-shape TEC

• U-shaped devices on chip

• Anodically bonded 

encapsulation

• Prevents warping, shorting

• Current density up to 4 A/cm
2

“ENCAPSULATED THERMIONIC ENERGY CONVERTER 

WITH STIFFENED SUSPENSION”

Jae Hyung Lee1, Igor Bargatin1, Kentaro Iwami1,2, Karl A. Littau1, 

Maxime Vincent3,

Roya Maboudian3, Z.-X. Shen1, Nicholas A. Melosh1, and Roger T. 

Howe1

Hilton Head MEMS Workshop, 2012



Optical Heating of Poly-SiC Microcathode

J.-H. Lee, et al, IEEE MEMS 2012, Paris, France.



Stanford University Howe Group

Microfabricated SiC TEC device

• 100x higher current

• Non-shorting

• Stable at high temperatures
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J. Lee, I. Bargatin, Roger Howe

1.6 m gap

Micro-scale spacing can 

largely mitigate space-

charge issues



PETE Opportunities and Challenges

• Surface recombination is an issue, but can be 

overcome

• Heterostructure design looks very promising

• Best results will be achieved by balancing 

thickness, electron affinity to recombination 

and emission rates

• Space charge can be lessened using beads 

for large devices, or microfabrication
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Taking Thermionics below 100um

10 m

1 cm

10 m

1 mm• large area

• no shorting

• perfect planarity

• no thermal 

expansion issues

Two tungsten plates

Simple Approach: Microbead Spacers

• simple, cheap

• low density by spraying

• poor thermal contact

• allows expansion

Sahasrabuddhe et al ,EES, 2013



Small Scale Device Concept 

Focused

 Substrate functions as anode

 Vacuum encapsulation with a transparent lid

 Work-function lowering vapors in the cavity

Micro-lenses



Solar Power Conversion

A lot of high-quality energy is available from the sun… how can we 

harvest it?

Solar Thermal (CSP) Photovoltaics (PV)

• Converts sunlight into heat

• Concentrated solar thermal

• Uses well-known thermal 

conversion systems

• Efficiencies of 20-30%

• collects fraction of incident energy

• “high grade” photon energy 

• direct photon to electricity

• efficiencies 19-24% (single junction Si)



High Temperature Thermal Topping Cycles

Solar in

Heat out 

at 600C

Electricity

out

What type of device?

Thermionic Emission

Photon-Enhanced 

Thermionic Emission


