Heterostructure Materials for Photon Enhanced Thermionic Emission and Micro-Thermionics

Prof. Nicholas A. Melosh

Materials Science & Engineering, Stanford University SIMES, SLAC

with ZX Shen (AP/Ph/SIMES), Roger Howe (EE)

Thermionic Emission

Two Key problems with TEC:

- need reasonable cathode ϕ_c to have decent voltage
- Need high temperature (>1200C)
 to overcome workfunction
- Still need small anode ϕ_A

- Electrons take time to cross
 vacuum gap
- Electric field builds up, decreasing electron emission
- Current saturation given by Child-Langmuir equation

The PETE Process

semiconductor

Photon-enhanced Thermionic Emission (PETE)

Acts like a high-T PV cell: direct solar to electrical generation at high-T

Schwede et al, Nature Materials, 9,762–767,2010

Photon Enhanced Thermionic Emission (PETE)

- Photo-excite carriers into conduction band
- Thermionically emit these excited carriers
- Overcome electron affinity barrier (not full work-function)
- Collected at low work-function anode

Schwede et al, Nature Materials, 9,762–767,2010

Photon-independent Emission Energy

- Photon energy should not matter above band gap
- Very different from photoemission
- Green = just above gap
- Blue = well above gap, not above E_{vac}

Schwede et al, Nature Materials, 9,762–767,2010

Making PETE more efficient

Mechanisms that determine PETE efficiency:

Incomplete absorption

Bulk recombination

- black body
- auger
- defects

Reducing Surface Recombination

- Front-surface recombination directly competes with emission
- Surface coatings (Cs, etc) increase recombination
- Can lower χ , but lose voltage
- High surface recombination in most cathode materials:
 - 10⁶ cm/s in GaAs
 - Yield < 20% for T < 300° C, $\chi = 200$ meV

Heterostructure cathode for PETE

Absorber: GaAs, 1 µm thick

- Reduce recombination at surface by adding Al_{0.15}Ga_{0.85}As layer
 - Very low recombination
 - Excellent control over barrier height
 - $\Delta E_{CB} \sim = 220 \text{ meV}$, largely independent of temperature
- Coat front surface to be negative electron affinity
 - little sensitivity to surface recombination

Heterostructures grown by Tomas Sarmiento, Prof. James Harris

Heterostructured cathode performance

- Very strong temperature dependence
- Yield increases 10x from 313 K to 393
- **PETE current dominates** photoemission from GaAs layer
- Limited by thermal stability of CsO coating

Schwede et al, Nature Communications, 2013

Tantalizing performance with Temperature

- QY increases as calculated from RT to 120 C
- Sample surface degrades above 150C

 If we could get just to 400C with exactly these properties, would have >80% QY.

"Solid-state" GaInP PETE device

- Much larger temperature range is possible
- 1000x improvement in current

Making PETE more efficient

Mechanisms that determine PETE efficiency:

Incomplete absorption

Bulk recombination

- black body
- auger
- defects

The Space Charge Limit

• Power generation occurs at negative anode potentials

Optimal Gap Size

<u>TE=2000[K],TC=300[K]</u>, $\varphi_E = 3[eV] \varphi_C = 0.7[eV]$,

J. Lee et al (Howe group), APS, 2012

MicroSphere Spacers

Low density 5 um Microspheres 5 um gap model predicts x2 increase in current and efficiency

Micro-fabrication Approach

 Micro-bolometer arrays for uncooled IR imaging (Honeywell Research, 1980s – 1990s)

> Temperature changes on the order of milli-K can be detected

> Renewed interest for heads-up night vision for automobiles

P. W. Kruse, et al., SPIE Proc., 3436, 572-577 (1998).

Thermal Expansion and Isolation

With I. Bargatin and R. T. Howe, unpublished

Vacuum-Encapsulated Micro-TECs

J. H. Lee, et al, Hilton Head 2012

U-shape TEC

"ENCAPSULATED THERMIONIC ENERGY CONVERTER WITH STIFFENED SUSPENSION"

Jae Hyung Lee¹, Igor Bargatin¹, Kentaro Iwami^{1,2}, Karl A. Littau¹, Maxime Vincent³,

Roya Maboudian³, Z.-X. Shen¹, Nicholas A. Melosh¹, and Roger T. Howe¹ Hilton Head MEMS Workshop, 2012

- U-shaped devices on chip
- Anodically bonded
 encapsulation
- Prevents warping, shorting
- Current density up to 4 A/cm²

Optical Heating of Poly-SiC Microcathode

J.-H. Lee, et al, IEEE MEMS 2012, Paris, France.

Microfabricated SiC TEC device

- 100x higher current
- Non-shorting
- Stable at high temperatures

Micro-scale spacing can

largely mitigate space-

charge issues

J. Lee, I. Bargatin, Roger Howe

PETE Opportunities and Challenges

 Surface recombination is an issue, but can be overcome

Heterostructure design looks very promising

 Best results will be achieved by balancing thickness, electron affinity to recombination and emission rates

• Space charge can be lessened using beads for large devices, or microfabrication

Acknowledgements

Jules VanDersarl Lizzie Hagar-Barnard Katie Chang Vijay Narasimhan Andrew Wang Calvin Hu Xi Xie Alex Yu Piyush Verma Ben Almquist

Jason Fabbri Fuming Wang Karthik Narasimha Jared Schwede Daniel Riley Sam Rosenthal Kunal Sahasrabuddhe Xiaofei Ye John Melas-Kyriazi Dr. Karl Littau

Collaborators:

Prof. ZX Shen (Stanford Physics), Wanli Yang, Will Clay

Prof. Roger Howe (EE), Igor Bargatin, J Provine

Dr. Trevor Willey (LLNL)

Jeremy Dahl, Bob Carlson

Taking Thermionics below 100um

Simple Approach: Microbead Spacers

- simple, cheap
- low density by spraying
- poor thermal contact
- allows expansion

Sahasrabuddhe et al ,EES, 2013

Small Scale Device Concept

- Substrate functions as anode
- Vacuum encapsulation with a transparent lid
- Work-function lowering vapors in the cavity

Solar Power Conversion

A lot of high-quality energy is available from the sun... how can we harvest it?

Solar Thermal (CSP)

- Converts sunlight into heat
- Concentrated solar thermal
- Uses well-known thermal conversion systems
- Efficiencies of 20-30%

Photovoltaics (PV)

- collects fraction of incident energy
- "high grade" photon energy
- direct photon to electricity
- efficiencies 19-24% (single junction Si)

High Temperature Thermal Topping Cycles

