HPS/PHIL 93872 Historical Foundations of the Quantum Theory Don Howard, Instructor

Spring 2009

Required Readings:

Topic:	Readings:
Planck and black-body radiation.	Martin Klein. "Planck, Entropy, and Quanta, 19011906." <i>The Natural Philosopher</i> 1 (1963), 83-108.
Einstein and the photo-electric effect.	Martin Klein. "Einstein's First Paper on Quanta." <i>The Natural Philosopher</i> 2 (1963), 59-86.
The Bohr model of the atom and spectral series.	Max Jammer. "Regularities in Line Spectra"; "Bohr's Theory of the Hydrogen Atom." In <i>The Conceptual Development of</i> <i>Quantum Mechanics</i> . New York: McGraw-Hill, 1966, pp. 62- 88.
The Bohr-Sommerfeld "old" quantum theory; Einstein on transition probabilities.	Max Jammer. "The Older Quantum Theory." In <i>The Conceptual Development of Quantum Mechanics</i> . New York: McGraw-Hill, 1966, pp. 89-156.
The Bohr-Kramers-Slater theory.	Max Jammer. "The Transition to Quantum Mechanics." In <i>The Conceptual Development of Quantum Mechanics</i> . New York: McGraw-Hill, 1966, pp. 157-195.
Bose-Einstein statistics.	Don Howard. "'Nicht sein kann was nicht sein darf,' or the Prehistory of EPR, 1909-1935: Einstein's Early Worries about the Quantum Mechanics of Composite Systems." In <i>Sixty-Two</i> <i>Years of Uncertainty: Historical, Philosophical, and Physical</i> <i>Inquiries into the Foundations of Quantum Mechanics.</i> Arthur Miller, ed. New York: Plenum, 1990, pp. 61-111.
Schrödinger and wave mechanics; Heisenberg and matrix mechanics.	Max Jammer. "The Formation of Quantum Mechanics." In <i>The Conceptual Development of Quantum Mechanics</i> . New York: McGraw-Hill, 1966, pp. 196-280.
De Broglie and the origins of pilot-wave theory.	James T. Cushing. "Early Attempts at Causal Theories: A Stillborn Program." In <i>Quantum Mechanics: Historical</i> <i>Contingency and the Copenhagen Hegemony</i> . Chicago: University of Chicago Press, 1994, pp. 124-143.
Complementarity and the indeterminacy principle.	Niels Bohr. "The Quantum Postulate and the Recent Develop- ment of Atomic Theory." <i>Nature</i> (Suppl.), 121 (1928): 580-590. Reprinted in <i>Atomic Theory and the Description of Nature</i> . Cambridge: Cambridge University Press, 1934, pp. 52-91.
	Mara Beller. "The Dialogical Birth of Bohr's Complementarity." In <i>Quantum Dialogue. The Making of a Revolution.</i> Chicago: University of Chicago Press, 1999, pp. 117-144.

The Einstein-Podolsky-Rosen argument and Bohr's reply.	Albert Einstein, Boris Podolsky, and Nathan Rosen. "Can Quantum-mechanical Description of Physical Reality Be Considered Complete?" <i>Physical Review</i> 47 (1935), 777-780.
	Niels Bohr. "Can Quantum-mechanical Description of Physical Reality Be Considered Complete?" <i>Physical Review</i> 48 (1935), 696-702.
The invention of the "Copenhagen Interpretation."	Don Howard. "Who Invented the Copenhagen Interpretation? A Study in Mythology." <i>PSA 2002.</i> Part II, <i>Symposium Papers.</i> Proceedings of the 2002 Biennial Meeting of the Philosophy of Science Association, Milwaukee, Wisconsin, November 7-9, 2002. A special issue of <i>Philosophy of Science</i> 71 (2004). (Forthcoming.)
Von Neumann and the axiomatization of quantum mechanics. London and Bauer on measurement theory.	John von Neumann. "The Measruing Process. In <i>Mathematical Foundations of Quantum Mechanics</i> . Robert T. Beyer, trans. Princeton, NJ: Princeton University Press, 1955, pp. 417-445. Originally published as <i>Mathematische Grundlagen der Quantenmechanik</i> . Berlin: Julius Springer, 1932.
	Fritz London and Edmond Bauer. "The Theory of Observation in Quantum Mechanics." Abner Shimony et al., trans. In John Archibald Wheeler and Wojciech Hubert Zurek, eds. <i>Quantum</i> <i>Theory and Measurement</i> . Princeton, NJ: Princeton University Press, 1983, pp. 217-259. Originally published as <i>La théorie de</i> <i>l'observation en mécanique quantique</i> . Actualités scientifiques et industrielles, no. 775. Paris: Hermann, 1939.
Relativistic quantum mechanics, second quantization, and the origins of quantum field theory.	Silvan S. Schweber. "The Birth of Quantum Field Theory" and "The 1930s." In <i>QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga</i> . Princeton, NJ: Princeton University Press, 1994, pp. 1-129.
Ballentine and the statistical ensemble interpretation.	L. E. Ballentine. "The Statistical Interpretation of Quantum Mechanics." <i>Reviews of Modern Physics</i> 42 (1970), 358-381.
Bohm and the revival of hidden variables theories. Gleason, Kochen and Specker, and the no-go theorems.	David Bohm. "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden' Variables. I and II." <i>Physical Review</i> 85 (1952),166-193.
Bell's theorem and the Jarrett analysis.	James T. Cushing. "A Background Essay." In Philosophical Consequences of Quantum Theory: Reflections on Bell's Theorem. James T. Cushing and Ernan McMullin, eds. Notre Dame, IN: University of Notre Dame Press, 1989, pp. 1- 24.
Everett, Wheeler, DeWitt and the relative state interpretation.	Hugh Everett. "'Relative State' Formulation of Quantum Mechanics." <i>Reviews of Modern Physics</i> 29 (1957), 454-462.

Omnès, Zurek, and decoherence.	Wojciech Zurek. "Decoherence and the Transition from Quantum to Classical—Revisited." (2002). Originally published as: "Decoherence and the Transition from Quantum to Classical." <i>Physics Today</i> 44, no. 10 (October 1991), 36-44.
	Wojciech Zurek. "Decoherence, Einselection, and the Quantum Origins of the Classical." <i>Reviews of Modern Physics</i> 75 (2003), 715-775.
Van Fraassen and the modal interpretation.	Michael Dickson. "The Modal Interpretations of Quantum Theory." <i>The Stanford Encyclopedia of Philosophy</i> (Winter 2002 Edition), Edward N. Zalta (ed.), URL = <http: archives="" entries="" plato.stanford.edu="" qm-<br="" win2002="">modal/>.</http:>
Quantum computing, quantum information theory, and quantum cryptography.	Charles Bennett. "Quantum Information and Computation." <i>Physics Today</i> 48, no. 10 (October 1995), 24-30.
Quantum field theory and the quantum information loss paradox. Algebraic quantum field theory.	Gordon Belot, John Earman, and Laura Ruetsche. "The Hawking Information Loss Paradox: The Anatomy of a Controversy." <i>British Journal for the Philosophy of Science</i> 50 (1999), 189-229.