
CSE	40677	Spring	2015	
Open	Source	So6ware	Development	

	
Project	Vision	

	
Prof.	Douglas	Thain	

University	of	Notre	Dame	



Semester	Goals:	
1	-	Build	a	prototype	opera0ng	
system	in	which	hierarchical	
containment	is	the	organizing	

principle.	
	

2	-	Make	it	a	sustainable	open-source	
project	so	that	others	can	easily	

contribute.	



Modern	systems	have	many	layers	of	
mutually	untrusPng	so6ware.	

OperaPng	System	

User	A	 User	B	

Web	
Browser	

Web	
Page	1	

Email	
ApplicaPon	

Web	
Page	2	

Web	
App	

Video	
Codec	

Code	in	
ATachment	

Other	Apps	



But	the	OS	only	separates	users.	

OperaPng	System	

User	A	 User	B	

Web	
Browser	

Web	
Page	1	

Email	
ApplicaPon	

Web	
Page	2	

Web	
App	

Video	
Codec	

Code	in	
ATachment	

Other	Apps	



The	TradiPonal	Unix	Model:	

•  Only	the	super-user	can	create	new	protecPon	
domains	(i.e.	users)	in	order	to	separate	
untrusted	so6ware.	

•  Ordinary	users	cannot	create	new	protecPon	
domains,	and	so	they	cannot	protect	
themselves	from	untrusted	so6ware!	



This	results	in	several	big	problems:	

•  Security:	
– An	ordinary	program	has	no	simple	way	of	protecPng	
itself	from	a	sub-program.	

•  ConfiguraPon:	
– Users	cannot	set	up	the	so6ware	configuraPon	that	
they	want	to	use,	without	ge[ng	the	sysadmin	to	
“install”	the	so6ware	for	everyone.	

•  ContaminaPon:	
–  Every	so6ware	package	expects	to	have	access	to	
every	other	so6ware	package	simultaneously.	



Containment	is	possible	today,	
but	expensive	and	complicated:	

•  Mandatory	Access	Control	(SELinux):	Someone	
must	configuraPon	the	interacPons	of	everything	
on	the	system.	

•  Virtual	Machines	–	Much	too	heavyweight	to	run	
individual	components.	

•  Containers	–	Ge[ng	beTer,	but	sPll	too	
heavyweight	just	to	run	a	single	webapp,	video	
codec,	or	data	analysis	task.	

•  RunPmes	like	JVM/CLR/JS	–	provide	containment,	
but	only	if	you	program	in	that	language!	



What	we	want:	

•  Containment:	
–  Every	process	is	limited	to	a	subset	of	resources	
(display,	disk,	memory	etc)	and	cannot	venture	
outside	of	those	limits.	

•  Hierarchical	Containment:	
–  Every	process	is	capable	of	starPng	sub-processes	
whose	limits	fall	within	that	of	the	parent	process.	

•  As	a	result:	
–  Every	process	is	effecPvely	the	superuser	with	respect	
to	all	of	its	sub-processes.		No	need	for	sudo/setuid!	



A	prototype	operaPng	system:	

•  A	kernel	that	can	manage	the	most	essenPal	
resources	(display,	disk,	memory)	and	run	
some	example	programs	so	as	to	clearly	
demonstrate	hierarchical	containment.	

•  Focus	on	the	design	of	the	basic	kernel	
architecture	and	system	call	API	to	enable	
hierarchical	containment.	

•  (It	must	have	some	working	drivers,	but	that	
isn’t	the	interesPng	point.)	



StarPng	Point:	Basekernel	

hTp://github.com/dthain/basekernel	
	

•  A	skeleton	kernel	that	
boots	the	system	in	32	
bit	mode,	and	has	
minimal	support	for	
disks,	memory,	and	
video.	



Sketch	of	Complete	System	

ATA	 Video	 MMU	 Others?	

File	
System	

Window	
System	

Memory	
Manager	

System	Call	API	

Apps	Apps	

Containment	Policy	



Semester	Goals:	
1	-	Build	a	prototype	operaPng	system	
in	which	hierarchical	containment	is	

the	organizing	principle.	
	

2	-	Make	it	a	sustainable	open-source	
project	so	that	others	can	easily	

contribute.	



Project	Requirements	
•  A	public,	high	quality,	and	editable	web	presence	which	includes	a	

compelling	project	vision,	instrucPons	for	downloading	and	using	the	
so6ware,	technical	documentaPon	and	links	regarding	the	details	of	the	
so6ware,	and	a	descripPon	of	the	membership	and	governance	of	the	
project.	

•  The	project	source	code	must	be	maintained	in	a	public	code	repository,	
and	changes	accepted	to	the	project	through	a	standardized	process.	
There	must	be	a	simple	and	well-documented	process	for	building	and	
using	the	source	code.	

•  Public	venues	for	reporPng	bugs,	requesPng	help,	and	discussing	project	
features.	These	may	include	issue	trackers,	forum	so6ware,	or	whatever	is	
most	appropriate	to	the	project.	Project	development	must	be	carried	out	
using	these	tools.	

•  The	final	version	of	the	so6ware	must	meet	the	requirements	of	a	
Minimum	Viable	Product	(MVP)	which	will	be	arPculated	by	the	team	
early	in	the	semester.	



MeePng	Structure	

•  Set	up	a	schedule	to	work	together	on	a	
regular	basis	each	week,	including	some	Pme	
to	sync	and	prepare	the	weekly	report.	

•  Present	a	weekly	report	to	me	with	
accomplishments	of	each	member,	overall	
status,	and	demo	of	the	current	code.	

•  Nothing	is	“real”	unPl	it	is	checked	in	and	
publically	visible	online!	



Ge[ng	Started	
•  Select	open	source	tools	for	source	code,	web	
page,	bug	tracking,	etc.		(There	is	no	perfect	
tool,	so	pick	something	and	go	forward…)	

•  Decide	upon	divison	of	labor,	at	least	to	start.		
(It	can	change	as	you	go	forward.)	

•  Get	the	starter	code,	compile	it,	run	it	in	a	VM,	
and	play	around	with	it.	

•  Pick	some	*simple*	improvements	that	can	be	
done	quickly,	to	exercise	your	project	process.	

	



Short	Term	Targets	

•  This	Friday:	
– Team	work	schedule	set	up.	
–  Infrastructure	selected	and	iniPalized.	
– Demo	of	a	few	liTle	hacks	to	the	code.	

•  Next	Friday:	
– Breakdown	of	big	tasks	into	chunks.	
–  IniPal	division	of	labor	agreed	on.	
– All	infrastructure	up	with	iniPal	useful	content.	
– First	improvements	wriTen,	debugged,	accepted.	


