Notes on Data Parallel Programming for Distributed Systems 40771 Fall 2008
Data Intensive Computing

Task Parallel Computing



Idea: Split up computation, consider data access secondary.



Examples of computation intensive tasks.



What happens when the data rate increases?


Constraints of a single server.



Constraints of multiple servers.


Data Parallel Computing



Idea: Split up data, consider computation secondary.



Examples of data intensive tasks.



Expected performance behavior.



Limits of scalability?


Related Strategies for Data Intensive Computing



RAID: Increase block size and 



Active storage: Move the computation to the data.



Object storage: Make the disk aware of logical structure.



Server directed I/O: Let the file server order tasks.


The Big Picture



Web Scale Problems



GFS, MR, and Hadoop

Hadoop File System

The outline of this section is based on the Hadoop Design Document:

http://hadoop.apache.org/core/docs/current/hdfs_design.html

Design Goals



Assume Hardware Failure



Streaming Data Access



Large Datasets (millions of GB-sized files)



Coherency Model: Write Once, Read Many



Move Computation to Data



Portability via Java


Overall Structure



Namenode stores the directory structure.



Datanodes store large blocks of each file.


Robustness and Scalability



Replication: Count, blocksize, placement.



Clients verify checksums.



Namenode: Changelog and checkpoints.



Heartbeats and block reports.



Special Case: Safe Mode



Central Node Failure?


Interface and Examples

The Map-Reduce Concept

The outline of this section is based on the original Map-Reduce paper from Google:

http://labs.google.com/papers/mapreduce.html

Motivation



Large scale web indexing.



Need near-interactive performance.



High I/O bandwidth using many commodity disks.



Large, unreliable systems.



Common patterns tend to repeat themselves…


The Map-Reduce Model


map
(k1,v1) 
-> list(k2,v2)



reduce
(k2,list(v2))
-> list(v3)



Example: Count words in a large collection of documents.



Implied: Loading, Collecting, and Storage items.



Map must be memoryless!



Reduce must fully associative?


Example Applications



Distributed Grep



Summarize Web Server Logs



Reverse Web Link Graph



Term Vector per Host



Inverted Index



Randomized Algorithms


Implementation Considerations



Master, Mappers, Reducers.



One logical map becomes multiple physical processes.



Many logical reducers become fewer physical processes.



Which step is more naturally efficient?



Recovery from failure?



Dealing with Stragglers.


Refinements



Partitioning Function on Intermediates



Ordering of Intermediates



Combiner Function


Performance and Scale


(from paper)

