Ceph: A Scalable, High-Performance Distributed File System

Ceph: A Scalable, High-Performance Distributed
File System

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long
Presented by Philip Snowberger

Department of Computer Science and Engineering
University of Notre Dame

April 20, 2007

Ceph: A Scalable, High-Performance Distributed File System

Outline

Introduction
Goals of Ceph
Ceph Architecture

Handling Failures

Performance

Ceph: A Scalable, High-Performance Distributed File System
L Introduction

Problem

» Distributed filesystems allow aggregation of resources

» Can increase fault-tolerance
» Can increase performance
> Increases complexity

» Metadata is a bottleneck in many distributed filesystems
» Centralized metadata
» Distributed metadata
» Can we make a distributed filesystem that scales on both data
and metadata operations?

Ceph: A Scalable, High-Performance Distributed File System
I—Goals of Ceph

Goals of Ceph

» Achieve scalability to petabyte workloads, while maintaining
» Performance
> Reliability

» Scalability?

» Storage capacity
» Throughput

» Scale the above while maintaining useful performance for
individuals

Ceph: A Scalable, High-Performance Distributed File System
I—Goals of Ceph

How Does Ceph Attempt to Accomplish This?

Clients Metadata Cluster
Metadata operations
<

JR— [\ % Metadata
i [\ % storage

Object Storage Cluster

» Decoupling data and metadata

» A Ceph cluster consists of servers responsible for storing
objects, and servers responsible for managing metadata

» Dynamic distributed metadata management
» Robust against failures and workload changes
» Reliable Autonomic Distributed Object Storage
> Leverage “intelligence” available at each node in a cluster

Ceph: A Scalable, High-Performance Distributed File System
L Ceph Architecture

What are Metadata?

» Metadata are information about data

» Length, permissions, creator, modification time, ...
» File name?

» Almost every filesystem access affects metadata

» Different types of metadata can have different consistency
requirements

Ceph: A Scalable, High-Performance Distributed File System
L Ceph Architecture

Traditional Block Storage

» In traditional block storage, one piece of metadata is the
allocation list
» Sequence of disk block ranges that comprise the data of the file
» Managing this list takes a significant amount of computrons

» In a distributed setting, disk blocks are too low-level an
abstraction

Ceph: A Scalable, High-Performance Distributed File System
L Ceph Architecture

Object Storage

» Objects consist of paired data and metadata

» An Object storage device is responsible for keeping track of
where's the object’s bytes are on disk

» Thus, object storage relies on intelligence at storage nodes to
relieve some of the management load

Ceph: A Scalable, High-Performance Distributed File System
L Ceph Architecture

A Simple Object Storage System

» Consider a simple distributed filesystem
» Centralized directory server: “Where is /tmp/foo?”
» Distributed file servers: “Give me bytes 9043-43880 of
/tmp/foo”
» This design does not scale:

» Can the directory server handle 10,000 requests/second?
1,000,0007
» Can a single file server serve up a 10 MB file to 1,000 hosts?

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Metadata Distribution in Ceph

» In the past, distributed filesystems have used static sub-tree
partitioning to distribute filesystem load
» This does not perform optimally for some cases (e.g. /tmp,
/var/run/log)
» It also performs poorly when the workload changes
» To offset this lack of optimality, more recent distributed
filesystems have opted to distribute metadata with a hashing
function
» This removes the performance gains from directory locality

» Ceph uses a new approach, dynamic sub-tree partitioning

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Dynamic Sub-Tree Partitioning

Busy directory hashed across many MDS'’s

» Each MDS is responsible for some sub-tree of the filesystem
hierarchy

» Whenever an operation “visits" an inode (directory or file),
the MDS increments that inode’s time-decay counter

» MDSs compare their counter values periodically

» When an imbalance is detected, the MDS cluster reassigns the
responsiblity over some sub-trees to balance the counter values

» Extremely busy directories can be hashed across multiple
MDSs

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

A Naive Object Placement Method

» To find where to put a chunk of a file,
hash(inode.chunkNum)modNumServers

» But what happens when a server goes down or we add a
server?

» The hashing function needs a new modulus

» In a “petascale” distributed filesystem, failures and expansion
must be regarded as the rule, rather than the exception

» Is there a better way to place chunks?

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Distributing Objects in Ceph

File
(ino,ono) — oid
Objects e
hash(oid) & mask — pgid
ras (22727 (ET5)
= CRUSH(pgid) — (0sd1, 0sd2)
osDs ST ¥
(grouped by -

failure domain)

» Each object is mapped to a Placement Group by a simple
hash function with an adjustable bitmask

» This bitmask controls the number of PGs

» Placement Groups (PGs) are mapped to each Object Storage
Device (OSD) by a special mapping function, CRUSH

» Number of PGs per OSD affects load balancing

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

CRUSH

v

A special-purpose mapping function

» Given as input a PG identifier, a cluster map, and a set of

placement rules, it deterministically maps each PG to a
sequence of OSDs, R.

» This sequence is pseudo-random but deteministic

» “With high probability”, this achieves good distribution of

objects and metadata

This distribution is called “declustered”

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Cluster Maps

» A cluster map is composed of devices and buckets

Devices are leaf nodes
Buckets may contain devices or other buckets

» The OSDs that make up a cluster or group of clusters can be
organized into a hierarchy

» This hierarchy can reflect the physical or logical layout of the
cluster or network

Room123 (root)

Rowl, Row2, ..., Row8

Cabinetl, Cabinet2, ..., Cabinetl6

Diskl, Disk2, ..., Disk256

v

v vy

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Placement Rules

» Specify how the replicas of a PG should be placed on the
cluster

» The following example distributes three replicas across single
disks in each of three cabinets, all in the same row

» This pattern reduces or eliminates inter-row replication traffic

Action Resulting i
take(Room123) Room123
select(1,row) Row?2

select(3,cabinet) Cabinet4 Cabinet8 Cabinet9
select(1,disk) Disk44 Disk509 Disk612

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Safety vs. Synchronization

Oclient Sprimary [SReplica [Replica

~
‘ —> Write

3% Apply update

£ L Ack
\
|

<+—— Time

‘ % » Commit to disk
b Commit

» When a client writes data, it sends the write to the Primary

» The Primary forwards the data to the Secondaries, who ack
that they've received the data and it's been applied to their
page caches

» When the Primary receives all the Secondary acks, it returns
an ack back to the client

» At this point, the client knows that any other client accessing
the object will see a consistent view of it

Ceph: A Scalable, High-Performance Distributed File System
I—Ceph Architecture

Safety vs. Synchronization (continued)

» So how does Ceph treat data safety?

» Each OSD aggressively flushes its caches to secondary storage

» When the Secondaries have flushed each update, they send a
commit message to the Primary

> After collecting all the Secondaries’ commits, the Primary
sends a commit to the client

» Clients keep their updates buffered until receipt of a commit
message from the Primary

» (Why is this necessary?)

Ceph: A Scalable, High-Performance Distributed File System
L Handling Failures

Commonality of Failures

» Failures must be assumed in a “petascale” filesystem
consisting of hundreds or thousands of disks
» Centralized failure monitoring:
» Places a lot of load on the network
» Can not see “through” a network partition

» Can we distribute monitoring of failures?

Ceph: A Scalable, High-Performance Distributed File System
I—Handling Failures

Monitors

» Monitors are processes that keep track of transient and
systemic failures in the cluster

» They are responsible with providing access to a consistent
cluster map

» When the monitors change the cluster map, they propagate
that change to the affected OSDs

» The updated cluster map (since it is small) propagates via
other inter-OSD communication to the whole cluster

» When an OSD receives an updated map, it determines if the

ownership of any of its PGs have changed

» If so, it directly connects to the other OSD and replicates its
PG there

Ceph: A Scalable, High-Performance Distributed File System
I—Handling Failures

So What If A Rack Of Servers Explodes?

» Each OSD keeps track of the last time it heard from each
other server it shares a Placement Group with (replication
traffic serves as heartbeats)

» When a node goes down, it isn't heard from in a short time,
and is marked down (but not out) by the monitors.

» If the node doesn't recover quickly, it is marked out, and
another OSD joins each of the PGs that was affected in order
to bring the replication level back up

» Replication of data on the down/out node is prioritized by the
other OSDs

Ceph: A Scalable, High-Performance Distributed File System
L Performance

Throughput and Latency

60

=
2 50
340
£8

@
cz¥® -
8 =5 ~— no replication
1 -e---* 2x replication
S 10 ~+—= 3xreplication

[T T T T T T T

T 1

64 256 1(;24 4096

Write Size (KB)

» 14-node OSD cluster

» Load is generated by 400 clients running on 20 other nodes

» Plateau indicates the physical limitation of disk throughput

u]

|
1
u

!

Ceph: A Scalable, High-Performance Distributed File System
L Performance

Throughput and Latency (continued)

207 - ;s
= no replication £
@ | 2x replication Yy
%‘5 1 T77 3xreplication /)i__
2 « sync write /A
210 1 x sync lock, async write ,//,/(/x x
3 Tl
o
£ 54
=

0 T T T T T 1

4 5 1024

64
Write Size (KB)

» No difference for low write sizes between two and three
replicas

» At higher write sizes, network transmission times dominate
network latency

u]
|
u
!

Ceph: A Scalable, High-Performance Distributed File System

L Performance

Throughput and Latency (continued)

P @ @
o =} =}

Per-OSD Throughput
(MB/sec)

@
=]

—~— crush (32k PGs)
“—* crush (4k PGs)
hash (32k PGs)
-==> hash (4k PGs)
== linear

N

T T T T T
10 14 18 22 26
OSD Cluster Size

» OSD throughput scales linearly with the size of the OSD
cluster until the network switch is saturated

» More PGs even load out more, giving better per-node

throughput

Ceph: A Scalable, High-Performance Distributed File System

L Performance

Metadata Operation Scaling

5000 A —e——% makedirs
N ®---® makefiles
4000 4 = —»— -+ openshared
S - —e- — - opensshsinclude
T=-ee.__~* " opensshsib
oy

Per-MDS Throughput (ops/sec)

T T T T T T T 1
0 16 32 48 64 8 96 112 128
MDS Cluster Size (nodes)

» 430-node cluster, varying number of MDSs
» Metadata-only workloads

» Only a per-node throughput slowdown of 50% for large
clusters

Ceph: A Scalable, High-Performance Distributed File System

L Performance

Metadata Operation Scaling (continued)

~— 4MDSs |
40 7 -e--+ 16 MDSs i
<= 128 MDSs /

Latency (ms)

2000

o 4

500 1000 1500
Per-MDS throughput (ops/sec)

» From the makedirs workload

» Larger clusters have less-optimal metadata distributions,
resulting in lower throughput

» However, this is still very much adequate and performant for a
large distributed filesystem

Ceph: A Scalable, High-Performance Distributed File System

L Performance

Summary

» Ceph is a distributed filesystem that scales to extremely high
loads and storage capacities

» Latency of Ceph operations scales well with the number of
nodes in the cluster, the size of reads/writes, and the
replication factor

» By offering slightly non-POSIX semantics, they achieve big
performance wins for scientific workloads

» Distributing load with a cluster-wide mapping function
(CRUSH) is both effective and performant

	Introduction
	Goals of Ceph
	Ceph Architecture
	Handling Failures
	Performance

