
The Hadoop Stack, Part 2 
Introduc5on to HBase


CSE	40822	–	Cloud	Compu0ng	–	Spring	2016	
Prof.	Douglas	Thain	

University	of	Notre	Dame	
	



Three Case Studies


• Workflow:	Pig	La0n	
• A	dataflow	language	and	execu0on	system	that	provides	an	SQL-
like	way	of	composing	workflows	of	mul0ple	Map-Reduce	jobs.	

• Storage:	HBase	
• A	NoSQl	storage	system	that	brings	a	higher	degree	of	structure	to	
the	flat-file	nature	of	HDFS.	

• Execu0on:	Spark	
• An	in-memory	data	analysis	system	that	can	use	Hadoop	as	a	
persistence	layer,	enabling	algorithms	that	are	not	easily	
expressed	in	Map-Reduce.	



References


•  Fay	Chang	et	al,	Bigtable:	A	Distributed	Storage	System	for	Structured	
Data,	OSDI	2006	
•  h[p://research.google.com/archive/bigtable.html	

•  Introduc0on	to	Hbase	Schema	Design,	Amandeep	Khurana,	Login;	
Magazine,	2012.	
•  h[ps://www.usenix.org/publica0ons/login/october-2012-volume-37-
number-5/introduc0on-hbase-schema-design	

• Apache	HBase	Documenta0on	
•  h[p://hbase.apache.org	



From HDFS to HBase


• HDFS	provides	us	with	a	filesystem	consis0ng	of	arbitrarily	large	files	
that	can	only	be	wri[en	once	and	are	should	be	read	sequen0ally,	
end	to	end.		This	works	fine	for	sequen0al	OLAP	queries	like	Pig.	
• OLTP	workloads	want	to	read	and	write	individual	cells	in	a	large	
table.		(e.g.	update	inventory	and	price	as	orders	come	in.)	
• HBase	implements	OLTP	interac0ons	on	top	of	HDFS	by	using	
addi0onal	storage	and	memory	to	organize	the	tables,	and	wri0ng	
them	back	to	HDFS	as	needed.	
• HBase	is	an	open	source	implementa0on	of	the	BigTable	design	
published	by	Google.	



HBase Data Model


• A	database	consists	of	mul0ple	tables.	
•  Each	table	consists	of	mul0ple	rows,	sorted	by	row	key.	
•  Each	row	contains	a	row	key	and	one	or	more	column	families.	
•  Each	column	family	is	defined	when	the	table	is	created.	
• Column	families	can	contain	mul0ple	columns.		(family:column)	
• A	cell	is	uniquely	iden0fied	by	(table,row,family:column).	
• A	cell	contains	an	uninterpreted	array	of	bytes	and	a	0mestamp.	
	



Data in Tabular Form


Name	 Home	 Office	

Key	 First	 Last	 Phone	 Email	 Phone	 Email	

101	 Florian	 Krepsbach	 555-1212	 florian@	
wobegon.org	

666-1212	
	

h@phc.com	

102	 Marilyn	 Tollerud	 555-1213	 666-1213	
	

103	 Pastor	 Inqvist	 555-1214	 inqvist@	
wels.org	



Data in Tabular Form


Name	 Home	 Office	 Social	

Key	 First	 Middle	 Last	 Phone	 Email	 Phone	 Email	 FacebookID	

101	 Florian	 Garfield	 Krepsbach	 555-121
2	

florian@	
wobegon.org	

666-12
12	
	

h@phc.com	

102	 Marilyn	 Tollerud	 555-121
3	

666-12
13	
	

103	 Pastor	 Inqvist	 555-12
14	

inqvist@	
wels.org	

New	columns	can	be	
added	at	run0me.	

Column	families	cannot	
be	added	at	run0me.	



Don’t be fooled by the picture: 
Hbase is really a sparse table.




Nested Data Representa5on

Table	People	(	Name,	Home,	Office	)	
{	

	101:	{	
	 	Timestamp:	T403;	
	 	Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},	
	 	Home:	{Phone=“555-1212”,	Email=“florian@wobegon.org”},	
	 	Office:	{Phone=“666-1212”,	Email=“h@phc.com”}	
	},	
	102:	{	
	 	Timestamp:	T593;	
	 	Name:	{	First=“Marilyn”,	Last=“Tollerud”},	
	 	Home:	{	Phone=“555-1213”	},	
	 	Office:	{	Phone=“666-1213”	}	
	},	
	…	

}	
	



Nested Data Representa5on

GET	People:101	

	101:	{	
	 	Timestamp:	T403;	
	 	Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},	
	 	Home:	{Phone=“555-1212”,	Email=“florian@wobegon.org”},	
	 	Office:	{Phone=“666-1212”,	Email=“h@phc.com”}	
	}	

	
GET	People:101:Name	

	People:101:Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”}	
	
GET	People:101:Name:First	

	People:101:Name:First=“Florian”	
	



Fundamental Opera5ons


• CREATE	table,	families	
• PUT	table,	rowid,	family:column,	value	
• PUT	table,	rowid,	whole-row	
• GET	table,	rowid	
•  SCAN	table				(WITH	filters)	
• DROP	table	
	



Consistency Model


• Atomicity:	En0re	rows	are	updated	atomically	or	not	at	all.	
• Consistency:	

•  A	GET	is	guaranteed	to	return	a	complete	row	that	existed	at	some	point	in	
the	table’s	history.		(Check	the	0mestamp	to	be	sure!)		
•  A	SCAN	must	include	all	data	wri[en	prior	to	the	scan,	and	may	include	
updates	since	it	started.	

•  Isola0on:	Not	guaranteed	outside	a	single	row.	
• Durability:	All	successful	writes	have	been	made	durable	on	disk.	



The Implementa5on


•  I’ll	give	you	the	idea	in	several	steps:	
•  Idea	1:	Put	an	en0re	table	in	one	file.		(It	doesn’t	work.)	
•  Idea	2:	Log	+	one	file.		(Be[er,	but	doesn’t	scale	to	large	data.)	
•  Idea	3:	Log	+	one	file	per	column	family.		(Getng	be[er!)	
•  Idea	4:	Par00on	table	into	regions	by	key.	

• Keep	in	mind	that	“one	file”	means	one	giganFc	file	stored	in	HDFS.		
We	don’t	have	to	worry	about	the	details	of	how	the	file	is	split	into	
blocks.	



Idea 1: Put the Table in a Single File


• How	do	we	do	the	following	opera0ons?	
•  CREATE	
•  DELETE	
•  SCAN	
•  GET		
•  PUT	

101:	{Timestamp:	T403;Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},Home:	
{Phone=“555-1212”,	Email=“florian@wobegon.org”},Office:	{Phone=“666-1212”,	
Email=“h@phc.com”}},102:	{Timestamp:	T593;Name:	{	First=“Marilyn”,	
Last=“Tollerud”},Home:	{	Phone=“555-1213”	},Office:	{	Phone=“666-1213”	}},	.	.	.	

File	“People”	



Variable-Length Data is Fundamentally Hard! 



Fun	reading	on	the	topic:	
h[p://www.joelonsovware.com/ar0cles/fog0000000319.html	

ID 	FirstName 	LastName 	Phone	
101 	Florian 	 	Krepsbach 	555-3434	
102 	Marilyn	 	 	Tollerud 	 	555-1213	
103 	Pastor 	 	Ingvist 	 	555-1214	

101:	{Timestamp:	T403;Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},Home:	
{Phone=“555-1212”,	Email=“florian@wobegon.org”},Office:	{Phone=“666-1212”,	
Email=“h@phc.com”}},102:	{Timestamp:	T593;Name:	{	First=“Marilyn”,	
Last=“Tollerud”},Home:	{	Phone=“555-1213”	},Office:	{	Phone=“666-1213”	}},	.	.	.	

SQL	Table:	People(	ID:	Integer,	FirstName:	CHAR[20],	LastName:	Char[20],	Phone:	CHAR[8]	)	
UPDATE	People	SET	Phone=“555-3434”	WHERE	ID=403;	

HBase	Table	People(	ID,	Name,	Home,	Office	)	
PUT	People,	403,	Home:Phone,	555-3434	

Each	row	is	exactly	52	bytes	long.	
To	move	to	the	next	row,	just	fseek(file,+52);	
To	get	to	Row	401,	fseek(file,401*52);	
Overwrite	the	data	in	place.	

?



Idea 2: One Tablet + Transac5on Log


101:	{Timestamp:	T403;Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},Home:	
{Phone=“555-1212”,	Email=“florian@wobegon.org”},Office:	{Phone=“666-1212”,	
Email=“h@phc.com”}},102:	{Timestamp:	T593;Name:	{	First=“Marilyn”,	
Last=“Tollerud”},Home:	{	Phone=“555-1213”	},Office:	{	Phone=“666-1213”	}},	.	.	.	

Table	for	People	

PUT	101:Office:Phone	=	“555-3434”	
PUT	102:Home:Email	=	mt@yahoo.com	
….	

TransacFon	Log	for	Table	People:	

Changes	are	applied	only	to	the	log	file,	
Then	the	resul0ng	record	is	cached	in	memory.	
Reads	must	consult	both	memory	and	disk.	

Memory	Cache	for	Table	People:	

101	 102	

GET	People:101	 GET	People:103	
PUT	People:101:Office:Phone	=	“555-3434”	



Idea 2 Requires Periodic Log Compression


101:	{Timestamp:	T403;Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},Home:	
{Phone=“555-1212”,	Email=“florian@wobegon.org”},Office:	{Phone=“666-1212”,	
Email=“h@phc.com”}},102:	{Timestamp:	T593;Name:	{	First=“Marilyn”,	
Last=“Tollerud”},Home:	{	Phone=“555-1213”	},Office:	{	Phone=“666-1213”	}},	.	.	.	

Table	for	People	on	Disk:	(Old)	

PUT	101:Office:Phone	=	“555-3434”	
PUT	102:Home:Email	=	mt@yahoo.com	
….	

TransacFon	Log	for	Table	People:	

101:	{Timestamp:	T403;Name:	{First=“Florian”,	Middle=“Garfield”,	Last=“Krepsbach”},Home:	
{Phone=“555-1212”,	Email=“florian@wobegon.org”},Office:	{Phone=“555-3434”,	
Email=“h@phc.com”}},102:	{Timestamp:	T593;Name:	{	First=“Marilyn”,	
Last=“Tollerud”},Home:	{	Phone=“555-1213”,	Email=“my@yahoo.com”	},	.	.	.	

Table	for	People	on	Disk:	(New)	

Write	out	a	new	copy	of	the	
table,	with	all	of	the	changes	
applied.		Delete	the	log	and	
memory	cache,	and	start	over.	



Idea 3: Par55on by Column Family


Data	for	
Column	Family	
Name	

Tablets	for	People	on	Disk:	(Old)	

PUT	101:Office:Phone	=	“555-3434”	
PUT	102:Home:Email	=	mt@yahoo.com	
….	

TransacFon	Log	for	Table	People:	

Tablets	for	People	on	Disk:	(New)	

Write	out	a	new	copy	of	the	
tablet,	with	all	of	the	changes	
applied.		Delete	the	log	and	
memory	cache,	and	start	over.	

Data	for	
Column	Family	
Home	

Data	for	
Column	Family	
Office	

Data	for	
Column	Family	
Home																		(Changed)	

Data	for	
Column	Family	
Office																			(Changed)	

Data	for	
Column	Family	
Name	



Idea 4: Split Into Regions


Region	1:	Keys	100-200	

Region	2:	Keys	200-300	

Region	3:	Keys	300-400	

Region	4:	Keys	400-500	

Region	
Server	

Region	
Master	

Region	
Server	

Region	
Server	

Region	
Server	

Transac0on	Log	

Memory	Cache	

Tablet	

Tablet	

Tablet	

Hbase	
Client	

(Detail	of	One	Region	Server)	

Column	
Family	Name	

Column	
Family	Home	

Column	
Family	Office	

Where	are	
the	servers	
for	table	
People?	

Access	data	
in	tables	



Column	Family	Name	 Column	Family	Home	 Column	Family	Office	

Region	1	
Keys	101-200	

Region	2	
Keys	201-300	

Region	3	
Keys	301-400	

Table	People	



The consistency model is 5ghtly coupled to 
the scalability of the implementa5on!




Consistency Model


• Atomicity:	En0re	rows	are	updated	atomically	or	not	at	all.	
• Consistency:	

•  A	GET	is	guaranteed	to	return	a	complete	row	that	existed	at	some	point	in	
the	table’s	history.		(Check	the	0mestamp	to	be	sure!)		
•  A	SCAN	must	include	all	data	wri[en	prior	to	the	scan,	and	may	include	
updates	since	it	started.	

•  Isola0on:	Not	guaranteed	outside	a	single	row.	
• Durability:	All	successful	writes	have	been	made	durable	on	disk.	



Ques5ons for Discussion


• What	are	the	tradeoffs	between	having	a	very	tall	ver0cal	table	
versus	having	a	very	wide	horizontal	table?	
•  Suppose	a	table	starts	off	small,	and	then	a	large	number	of	rows	are	
added	to	the	table.		What	happens	and	what	should	the	system	do?	
• Using	the	People	example,	come	up	with	some	examples	of	simple	
queries	that	are	very	fast,	and	some	that	are	very	slow.		Is	there	
anything	that	can	be	done	about	the	slow	queries?	
• Would	it	be	possible	to	have	SCAN	return	a	consistent	snapshot	of	
the	system?		How	would	that	work?	


