
	
Notes	on	Map-Reduce	and	Hadoop	–	CSE	40822	
Prof.	Douglas	Thain,	University	of	Notre	Dame,	February	2016	
	
Caution:	These	are	high	level	notes	that	I	use	to	organize	my	lectures.			You	may	find	
them	useful	for	reviewing	main	points,	but	they	aren’t	a	substitute	for	participating	in	
class.	
	
References:	

• Dean,	Jeffrey,	and	Sanjay	Ghemawat.	"MapReduce:	simplified	data	processing	
on	large	clusters."	Communications	of	the	ACM	51.1	(2008):	107-113.	

• Jimmy	Lin	and	Chris	Dyer,	Data-Intensive	Text	Processing	with	MapReduce,	
Morgan	&	Claypool	Publishers,	2010.	

• K.	Shvachko,	H.	Kuang,	S.	Radia,	R.	Chansler,	“The	Hadoop	Distributed	
Filesystem”,	IEEE	Mass	Storage	Systems	and	Technologies,	2010.	

	
Background	and	Context	
	
Early	days	of	the	Google	web	search	engine.	(2004)	
Complex	programs	mixed	up	logic	with	fault	tolerance.	
Simplified	computing	model:	Map-Reduce	
Result:	Much	greater	productivity	at	scale.	
	
The	Map-Reduce	Programming	Model	
	
User	provides	two	functions:	Map	and	Reduce,	and	asks	for	them	to	be	invoked	in	a	
given	data	set.		They	must	have	the	following	form:	

	
Map(	key,	value	)	->	list(	key,	value	)	
Reduce(	key,	list(values)	)	->	output	
	

The	framework	is	responsible	for	locating	the	data,	applying	the	functions,	and	
then	storing	the	outputs.		The	user	is	not	concerned	with	locality,	fault	tolerance,	
optimization,	and	so	forth.	

	
The	Map	functions	are	applied	to	each	of	the	files	comprising	the	data	sets,	and	emit	
a	series	of	(key,value)	pairs.		Then,	for	each	key,	a	bucket	is	created	for	all	of	the	
values	with	that	key.		The	Reduce	function	is	then	applied	to	all	values	in	that	
bucket.	

	
(Blackboard	diagram	of	how	this	works.)	
	
Example	Map-Reduce	Programs	
	



WordCount	is	the	“hello	world”	of	Map-Reduce.		This	program	reads	in	a	large	
number	of	files	and	computes	the	frequency	of	each	unique	word	in	the	input.	

	
Map(	key,	value	)	{	

//	key	is	the	file	name	
//	value	is	the	file	contents	
For	each	word	in	value	{	

	 	 Emit(	word,	1	)	
	 }	
}	
	
Reduce(	key,	list(values)	)	{	
	 count	=	0;	
	 For	each	v	in	list(values)	{	
	 	 count++;	
	 }	
	 Emit(	key,	count	);	
}	
	

Sometimes	you	need	to	run	multiple	rounds	of	Map-Reduce	in	order	to	get	the	
desired	effect.		For	example,	suppose	you	now	want	to	generate	the	top	ten	most	
frequently	used	words	in	this	set	of	documents.		Run	Map-Reduce	on	the	output	of	
the	previous,	but	with	this	program:	

	
Map(	key,	value	)	{	
	 word	=	key	
	 count	=	value	
	 Emit(	1,	“count	word”);	
}	
	
Reduce(	key,	list(values)	)	{	
	 For	first	ten	items	in	list(values)	{	
		 Emit(	value	)	
	 }	
}	
	 	 	

	 	
Example	Problems	to	Work	in	Class	
	
Suppose	you	have	the	following	weather	data.		A	set	of	(unsorted)	tuples,	each	
consisting	of	a	year,	month,	day,	and	the	maximum	observed	temp	that	day:	
	
(2007,12,10,35)	
(2008,3,22,75)	
(2015,2,15,12)	
.	.	.	



	
1.	Write	a	Map-Reduce	program	to	compute	the	maximum	temperature	observed	
each	month	for	which	data	is	present.	

	
2.	Write	a	Map-Reduce	program	to	compute	the	average	temperature	for	the	day	of	
the	year	(over	all	years).	

	
Suppose	that	you	have	data	representing	a	graph	of	friends:	

	
A	->	B,C,D	
B	->	A,	C,	D	
C	->	A,B	
D	->	A,B	
	
3	.	Write	a	Map-Reduce	program	that	will	identify	common	friends:	

	
(A,B)	->	C,D	
(A,C)	->	B	
(A,D)	->	.	.	.	
	
The	Hadoop	Distributed	System	
	
Hadoop	began	a	an	open-source	implementation	very	similar	in	spirit	to	the	Google	
File	System	(GFS)	and	the	Map-Reduce	programming	model.		It	has	grown	into	a	
complex	ecosystem	of	interacting	pieces	of	software.	
	
HDFS	-	Hadoop	Distributed	Filesystem	
	
	 Architecture:	
	 	 One	Name	Node	+	Many	Data	Nodes	
	 	 Files	divided	into	large	64MB	chunks.	
	 	 Files	once	written,	are	immutable.	
	 	 Chunks	are	replicated	three	times	in	two	different	racks.	
	
	 Interface:	
	 	 Java	library.	
	 	 Hadoop	command-line	tool.	
	 	 Status	web	page.	
	
	 Considerations:	
	 	 Fault	tolerance.	
	 	 High	access	latency.	
	 	 Uploading	can	be	slow,	due	to	replication.	
	 	 Very	high	throughput	on	parallel	reads.	
	 	 Secondary	name	node	performs	log	compression.	
	 	 Multiple	disks	per	data	node.	



	
	
MR	–	Hadoop	Map-Reduce	
	
	 Architecture:	
	 	 One	JobTracker	per	cluster	coordinates	the	entire	M-R	computation.	
	 	 TaskTrackers	on	each	node	dispatch	and	monitor	each	M-R	task.	
	 	 HDFS	->	Maps	->	Temporary	Space	->	Shuffle	->	Reducers	->	HDFS	
	
	
	 Interface:	
	 	 Native	M-R	code	in	Java.	
	 	 Other	languages	use	the	streaming	interface.	
	 	 Hadoop	command-line	tool.	
	
	 Considerations:	
	 	 Fault	tolerance.	
	 	 Stragglers.	
	 	 Data	balance.	
	 	 Number	of	“reducers”.	
	
	 Question:	
	 	 Which	part	of	a	Map-Reduce	program	is	naturally	scalable,	
	 	 and	which	part	is	likely	to	be	a	bottleneck?	
	
	 	 Does	that	affect	how	you	would	design	a	M-R	program?	
	
	
Overview	of	Hadoop	Map-Reduce	Assignment	


