
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997 1

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 27,136 05/29/97 4:13 PM 1 / 17

The Model Checker SPIN
Gerard J. Holzmann

Abstract—SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design
errors in applications ranging from high-level descriptions of distributed algorithms to detailed code for controlling telephone
exchanges. This paper gives an overview of the design and structure of the verifier, reviews its theoretical foundation, and gives an
overview of significant practical applications.

Index Terms—Formal methods, program verification, design verification, model checking, distributed systems, concurrency.

—————————— ✦ ——————————

1 INTRODUCTION

PIN is a generic verification system that supports the
design and verification of asynchronous process sys-

tems [36], [38]. SPIN verification models are focused on
proving the correctness of process interactions, and they at-
tempt to abstract as much as possible from internal sequen-
tial computations. Process interactions can be specified in
SPIN with rendezvous primitives, with asynchronous mes-
sage passing through buffered channels, through access to
shared variables, or with any combination of these. In fo-
cusing on asynchronous control in software systems, rather
than synchronous control in hardware systems, SPIN distin-
guishes itself from other well-known approaches to model
checking, e.g., [12], [49], [53].

As a formal methods tool, SPIN aims to provide:

1) an intuitive, program-like notation for specifying de-
sign choices unambiguously, without implementation
detail,

2) a powerful, concise notation for expressing general
correctness requirements, and

3) a methodology for establishing the logical consistency
of the design choices from 1) and the matching cor-
rectness requirements from 2).

Many formalisms have been suggested to address the
first two items, but rarely are the language choices directly
related to a basic feasibility requirement for the third item.
In SPIN the notations are chosen in such a way that the logi-
cal consistency of a design can be demonstrated mechani-
cally by the tool. SPIN accepts design specifications written
in the verification language PROMELA (a Process Meta Lan-
guage) [36], and it accepts correctness claims specified in
the syntax of standard Linear Temporal Logic (LTL) [60].

There are no general decision procedures for unbounded
systems, and one could well question the soundness of a
design that would assume unbounded growth. Models that
can be specified in PROMELA are, therefore, always required

to be bounded, and have only countably many distinct be-
haviors. This means that all correctness properties auto-
matically become formally decidable, within the constraints
that are set by problem size and the computational re-
sources that are available to the model checker to render the
proofs. All verification systems, of course, do have physical
limitations that are set by problem size, machine memory
size, and the maximum runtime that the user is willing, or
able, to endure. These constraints are an often neglected
issue in formal verification. We study the limitations of the
model checker explicitly and offer relief strategies for
problems that are outside the normal domain of exhaustive
proof. Such strategies are discussed in Sections 3.3 and 3.4
of this paper

1.1 Structure
The basic structure of the SPIN model checker is illustrated
in Fig. 1. The typical mode of working is to start with the
specification of a high level model of a concurrent system,
or distributed algorithm, typically using SPIN’s graphical
front-end XSPIN. After fixing syntax errors, interactive
simulation is performed until basic confidence is gained
that the design behaves as intended. Then, in a third step,
SPIN is used to generate an optimized on-the-fly verification
program from the high level specification. This verifier is
compiled, with possible compile-time choices for the types
of reduction algorithms to be used, and executed. If any
counterexamples to the correctness claims are detected,
these can be fed back into the interactive simulator and in-
spected in detail to establish, and remove, their cause.

The remainder of this paper consists of three main parts.
Section 2 gives an overview of the basic verification method
that SPIN employs. Section 3 summarizes the basic algorithms
and complexity management techniques that have been im-
plemented. Section 4 gives three examples of typical applica-
tions of the SPIN model checker to design and verification
problems. The first example is the problem of devising a cor-
rect process scheduler for a distributed operating system; the
second problem is the verification of a leader election proto-
col for a distributed ring; the third problem is the proof of
correctness of a standard sliding window flow control proto-
col. Section 4 concludes with a summary of a range of other
significant verification problems to which SPIN has been ap-
plied. Section 5 concludes the paper.

0098-5589/97/$10.00 © 1997 IEEE

————————————————

• G.J. Holzmann is with the Computing Sciences Research Center, Bell Labo-
ratories, Murray Hill, NJ 07974. Email: gerard@research.bell-labs.com.

Manuscript received Sept. 30, 1996.
 Recommended for acceptance by L.K. Dillon and S. Sankar.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number 104928.0.

S

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 2 / 17

Fig. 1. The structure of SPIN simulation and verification.

2 FOUNDATION

SPIN has its roots in the earliest protocol verification sys-
tems based on on-the-fly reachability analysis from the
early ‘80s [32], [33] [34]. The purpose of these first verifiers
was to provide an effective tool that could be used to solve
problems of practical significance. The fundamental com-
putational complexity of the problem to be solved forces
one to choose carefully which features will be supported, or
risk compromising the practical significance of the tool it-
self. The predecessors of SPIN therefore supported the veri-
fication of only standard safety properties and a limited
range of liveness properties.

Work on logic model checking techniques, pioneered by
Clarke and Emerson [12], and by Sifakis and Queille [61],
laid the foundation for a new generation of model checking
tools, with a larger scope of verification capabilities. Vardi
and Wolper extended this work with an automata theoretic
model [77] that has become the formal basis for temporal
logic model checking in the SPIN system. The framework is
summarized below.

The description of a concurrent system in PROMELA con-
sists of one or more user-defined process templates, or
proctype definitions, and at least one process instantia-
tion. The templates define the behavior of different types of
processes. Any running process can instantiate further
asynchronous processes, using the process templates.

SPIN translates each process template into a finite
automaton. The global behavior of the concurrent system is
obtained by computing an asynchronous interleaving
product of automata, one automaton per asynchronous
process behavior. The resulting global system behavior is

itself again represented by an automaton. This interleaving
product is often referred to as the state space of the system,
and, because it can easily be represented as a graph, it is
also commonly referred to as the global reachability graph.

To perform verification, SPIN takes a correctness claim
that is specified as a temporal logic formula, converts that
formula into a Büchi automaton, and computes the synchro-
nous product of this claim and the automaton representing
the global state space. The result is again a Büchi automa-
ton.1 If the language accepted by this automaton is empty,
this means that the original claim is not satisfied for the
given system. If the language is nonempty, it contains pre-
cisely those behaviors that satisfy the original temporal
logic formula. In SPIN, we use the correctness claims (and
temporal logic formulae) to formalize systems erroneous
system behaviors, i.e., behaviors that are undesirable. The
verification process then either proves that such behaviors
are impossible or it provides detailed examples of behav-
iors that match.

In the worst case, the global reachability graph has the
size of the Cartesian product of all component systems. The
specification language PROMELA is defined in such a way
that each component always has a strictly finite range. This
applies to processes (which can have only finitely many
control states), but also to all local and global variables
(which can have only finitely many distinct values), and all
message channels (each with bounded and user-defined
capacity).2 Although, in practice, the size of the global
reachability never approaches the worst case size, the
reachable portion of the Cartesian product can also easily
become prohibitively expensive to construct exhaustively.
A number of complexity management techniques have
been developed to combat this problem. We will discuss the
ones that are included in SPIN in separate sections below.

2.1 Temporal Logic Requirements
SPIN accepts correctness properties expressed in linear tem-
poral logic (LTL). Vardi and Wolper showed in 1983 that
any LTL formula can be translated into a Büchi automaton
[78]. SPIN performs the conversion to Büchi automata me-
chanically based on a simple on-the-fly construction [25].
The automata that are generated formally accept only those
(infinite) system executions that satisfy the corresponding
LTL formula.

As noted briefly above, we use correctness requirements
to formalize system behaviors that are claimed to be impos-
sible, i.e., to formalize the potential violation of correct sys-
tem behavior. Each positive LTL formula can, of course, be
turned into a negative one, and vice versa, by prefixing it
with a logical negation operator. At first sight, it may seem
that it would not make much difference which form is cho-
sen, but there is a difference, as first explained in [77].

A positive claim requires us to prove that the language of
the system (i.e., all its executions) is included in the language
of the claim. A negative claim, on the other hand, requires us

1. A Büchi automaton is an automaton defined over infinite input se-
quences, rather than finite ones as in standard finite state machine theory [73].

2. Variables and message channels also have a state that is selected from a
finite domain. These passive components can change state only as a syn-
chronous side-effect of transitions that are made in the active components in
the verification model (i.e., instantiated processes).

HOLZMANN: THE MODEL CHECKER SPIN 3

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 3 / 17

to prove that the intersection of the language of the system
and of the claim is empty. The size of the statespace for a lan-
guage inclusion proof is at most the size of the Cartesian
product of the (automata representing) system and claim,
and at least the size of their sum. The worst-case statespace
size to prove emptiness of a language intersection is still the
size of the Cartesian product of system and claim, but, in the
best case, it is zero. Note that if no initial portion of the invalid
behavior represented by the claim appears in the system, the
intersection contains no states. SPIN, therefore, works with
negative correctness claims and solves the verification prob-
lem by language intersection.

A Büchi automaton accepts a system execution if and
only if that execution forces it to pass through one or more
of its accepting states infinitely often. We call such behav-
iors acceptance cycles. (Note that for an infinite execution to
exist in a finite system, the behavior must be cyclic.) To
prove that no execution sequence of the system matches the
negated correctness claim, it suffices to prove the absence of
acceptance cycles in the combined execution of the system
and the Büchi automaton representing the claim. This com-
bined execution is formally defined by a synchronous prod-
uct of the system and the claim.

The entire computation, starting from the individual
concurrent components and a single Büchi automaton rep-
resenting the correctness claim, is done by SPIN in one sin-
gle procedure, using a nested depth-first search algorithm
[17], [36], [43]. The algorithm terminates when an accep-
tance cycle is found (which then constitutes a counterex-
ample to a correctness requirement), or, when no counter-
example exists, when the complete intersection product has
been computed.

2.2 Domain of Application
The design of SPIN is focused on the efficient verification of
asynchronous software systems. This focus affects many
central tool characteristics, including the design of the
specification language, the logic, the verification procedure,
the reduction techniques, and the state encoding methods.
We take a closer look at some of these issues in the follow-
ing sections.

3 ALGORITHMS

SPIN’s verification procedure is based on an optimized
depth-first graph traversal method. We summarize the ef-
fect of the algorithms that are used to optimize this search
in the next few sections.

3.1 Nested Depth-First Search
The cycle detection method used in SPIN is of central im-
portance. The method is required to be compatible with all
modes of verification, including exhaustive search, bit-state
hashing, and partial order reduction techniques.

The classical algorithm for finding a cycle in a graph is
Tarjan’s depth-first search algorithm [72], which constructs
the strongly connected components in linear time by adding
two integer numbers to every state reached: the dfs-number
and the lowlink-number. Because the state spaces that SPIN
can generate may contain billions of reachable states, these
two integer numbers require at least 32 bits of storage each.

If a strongly connected component in the reachability
graph contains at least one accepting state, a reachable ac-
ceptance cycle has been shown to exist. Tarjan’s algorithm
relies on the accuracy of the dfs and the lowlink numbers and
is not compatible with the bit-state hashing techniques that
are also part of SPIN (summarized below). Efficient alterna-
tives to Tarjan’s algorithm exist [36], [17], [43]. With these
methods, one performs a nested depth-first search, possibly
visiting every state twice, but storing every state only once.
The nested depth-first search can be implemented with just
2 bits of overhead per state, instead of the 64 bits of Tarjan’s
algorithm, using a simple encoding method [26].

The principle of the nested depth-first search algorithm
is as follows. For an accepting cycle to exist in the reach-
ability graph, at least one accepting state must be both
reachable from the initial system state (the root of the
graph) and it must be reachable from itself. The first depth-
first search establishes which accepting states are reachable
from the initial system state. The second (nested) search
starts at each accepting state thus detected, and it checks
whether or not that state is reachable from itself. If it is, a
complete execution sequence that includes the acceptance
cycle has also been constructed: It is the concatenation of all
the steps that are on both the first and the second depth-
first search stack. In the context of the SPIN model checker,
this execution sequence always equates to a counterexam-
ple of a user-defined correctness claim, and it can be
printed as proof that the correctness claim is invalid for the
system as specified.

The nested depth-first search algorithm does not pre-
serve the capability to detect all possible acceptance cycles
that may appear in the reachability graph. It can, however,
be proven to detect at least one such cycle if one or more
cycles exists [17]. Because acceptance cycles in SPIN consti-
tute counterexamples to correctness claims, establishing
either their absence or their presence always suffices for the
purposes of verification.

The nested depth first search algorithm in SPIN is ex-
tended with an optional weak fairness constraint, using
Choueka’s flag construction method [14], [17]. Under the
weak fairness constraint, every process that contains at least
one transition that remains enabled infinitely long, is guar-
anteed to execute that transition within finite time.

3.2 From LTL Formulae to Büchi Automata
LTL formulae can be used to express both safety and live-
ness properties. An LTL formula f may contain any lower-
case propositional symbol p, combined with unary or bi-
nary, Boolean and/or temporal operators, using the gram-
mar shown in Fig. 2.

For instance, the LTL property.

[] (p U q)

states that it is always guaranteed that p remains true at
least until q becomes true. Similarly

[] (<> p)

states that at any point in an execution it is guaranteed that
eventually p will become true at least once more.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 4 / 17

Fig. 2. LTL grammar.

The automata generated by SPIN for the above two for-
mula are shown in Fig. 3, written in the syntax of PROMELA.

Both automata contain one nonaccepting state (the initial
state of the Büchi automaton, T0) and one accepting state
(named accept here), as illustrated in Fig. 4.

Both states contain a nondeterministic selection (if..fi)
construct. For states T0, the choice is made between two pos-
sible transitions. For the accept states, there is only one
option, so, strictly seen, the selection constructs that enclose
these states are redundant. The selection of each transition
in the automata is conditional on a propositional formula,
i.e., the conditions are placed on the transitions of the
automaton, not on the states themselves.

The translation algorithm [25] computes the states for a
Büchi automaton by computing the set of subformulas that
must hold in each reachable state and in each of its succes-
sor states. The formula is first converted into normal form,
with negations only adjacent to atomic propositions. An
initial state is created, marked with the formula that is to be
matched and a dummy incoming edge. The remainder of
the automaton is then computed recursively. At each stage,
a subformula that remains to be satisfied is taken and, ac-
cording to its leading operator, the current state may be

split into two states, with each copy inheriting a different
part of the subformula. In the last phase of the translation,
some of the states are identified as accepting according to the
presence or absence of subformulae with until operators.

In the first released version of SPIN, it was the user’s re-
sponsibility to convert LTL formulae into automata. The
manual process, however, can be challenging and is error-
prone. The built-in algorithm for this conversion that was
added to SPIN removed these obstacles, and has signifi-
cantly increased the accessibility of SPIN’s LTL checking
capabilities.

3.3 Partial Order Reduction
SPIN uses a partial order reduction method [57] to reduce the
number of reachable states that must be explored to complete
a verification. The reduction is based on the observation that
the validity of an LTL formula is often insensitive to the or-
der in which concurrent and independently executed events
are interleaved in the depth-first search. Instead of generating
an exhaustive state space that includes all execution se-
quences as paths, the verifier can generate a reduced state
space, with only representatives of classes of execution se-
quences that are indistinguishable for a given correctness
property. The implementation of this reduction method is
based on a static reduction technique, described in [41], that,
before the actual verification begins, identifies cases where
partial order reduction rules can safely be applied when the
verification itself is performed. This static reduction method
avoids the runtime overhead that has plagued partial order
reduction strategies in the past.

Fig. 5 shows a measurement of the number of reachable
states that has to be generated to complete the verification for
a model of a leader election algorithm [18], discussed in more
detail in Section 4.2 and in Appendix B. It illustrates a best-
case performance of the reduction algorithm, where expo-
nential growth in the number of processes participating in
the protocol is reduced to linear growth. In more typical
cases, the reduction in the state space size and in the memory
requirements is linear in the size of the model, yielding sav-
ings in memory and runtime from 10 to 90 percent [41].

Fig. 3. PROMELA syntax for two LTL formulae.

Fig. 4. Büchi automata for the LTL formulae [](pUq) (left) and []<> p (right).

HOLZMANN: THE MODEL CHECKER SPIN 5

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 5 / 17

An important characteristic of SPIN’s static reduction
method is that it cannot lead to a noticeable increase of the
memory requirements, compared to exhaustive searches.
The reduction method is not sensitive to decisions about
process or variable orderings. The alternative reduction
methods based on binary decision diagrams have been
shown to lack these two important features, e.g., [8].

The correctness properties of the reduction algorithm it-
self (i.e., the preservation of safety and liveness properties)
were verified independently with the help of the theorem
prover HOL [13].

3.4 Memory Management
The size of the interleaving product that SPIN computes can,
in the worst case, grow exponentially with the number of
processes. Given the size of the product, expressed as the
number of reachable system states R, we can place upper-
bounds on the amount of memory (space) and time that
would be required to complete various types of verification
tasks.

To prove safety properties, such as absence of deadlock
or user defined assertions, carries a computational cost that
is linear in the number of reachable states R, both in (CPU)
time and in (memory) space. To prove simple liveness
properties, such as absence of starvation or of acceptance
cycles, requires twice as much time, but no noticeable in-
crease in the memory requirements, as explained above
[26]. To prove LTL properties, the time requirements in-
crease by a factor that can, in the worst case, itself again
depend exponentially on the number of temporal operators
used in the formula [77]. The space requirements, however,
remain largely unaffected [26]. Meaningful LTL properties
rarely have more than two or three operators, so the in-
crease in complexity is relatively small, compared to the
complexity that is contributed by the system itself.

Memory is a bounded resource on any system. It is not
difficult to construct a model checker that uses only a small
amount of memory, but one can only do so at the expense
of unacceptable increases in runtime [35]. A main emphasis
of the research in this area has therefore been on devising
techniques that can economize the memory requirements of
a reachability analysis, without incurring unrealistic in-
creases in runtime requirements. Two such techniques are
discussed in the following two sections.

3.4.1 State Compression
To make state comparisons possible, a reachable state must
be compressed in the same way, whether it is generated at

the beginning or at the end of a search. Dynamic Huffman
coding or Lempel-Zvi & Welch compression techniques are
therefore not directly usable in this type of application. Static
Huffman encoding, and run-length coding do have the re-
quired properties. Their effectiveness in model checkers was
studied in [39]. It was found that run-length encoding added
a substantial runtime overhead (~400 percent) in return for
only a modest reduction of the memory requirements (10 to
20 percent). Static Huffman encoding was found to add a
smaller, but still substantial run time overhead (~300 percent)
in return for a somewhat larger reduction of the memory
requirements (60 to 70 percent). Greater compression typi-
cally implies greater run time penalties, cf. [79], [29].

A different state compression technique was added to
the standard distribution of the SPIN software in late 1995. It
delivers comparable reductions of the memory require-
ments, but for a relatively small run time penalty (10 to 20
percent). The method works on the premise that every
process and every channel in a PROMELA specification has
only relatively small number of unique local states. The
large number of global states can often be attributed to the
large number of possible combinations of local process and
channel states. By storing the local states separately from
the global states, and, using unique indices into the local
state tables inside the global state table, one can then reduce
the memory requirements without incurring much addi-
tional run time overhead.

Fig. 6 illustrates this method. Instead of storing the com-
plete concatenation of all local state descriptors for variables,
channels, and processes, the compression algorithm now
stores each separable element alone, and uses unique indices
to the local descriptors in the global state vector, see also [45].

Fig. 6. State compression algorithm—indexing method.

If there are 256 or fewer local process states, the index for
that process can be just 8 bits, or a single byte of memory,
independent of the true number of bytes that is needed to
store the complete local state. The 256 distinct local states
are stored only once, but they may be referred to many
times, each referral costing only 1 byte of memory within
the global state descriptor.

The compression method implemented in SPIN allows
the user to set the width of an index to 1, 2, 3, or 4 bytes. If
the index width is chosen too tightly, a local table will over-
flow, a warning is issued, and the search must be repeated
with a different width. The amount of reduction achieved
depends on the relative size of indices and local states,
which can be arbitrarily large. In practice, the most com-
monly observed reduction is 60 to 80 percent.

Table 1 illustrates the performance of this compression
technique for a typical application. The application is a
standard go-back-n sliding window that we will examine

Fig. 5. Effect of partial order reduction.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 6 / 17

more closely in Section 4. The full text of the protocol model
in the input language of the verifier, PROMELA, is given in
Appendix C.

TABLE 1
EFFECT OF COMPRESSION

The standard run, without compression, explores over
2,000,000 reachable states, using 156 Mbytes of memory.
When the compression algorithm discussed here is enabled,
the memory requirements are reduced by 62 percent, for a
run time penalty of about 15 percent. (The run times are for
a 150 MHz SGI system.)

3.4.2 Bit-State Hashing
For problem sizes that preclude exhaustive verification, a
high-coverage approximation of the results of an exhaus-
tive run can be performed in relatively small amounts of
memory. For this purpose, SPIN includes an implementa-
tion of the bit-state hashing or supertrace technique [34],
[42]. With this algorithm, two bits of memory are used to
store a reachable state. The bit-addresses are computed
with two statistically independent hash functions.

If storing one reachable system state requires S bytes of
memory, and if our machine has M bytes of memory avail-
able, the model checker exhausts its available memory after
generating M/S states. If the true number of reachable
states Rexceeds M/S, then the problem coverage of that veri-
fication run is M/(R × S). If, for example, M is 108 bytes, S is

103 bytes, and R is 106 states, then the maximal problem
coverage would be 0.1 (meaning that just 10 percent of the
reachable states are inspected).

The bit-state hashing technique can, under the same
system constraints, produce an average problem coverage
close to 1 (meaning close to 100 percent coverage). In gen-
eral, when M < R × S, the bit-state hashing technique typi-
cally realizes a far superior problem coverage than stan-
dard exhaustive searches [42].

The effect of the bit-state hashing technique on problem
coverage is illustrated in Fig. 7. In this case, the algorithm
was applied to a data transfer protocol that requires the
generation of approximately 427,000 states (R), each taking
1.3 Kbits of memory (S) to store for an exhaustive verifica-
tion. The total memory requirements for a standard search
are R × S, or close to 73 Mbytes of memory (about 229 bits).
Fig. 7 shows that with only 1 percent of the memory re-
quired for an exhaustive search, the bit-state hashing tech-
nique can realize a problem coverage close to 100 percent.
For still lower amounts of memory, the coverage for a sin-
gle verification run also drops to zero. It can be increased
again with a sequential bit-state hashing technique [42]. In
sequential bit-state hashing, multiple runs with statistically
independent hashing functions can be performed until the
required coverage level is reached.

Fig. 7. Measured problem coverage [34], [42] effect of the optional bit-
state hashing technique in SPIN.

The bit-state hashing techniques have been applied with
good results in several large-scale industrial applications of
formal verification, e.g., [11], [40].

4 PRACTICAL APPLICATIONS

As typical examples of the application of SPIN to the verifica-
tion of concurrent systems, we discuss three different types
of problems. The first is a protocol for scheduling processes
in a distributed operating system, as discussed in [64]. The
second example is the algorithm for leader election in a uni-
directional ring, as given in [18], [63]. The third example is a
standard flow control protocol, as given in [71]. For a tutorial
introduction to the way in which design models such as these
can be constructed, we refer to [36], [38].

We conclude this section with a summary of other sig-
nificant applications of SPIN, concentrating on those appli-
cations that have appeared in the literature.

4.1 Process Scheduling
The first problem we consider is the problem of scheduling
process executions in a distributed operating system. The
problem can be remarkably hard to solve both correctly and
in a manner that is also reasonably efficient. One attempt is
described in [64]. The solution originally given there can be
represented in the input language of the verifier with
minimal effort. The complete verification model is included
in Appendix A. Fig. 8 shows the labeled transition systems
generated by SPIN from this specification.

In this version of the code, there are two asynchronously
executing processes, a client and a server, that repeatedly
make calls on the sleep and wakeup routines from the op-
erating system. The client process consumes resources that
are provided, one by one, by the server. The availability of a
resource is modeled here by a zero value of the global vari-
able r_lock. The client can set the value of r_lock to one
(line 22), but only the server can reset it to zero (line 30).

If the resource is unavailable (line 12 in Appendix A), a
flag is set to indicate the process’s needs (line 13), its state is
changed (line 14), and it is put to sleep by the operating
system until it is reawakened by the server (line 16). The
entire sequence is performed after first setting (line 10) and
then releasing (lines 15 and 23) a spinlock that guarantees
exclusive access to this section of the code.

HOLZMANN: THE MODEL CHECKER SPIN 7

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 7 / 17

The server checks for a suspended client process each
time that it makes a new resource available. If the client
process is asleep, it is reawakened. This sequence can be
performed without requiring the spinlock to be set explic-
itly by the server process as well. It suffices to have the
server wait only until the client process has released the
lock. The client process can safely reset it, even when the
server is in the middle of its wakeup routine.

After a period of experimentation with the sleep-wakeup
routines described, it was discovered that a race condition
could allow a client process to be suspended without ever
being reawakened by the server. A fix was proposed (shown
on line 39). Two questions were phrased by the designer of
this code: 1) could a mechanical verification system have
found the original problem? and 2) is the modified version
indeed free from race conditions? Running the verification

Fig. 8. Labeled transition systems for client (left) and server process (right).

Fig. 9. An error scenario generated by SPIN (annotated).

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 8 / 17

of the model as specified in Appendix A settles both issues
in a few seconds: the answer to the first question is yes, the
answer to the second question is no.

With or without the proposed change from line 39, SPIN

quickly generates the execution scenario from Fig. 9, prov-
ing that a process can still remain suspended indefinitely.
The first two columns in Fig. 9 show the statements exe-
cuted by the client or the server process, in sequence from
top to bottom. The third column gives the line number of
that statement in the listing from Appendix A. The fourth
column gives the local states of the client and the server, as
shown in Fig. 8. In this scenario, the client process executes
some statements and pauses in its local state 6. The server
then takes over and pauses in its local state 2. When the
client process then executes two more steps, the trap has
been set and closed.

The scenario is reported by SPIN in a verification run for
nonprogress cycles subject to the weak fairness constraint.
The true cause of the error is that the client process can exe-
cute the code between lines 12 and 15 without having first
obtained the critical lock from line 10. This happens each
time a suspended client process is reawakened by the
server. In this case, the process will repeat the check for the
availability of the resource without first reclaiming the lock.
The correct fix, that provably removes all erroneous be-
haviors, is to add a jump goto sleep directly after the cli-
ent process resumes executing (i.e., between lines 16 and 17
in Appendix A).

The design problem discussed here is subtle enough that
it can stump the most experienced designers for weeks or
more. Yet in this case the verification task is an almost triv-
ial exercise that can be done within one hour from start to
finish. There are no more than 300 reachable states in the
product state space for this verification model. None of the
verification runs performed take more than 0.1 CPU/sec on
an average workstation.

4.2 Leader Election
The second problem we consider is a standard algorithm
for leader election in a unidirectional ring. An efficient al-
gorithm to solve this problem was published by Dolev,
Klawe and Rodeh in 1982 [18], and can be found in many
standard textbooks. The description we have used is from
pp. 37-40, [63].

In this version of the algorithm, all processes will par-
ticipate in the election; that is, they cannot decide to join in
at a later point in the execution. The verification model
given in Appendix B is a direct translation of the algorithm
from pp. 38–39, [63]. There are several interesting proper-
ties we may want to prove about this algorithm, but the
most important one is that under no circumstance should it
be possible for more than one process to declare to be the
leader of the ring.

It is simple enough to add a global variable to the model
that can be used to count the number of leaders in the sys-
tem. This is done on lines 8 and 56 in Appendix B. The cor-
rectness requirement itself can be specified with the tempo-
ral property.

[] (nr_leaders <= 1)

but it can also (and more efficiently) be verified by adding
an in-line assertion to the model.

assert (nr_leaders == 1)

at the point where a process claims to have won the election
(i.e., at line 57 in Appendix B) and increments the variable
nr_leaders.

For the model as given in Appendix B, a verification run
with SPIN is completed in under 0.1 CPU/sec, and the
global state space (using partial order reduction, cf. Fig. 5)
contains no more than 108 reachable system states.

That the number of leaders can never exceed one does
not guarantee, though, that eventually a leader is elected.
To prove this property, we need a temporal logic formula,
such as:

<>[] (nr_leaders == 1)

The negated version of this property is translated by SPIN

into a simple two-state Büchi automaton. The verification
that indeed this negated property is not part of the model
takes under 0.1 CPU/sec. The number of reachable states
increases to 202.

4.1.1 A Modification
As a separate issue we can ask how the algorithm should be
modified for processes to defer their decision to participate
in the election. According to p. 38 [63], this could be done
provided that “a process would decide to participate (only
when) first receiving a message concerning the election.” An
attempt to modify the model for this extension is to remove
line 18, and to add the following additional option to the
model, between the current lines 19 and 20:
:: atomic {
 (!election_started && !Active) ->
 /* 1 process can start election */
 /* by sending the first msg */
 /* and becoming Active */
 election_started = 1;
 out!one(mynumber);
 first_message = 0;
 Active = 1}
 }

We also add the following code between lines 20 and 21,
and lines 37 and 38, to allow a nonactive process to join in
at the first received message:
if
:: (first_message && !Active) ->
 if
 :: Active = 1; /* join election */
 out!one(mynumber)
 :: skip /* or stand aside */
 fi
:: else
fi;
first_message = 0;

We have used two additional variables, a global variable
election_started (initial value zero), that allows one
arbitrary process to start the election, and a local variable
first_message (initial value one) that limits the moment
when a process can join the election to the first incoming
message. The initial value of local variable Active is set to
zero.

HOLZMANN: THE MODEL CHECKER SPIN 9

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 9 / 17

It can quickly be shown by a model checker (and quite
hard to show manually) that this extension does not pre-
serve the critical correctness requirement. A verification run
demonstrates first that the assertion on line 29 is no longer
valid: The winner of the election does not necessarily hold
the largest number of the ring, because not all processes
necessarily participate in the election. After removing the
assertion, SPIN succeeds in proving that there can never be
more than one leader (i.e., the assertion on line 57 remains
valid). The proof of the second property, that inevitably one
of the processes must be elected leader, also proceeds with-
out problems, taking just under 4 sec of CPU time for five
participating processes.

In the algorithm as given here, the initialization of the
processes in the ring is predefined. A version with a ran-
domized initialization requires 21 additional lines of
PROMELA. Both versions of the algorithm can be found in
the PROMELA distribution among the test-cases for the
model checker.

4.3 Flow Control
Tanenbaum, in his book on computer networks [71], gives,
among many others, a succinct description of a standard
go-back-n flow control protocol. The protocol can be trans-
lated with little effort into the 50 line PROMELA specification
shown in Appendix C. Its critical correctness properties can
be proven in a few minutes of CPU time.

The first step in working with SPIN is to produce the verifi-
cation model. This model has very much the role of an engi-
neering prototype in the design of a new distributed algo-
rithm, concurrent system, or, as in this case, protocol. During
the construction, SPIN can be used to provide quick checks of
the syntactical correctness of the growing model. When the
model has been completely specified, random or interactive
simulations can be performed to check (test) its approximate
working. Debugging statements, such as printfs and in-
line assertions, can be added at this stage to help the user
develop a better understanding of system behavior.

The description from [71] was converted into PROMELA in
about half an hour. The result of a first random simulation
run with this model, as displayed in a message sequence
chart by XSPIN, is shown on the left-hand side of Fig. 10. The
model contains two print statements (also included in Ap-
pendix C) that are not part of Tanenbaum’s description, but
are used to help in debugging the model. The first print
statement records when a protocol entity accepts a correctly
received message, the second records when the sending
protocol times out, waiting for acknowledgments.

Inspecting the first message sequence chart, we notice
that a timeout statement is executed, which correctly re-
covers the protocol from a hang-state. Closer inspection,
however, reveals that the first retransmitted message after
the timeout is not recognized as a duplicate message by
the receiver, but erroneously accepted. The cause of this
error can be traced back to an incorrect modeling of the
increment operation inc() (i.e., with our macro Wrong).
The correct interpretation of this operation can be found 18
pages earlier in Tanenbaum (shown as the macro Right, in
Appendix C). The difference between Right and Wrong in
this case expressed precisely the essential property for the

correct working of the go-back-n sliding window protocol:
the range of the sequence numbers must be at least one
greater than the maximum window size. Correcting the
problem changes the simulation trace to the one shown on
the right-hand side in Fig. 10

 (a) (b)

Fig. 10. Two simulation runs.

The simulation runs are of inestimable value in model
building. They can, however, only give us an impression of
the true properties of the protocol. To prove with mathe-
matical certainty that the protocol correctly transfers mes-
sages from sender to receiver, we must use model checking
techniques.

4.3.1 Safety Properties
To get a first measure of the complexity of this protocol, we
can perform an exhaustive verification run with SPIN to
prove some basic safety properties, such as absence of
deadlock, unreachable code, unspecified receptions, etc. To
do so, we can prompt SPIN to generate the C-code for an

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 10 /

optimized, special purpose, model checking system for this
specific protocol model. The code is compiled, with either
the default choices for reduction techniques and memory
management, or with explicit user overrides. If we compile
the basic verifier in this way for pure safety properties, with
all reduction options enabled (i.e., with state compression,
partial order reduction, and with a transition coarsening
strategy that we will discuss shortly), we can measure the
size of the state space that the SPIN verifier builds to com-
plete the proof. The results, varying the range of the se-
quence numbers from 3 to 5, are shown in Table 2.

TABLE 2
COMPLEXITY INCREASE WITH RANGE OF SEQUENCE NUMBERS

As can be expected, every increase in the sequence num-
ber range increases the number of reachable states, the
memory requirements and the time requirements for the
proof. Depending on the size of the available machine, the
maximum range of sequence numbers for which the correct
working of the protocol can be proven mechanically in this
fashion will be between 5 and 7. With special techniques
that exploit specific knowledge about this application,
greater reductions in the memory requirements may be
obtained, so that the scope of this proof can be substantially
extended [28], but we will limit ourselves here to only the
built-in capabilities of SPIN.

To see what the relative effect is on the complexity of the
verification of each of the complexity control measures we
have taken, Table 3 shows the effect of each of the three
techniques when applied in isolation.

• The first row in Table 3 shows the number of reach-
able states, and the memory and time requirements
(user plus system time), for the same verification run
as in Table 2, for the model exactly as given in Ap-
pendix C, without the use of partial order reduction
or compression.

• The second row shows the effect of enabling the state
compression method: the memory requirements are
reduced to roughly 50 percent of the first run, while
time time requirements remain largely unaffected in
this case.

• The third row shows the effect of adding only the
partial order reduction method: the number of reach-
able states and the memory requirements drop by
more than 50 percent, and the run time reduces by
approximately 75 percent.

• The fourth row shows the effect of transition coars-
ening. To achieve coarsening, we can define some of
the transition sequences in the protocol as indivisible,
by marking them as either atomic or deterministic
d_step sequences in PROMELA.

 As one example, we can note that the timeout in
the protocol is intended to prevent a potential dead-
lock in the protocol, when messages are lost. The re-
transmission sequence that is then initiated merely
retransmits all unacknowledged messages, in their
original order. There is no interaction between sender
and receiver in this phase, and nothing is gained by
interleaving the actions of sender and receiver proc-
esses within it, e.g., by considering the cases where
the receiver starts processing the first retransmitted
messages while the retransmission of other messages
is still in progress. In cases such as this one, marking
these local sequences as indivisible can help to reduce
the complexity of the verification task considerably.
At the same time, it places the additional responsibil-
ity on the user of this technique to show by other
means that this model reduction technique is justified
and cannot mask errors

• The last row combines the effect of all techniques, and
matches the first entry in Table 2. Compared to the
first row, all techniques combined succeed in reduc-
ing the memory and time requirements of the search
by, respectively, a factor of 10 and 20. The difference
is not too important for the safety properties we have
considered so far, but it will be of value when we
move on to prove more complex correctness proper-
ties for this protocol.

4.3.2 Liveness Properties
To prove liveness properties, such as faithful message
transfer, we must extend the verification model further. We
can, for instance, add two environment processes to the
model, one to submit data to be transferred by the protocol,
and the other to check that the data accepted by the receiver
matches the data that was submitted by the sender. The
question then is, how many different data items do we need
to use to obtain a reliable proof? The minimal number turns
out to be independent of both the sequence number range
and the window size: Just three distinct data items suffice
for any flow control protocol, as first shown by Wolper [82].
Traditionally, three different colors are used, e.g., red,
white, and blue. The input data sequence consists of one
red and one blue message inserted randomly in an infinite
sequence of white messages. We check at the receiver that
neither the red nor the blue message can disappear from
the data sequence, nor arrive out of order. If this is impos-
sible, the correctly ordered delivery for any two messages
in the sequence is guaranteed.

Fig. 11 shows the PROMELA description of an environ-
ment process that supports this proof technique. The
Source process generates the infinite sequence of white
data messages, with the red and blue data items randomly
inserted. It is a simple three state machine. In the first two
states, a nondeterministic choice is made at each step be-
tween the sending of a white message without changing
state, or the sending of a colored message, followed by a
transition to the next state. In the last state (labeled end),
only more white messages can be generated.

HOLZMANN: THE MODEL CHECKER SPIN 11

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 11 /

To complete this extension, we must also make some
small modifications of the protocol processes itself. One of
the processes must now retrieve a message to be sent from
the source channel (which we have implemented as a
zero-length rendezvous channel here). The other process
can simply send only white data messages. Immediately
after sending a colored message, the sending process is
made to update the global monitor variable sent, and
mark it with the color of the last data item transmitted.
Similarly, the matching receiver process is modified to up-
date the global monitor variable rcvd immediately after
accepting an incoming data message. Since the protocol is
symmetrical, only message transmissions in one direction
need to be marked and monitored in this way.

We can now express the correctness requirements as LTL
formulae by using the following six definitions of proposi-
tional symbols:
#define sw (sent == white)
#define sr (sent == red)
#define sb (sent == blue)

#define rw (rcvd == white)
#define rr (rcvd == red)
#define rb (rcvd == blue)

We would like to verify two properties:

• Message can be lost. Violations of this requirement
(remember, SPIN works with negated correctness re-
quirements) can be expressed in the formula:

![](sr -> <> rr)

The last part of this formula states that the sending of a
red message, sr, logically implies (->) its eventual (<>)

reception, rr. This condition is claimed to be always
([]) true. The negated version, finally, formalizes all
possible behaviors for which the condition is violated.

• No messages can arrive our of order. We can express
violations of this requirement in the formula:

(!rr U rb)

The U in this formula is the strong until formula (see
Section 3.2). The formula then states that it is an error
if the red message is not received until after (U) the
blue message was received.

• The two properties can also trivially be combined into
a single formula, formalizing the undesirable execu-
tion sequences that are claimed to be impossible:

(![](sr -> <> rr)) || (!rr U rb)

In general, it is more efficient to separate orthogonal re-
quirements, and to prove each property separately with
smaller verification runs [58]. Each of the first two formulae
above separately translates into a two-state Büchi automaton.
The combination of the two formulae, however, translates
into a six-state automaton, which is more expensive to verify.

As a rough estimate of the additional expense of the
verification of these correctness requirements, we note that
we have added an environment process of three states, two
monitor variables with three possible values each, and a
Büchi automaton of two states. In addition, we have ex-
tended the possible contents of a window full of messages,
and hence of the receiver process’s input queue, by a factor
of roughly MaxSeq

3
, or 27 when MaxSeq = 3. Multiplying

these factors give a potential increase in the size of the
reachable state space of 3 × 3 × 3 × 2 × 27 or 1,458.

TABLE 3
EFFECT OF COMPLEXITY CONTROL MEASURES (MAXSEQ = 3)

Fig. 11. Environment process for proving correctness of data transfer in the go-back-n protocol.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 12 /

Table 4 shows the size of the state space that SPIN con-
structs to prove that the correctness requirements are in-
deed satisfied for the go-back-n protocol.

The runs shown in Table 4 were all performed with all
reduction options listed in Table 3 enabled. The first two
runs did not include an explicit correctness requirement
and are for comparison. For each property, we performed
one run for ideal channels, and another for lossy channels.
The protocol maintains its correctness for both choices. For
the lossy channels, we have to extend the property to be
verified somewhat to rule out pseudo-counterexamples
(i.e., those that involve infinite repetition of message loss, or
infinite deferrals of the retransmission of messages). Those
changes are included in the measurements shown above.

TABLE 4
VERIFICATION OF THE GO-BACK-n PROTOCOL (MAXSEQ = 3)

The second requirement is clearly more expensive to
verify than the first. The maximum increase of the state
space size that is incurred when the properties are added,
however, is only about 20 percent of the worst case increase
we estimated above. Including the possibility of message
loss can be seen to increase the expense of the verification
by up to an order of magnitude.

4.4 Other Applications
SPIN has been distributed3 freely, in source form, since early
1991. Today, the system has been installed on several thou-
sand machines worldwide, with a number of active users
that can no longer be accurately counted. Work on the system
can be classified in four broad categories:

1) theoretical studies,
2) empirical studies of the relative effectiveness of dif-

ferent types of search and storage algorithms,
3) extensions and revisions of the SPIN code, and
4) significant practical applications.

Examples in each category may be found in the pro-
ceedings of the SPIN Workshops that have been held since
1995 [68]. Examples of modifications of the SPIN software,
for instance, include extensions for real-time verification
[74], reactive systems modeling [54], bisimulation equiva-
lence proofs [21], different types of partial order reduction
[27], [76], process algebras [24], alternate state machine
models [69], alternate compression techniques [79], [29],
[28], [45], and implementation generation [5], [51].

Applications of SPIN to real-life problems also span a
broad range of problems. The obvious applications are to
prove correctness of generic distributed algorithms, such as
the leader election algorithm illustrated in Fig. 1, nonstan-

3. The Spin model checker software can be retrieved by anonymous ftp
from directory /netlib/s;in on host netlib.bell-labs.com.

dard mutual exclusion algorithms [37], communications
network design problems [65], or protocol design problems
[2], [3], [22], [23], [7], [16], [36], [51]. In the course of the
work on SPIN, we have also constructed verification models
for, e.g., the Cambridge ring protocol [56], and the IEEE
logical link control protocol LLC 802.2 [52]. Others con-
structed fragments of larger protocol applications such as
XTP [70] and TCP/IP. These and other unpublished models
are available from the author.

SPIN has also been applied to the verification of data
transfer protocols [5], bus protocols [6], address registration
protocols [55], error control protocols [66], requirements
analysis [4], controllers for reactive systems [10], distrib-
uted process scheduling algorithms [59], fault tolerant sys-
tems [1], hardware-software codesign [80], asynchronous
hardware designs [62], multiprocessor designs [76], local
area network controllers [30], microkernel design [19], [75],
operating systems code [9], [64], railway signaling protocols
and circuitry [36], [20], [15], rendezvous algorithms [44],
security protocols [47], flood surge control systems [48],
feature interaction problems [50], ethernet collision avoid-
ance techniques [46], and self-stabilizing protocols [67].

5 CONCLUSION

Most mature engineering disciplines include a methodol-
ogy for constructing and analyzing prototypes of designs.
Concurrent systems is, compared to civil engineering or
physics, a relatively young discipline and it is not surpris-
ing that comparable tools are still somewhat scarce. Still,
the first attempts to develop the basic methodology for of
on-the-fly automated verification date back more than a
decade, e.g., [31], [81], [32], [33]. The most recent versions of
these algorithms, as captured in tools such as SPIN, begin to
provide some of the required capability. The design meth-
odology that is supported by SPIN can be summarized as
follows:

• A distinction is made between behavior and require-
ments on behavior. The designer specifies the two as-
pects of the design in an unambiguous way by defin-
ing a verification or prototype in the language
PROMELA.

• The prototype is verified using the model checker
SPIN. The requirements and behaviors are checked for
both their internal and their mutual consistency.

• The design is revised until its critical correctness
properties can successfully be proven. Only then does
it make sense to refine the design decisions further
toward a full systems implementation.

The increasing number of applications of SPIN, and the
growing acceptance of formal methods in general, are
hopeful signs that this paradigm of design is maturing, and
is gaining recognition where it counts: among the practitio-
ners of distributed systems design.

HOLZMANN: THE MODEL CHECKER SPIN 13

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 13 /

APPENDIX A – VERIFICATION MODEL OF A PROCESS SCHEDULING ALGORITHM

The model below for implementing sleep and wakeup routines in a distributed operating systems kernel is based on [64].

1 mtype = {Wakeme, Running}; /* two symbolic names */
2
3 bit lk, sleep_q; /* boolean variables */
4 bit r_lock, r_want;
5 mtype State = Running; /* variable of type mtype */
6
7 active proctype client()
8 {
9 sleep: /* the sleep routine */
10 atomic { (lk == 0) -> lk = 1}; /* SPINlock(&lk) */
11 do /* while r.lock is set */
12 :: (r_lock == 1) -> /* r.lock == 1 */
13 r_want = 1; /* set the want flag */
14 State = Wakeme; /* remember State */
15 lk = 0; /* freelock(&lk) */
16 (State == Running); /* wait for wakeup */
17 :: else -> /* r.lock == 0 */
18 break /* break from do-loop */
19 od;
20 progress: /* progress label */
21 assert(r_lock == 0); /* should still be true */
22 r_lock = 1; /* consumed resource */
23 lk = 0; /* freelock(&lk) */
24 goto sleep
25 }
26
27 active proctype server() /* interrupt routine */
28 {
29 wakeup: /* wakeup routine */
30 r_lock = 0; /* r.lock = 0 */
31 (lk == 0); /* waitlock(&lk) */
32 if /* selection structure */
33 :: r_want -> /* someone is sleeping */
34 atomic { /* get spinlock on sleep queue */
35 (sleep_q == 0) -> sleep_q = 1
36 }; /* end of indivisible fragment */
37 r_want = 0; /* reset the want flag */
38 #ifdef PROPOSED_FIX
39 (lk == 0); /* waitlock(&lk) */
40 #endif
41 if /* selection structure */
42 :: (State == Wakeme) -> /* the client process is asleep
43 State = Running; /* wake-up the client process */
44 :: else -> skip /* else do nothing */
45 fi; /* end of selection structure */
46 sleep_q = 0 /* release spinlock on sleep queue */
47 :: else -> skip /* else do nothing */
48 fi; /* end of selection structure */
49 goto wakeup /* jump to the wakeup label */
50 }

APPENDIX B – VERIFICATION MODEL OF A LEADER ELECTION ALGORITHM

The model below follows the description of the leader election protocol in a unidirectional ring from [82] as it is discussed
and formalized in [63].

1 #define N 5 /* nr of processes */
2 #define I 3 /* node given the smallest number */
3 #define L 10 /* size of buffer (>= 2*N) */
4
5 mtype = {one, two, winner}; /* three symbolic msg names */
6 chan q[N] = [L] of {mtype, byte}; /* asynchronous channel */
7
8 byte nr_leaders = 0; /* count the number of process that
9 think they are leader of the ring */
10 proctype node (chan in, out; byte mynumber) /* process template */
11 { bit Active = 1, know_winner = 0;
12 byte nr, maximum = mynumber, neighbourR;
13

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 14 /

14 xr in; /* claim exclusive recv access to channel in */
15 xs out; /* claim exclusive send access to channel out */
16
17 printf(“MSC: percentd\n,” mynumber);
18 out!one(mynumber); /* send msg of type one, with par mynumber */
19 end: do
20 :: in?one(nr) -> /* receive msg of type one, with par nr */
21 if
22 :: Active ->
23 if
24 :: nr != maximum ->
25 out!two(nr);
26 neighbourR = nr
27 :: else ->
28 /* max is greatest number */
29 assert(nr == N);
30 know_winner = 1;
31 out!winner,nr;
32 fi
33 :: else ->
34 out!one(nr)
35 fi
36
37 :: in?two(nr) ->
38 if
39 :: Active ->
40 if
41 :: neighbourR > nr && neighbourR > maximum ->
42 maximum = neighbourR;
43 out!one(neighbourR)
44 :: else ->
45 Active = 0
46 fi
47 :: else ->
48 out!two(nr)
49 fi
50 :: in?winner,nr ->
51 if
52 :: nr != mynumber ->
53 printf(“MSC: LOST\n”);
54 :: else ->
55 printf(“MSC: LEADER\n”);
56 nr_leaders++;
57 assert(nrleaders == 1)
58 fi;
59 if
60 :: know_winner
61 :: else -> out!winner,nr
62 fi;
63 break
64 od
65 }
66
67 init { /* the initial process */
68 byte proc;
69 atomic { /* atomically activate N copies of proc template node */
70 proc = 1;
71 do
72 :: proc <= N ->
73 run node (q[proc-1], q[procpercentN], (N+I-proc)percentN+1);
74 proc++
75 :: proc > N ->
76 break
77 od
78 }
79 }

HOLZMANN: THE MODEL CHECKER SPIN 15

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 15 /

APPENDIX C – VERIFICATION MODEL OF A SLIDING WINDOW PROTOCOL

This model of a go-back-n sliding window protocol follows the description from p. 214, pp. 232-233, [71]. The model below
includes some annotations to facilitate random and guided simulations with SPIN.

1 #define MaxSeq 5 /* window size */
2 #define Wrong(x) x = (x+1) percent (MaxSeq)
3 #define Right(x) x = (x+1) percent (MaxSeq + 1)
4 #define inc(x) Right(x)
5
6 chan q[2] = [MaxSeq] of { byte, byte }; /* message passing channel */
7
8 active [2] proctype p5() /* starts two copies of proctype p5 */
9 { byte NextFrame, AckExp, FrameExp, r, s, nbuf, i;
10 chan in, out;
11 in = q[_pid];
12 out = q[1-_pid];
13 xr in; xs out; /* partial order reduction claims */
14
15 do
16 :: nbuf < MaxSeq -> /* outgoing messages */
17 nbuf++;
18 out!NextFrame, (FrameExp + MaxSeq) percent (MaxSeq + 1);
19 inc(NextFrame)
20
21 :: q[_pid]?r,s -> /* incoming messages */
22 if
23 :: r == FrameExp ->
24 printf(“MSC: accept percentd\n,” r);
25 inc(FrameExp)
26 :: else /* ignore message */
27 fi;
28 do
29 :: ((AckExp <= s) && (s < NextFrame))
30 || ((AckExp <= s) && (NextFrame < AckExp))
31 || ((s < NextFrame) && (NextFrame < AckExp)) ->
32 nbuf--;
33 inc(AckExp)
34 :: else -> break
35 od
36
37 :: timeout -> && /* retransmission timeout */
38 NextFrame = AckExp;
39 printf(“MSC: timeout\n”);
40 i = 1;
41 do
42 :: i <= nbuf ->
43 out!NextFrame, (FrameExp + MaxSeq) percent (MaxSeq + 1);
44 inc(NextFrame);
45 i++
46 :: else -> break
47 od
48 od
49 }

ACKNOWLEDGMENTS

The design and implementation of the SPIN model checker
is based on contributions, ideas, and inspiration from many
friends and colleagues over a long period of time, most
notably Costas Courcoubetis, Peter Van Eijk, Michael Fer-
guson, Patrice Godefroid, Doug McIlroy, Doron Peled, Rob
Pike, Jim Reeds, Moshe Vardi, Pierre Wolper, and Mihalis
Yannakakis.

REFERENCES

[1] A. Agarwal, “A Unified Approach to Fault-Tolerance in Commu-
nication Protocols, Based on Recovery Procedures,” PhD thesis,
Computer Science Dept., Concordia Univ., Montreal, Canada,
1995.

[2] M. Alipour, “On the Application of an Automated Validation Tool
to Realistic Protocols,” MSc thesis, INRS-Telecommunications,
Univ. du Quebec, Canada, Aug. 1994.

[3] P.R. D’Argenio, J.P. Katoen, T. Ruys, and J. Tretmans, “Modeling
and Verifying a Bounded Retransmission Protocol,’’ Proc. COST
247 Int’l Workshop Applied Formal Methods in System Design, Mari-
bor, Slovenia, June 1996.

[4] A. Basu, M. Hayden, G. Morrisett, and T. von Eicken, “A Lan-
guage-Based Approach to Protocol Construction,’’ Proc. ACM
SIGPLAN Workshop Domain Specific Languages (WDSL), Paris, Jan.
1997.

[5] R. Bharadwaj and C. Hemeyer, “Verifying SCR Requirements Speci-
fications Using State Exploration,’’ Proc. First ACM/SIGPLAN Work-
shop Automatic Analysis of Software, R. Cleaveland and D. Jackson,
eds., pp. 9-24, Paris, Jan. 1997.

[6] B. Boigelot and P. Godefroid, “Model Checking in Practice: An
Analysis of the ACCESS Bus Protocol Using SPIN,’’ Proc. Formal
Methods Europe (FME96), Oxford, England, Lecture Notes in Com-
puter Science 1,051, pp. 465-478. Springer-Verlag, Mar. 1996.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 16 /

[7] L. Bouvin, “Design of Validation Models in PROMELA for the Me-
dium, Access Protocol of the PTM Project,” Report Royal Inst. of
Technology, Stockholm, Sweden, Aug. 1991.

[8] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,
“Symbolic Model Checking: 10

20
 States and Beyond,” Informatics

Computing, vol. 98, no. 2, pp. 142-170, June 1992.
[9] T. Cattel, “Modeling and Verification of a Multiprocessor Real-

Time OS Kernel,” Proc. Seventh Int’l Conf. Formal Description Tech-
niques, pp. 35-50, Berne, Switzerland, Oct. 1994.

[10] T. Cattel, “Using Concurrency and Formal Methods for the De-
sign of Safe Process Control,” Proc. PDSE/ICSE018 Workshop, Ber-
lin, Mar. 1996.

[11] J. Chaves, “Formal Methods at AT&T, An Industrial Usage Re-
port,” Proc. Fourth FORTE Conf. Formal Description Techniques, pp.
83-90, Sydney, Australia, 1991.

[12] E.M. Clarke, E.A. and Emerson, “Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic,” Proc. Logic of Pro-
grams: Workshop, Yorktown Heights, N.Y., Lecture Notes in Com-
puter Science 131. Springer-Verlag, May 1981.

[13] C-T. Chou, and D. Peled, “Verifying a Model-Checking Algo-
rithm,” Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS96), Passau, Germany, Lecture Notes in Computer
Science 1,055, pp. 241-257. Springer-Verlag, Mar. 1996.

[14] Y. Choueka, “Theories of Automata on Mega-Tapes: A Simplified
Approach,” J. Computer and System Science, vol. 8, pp. 117-141,
1974.

[15] A. Cimatti, A. Giunchiglia, G. Mongardi, D. Romano, F. Torielli,
and P. Traverso, “Model Checking Safety Critical Software with
SPIN: An Application to a Railway Interlocking System,” Proc.
Third SPIN Workshop, R. Langerak, ed., Twente Univ., The Neth-
erlands, Apr. 1997.

[16] J.C. Corbett, “Evaluating Deadlock Detection Methods for Concur-
rent Software,” IEEE Trans. Software Eng., vol. 22, no. 3, pp. 161-180,
Mar. 1996.

[17] C. Courcoubetis, M.Y. Vardi, P. Wolper, M. Yannakakis,
“Memory Efficient Algorithms for the Verification of Temporal
Properties,” Formal Methods in Systems Design, vol. I, pp. 275-288,
1992.

[18] D. Dolev, M. Klawe, and M. Rodeh, “An O(n log n) Unidirectional
Distributed Algorithm for Extrema Finding in a Circle,” J. Algo-
rithms, vol. 3, pp. 245-260, 1982.

[19] G. Duval and J. Julliand, “Modeling and Verification of the RUBIS
Micro-Kernel with SPIN,” Proc. First SPIN Workshop, J.-Ch. Gre-
goire, ed., INRS Quebec, Canada, Oct. 1995.

[20] P. Van Eijk, “Verifying Relay Circus Using State Machines,” Proc.
Third SPIN Workshop, R. Langerak, ed., Twente Univ., The Nether-
lands, Apr. 1997.

[21] H. Erdogmus, “Verifying Semantic Relations in SPIN,” Proc. First
SPIN Workshop, J.-Ch. Gregoire, ed., INRS Quebec, Canada, Oct.
1995.

[22] M.J. Ferguson, “Validation of the Radio Link Protocol,” Data
Services Task Group of ANSI Accredited TIA TR45-3, Contribu-
tion TR45.3.2.5/93.08.25.02, Sept. 1993.

[23] M.J. Ferguson, “Formalization and Validation of the Radio Link
Protocol RLP1,” Computer Networks and ISDN Systems, to appear,
1997.

[24] F. Gagnon, “Boulier, un validateur pour la language de spécifica-
tion Gaston,” PhD thesis, Univ. de Quebec, Canada, July 1995.

[25] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, “Simple On-The-
Fly Automatic Verification of Linear Temporal Logic,” Proc.
IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verification
(PSTV95), pp. 3-18, Warsaw, Poland, Chapman & Hall, June 1995.

[26] P. Godefroid, and G.J. Holzmann, “On the Verification of Tempo-
ral Properties,” Proc. IFIP/WG6.1 Symp. Protocol Specification, Test-
ing, and Verification (PSTV93), pp. 109-124, Liege, Belgium, North-
Holland, June 1993.

[27] P. Godefroid, “Partial Order Methods for the Verification of Con-
current Systems,” Lecture Notes in Computer Science 1,032.
Springer-Verlag, 1996.

[28] P. Godefroid, “Symbolic Protocol Verification with Queue BDDs,”
Proc. Logic in Computer Science, pp. 198-206, Rutgers Univ., New
Brunswick, N.J., July 1996.

[29] J.-C. Gregoire, “State Space Compression in SPIN with GETSs,”
Proc. Second SPIN Workshop, Rutgers Univ., New Brunswick, N.J.,
DIMACS/32, Am. Math. Soc., Aug. 1996.

[30] M. Griffioen, “Specification and Verification of a Wireless LAN
Controller Chip Using PROMELA and SPIN,” Technical Report,
AT&T Network Wireless Systems, The Netherlands, 1996.

[31] J. Hajek, “Automatically Verified Data Transfer Protocols,” Proc.
Fourth ICCC, pp. 749-756, Kyoto, Aug. 1978.

[32] G.J. Holzmann, “PAN: A Protocol Specification Analyzer,” Tech-
nical Report TM81-11271-5, AT&T Bell Laboratories, Mar. 1981.

[33] G.J. Holzmann, “Tracing Protocols,” AT&T Technical J., vol. 64,
pp. 2,413-2,434, Dec. 1985.

[34] G.J. Holzmann, “An Improved Protocol Reachabily Analysis Tech-
nique,” Software, Practice and Experience, vol. 18, no. 2, pp. 137-161,
Feb. 1988.

[35] G.J. Holzmann, “Algorithms for Automated Protocol Verifica-
tion,” AT&T Technical J., vol. 69, no. 1, pp. 32-44, Jan. 1990.

[36] G.J. Holzmann, Design and Validation of Computer Protocols.
Englewood Cliffs, N.J.: Prentice Hall, 1991.

[37] G.J. Holzmann, “Protocol Design: Redefining The State of the
Art,” IEEE Software, pp. 17-22, Jan. 1992.

[38] G.J. Holzmann, P. Godefroid, and D. Pirottin, “Coverage Pre-
serving Reduction Strategies for Reachabily Analysis,” Proc.
IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verification
(PSTV92), pp. 349-364, Orlando, Fla., North-Holland, June 1992.

[39] G.J. Holzmann, “Design and Validation of Protocols: A Tutorial,”
Computer Networks and ISDN Systems, vol. 25, no. 9, pp. 981-1,017,
1993.

[40] G.J. Holzmann, “The Theory and Practice of a Formal Method:
NewCoRe,” Proc. 13th IFIP World Computer Congress, pp. 35-44,
Hamburg, Germany, North-Holland, Aug. 1994.

[41] G.J. Holzmann and D. Peled, “An Improvement in Formal Verifi-
cation,” Proc. Seventh FORTE Conf. Formal Description Techniques,
pp. 177-194, Bern, Switzerland, Oct. 1994.

[42] G.J. Holzmann, “An Analysis of Bit-State Hashing,” Proc.
IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verification
(PSTV95), pp. 301-314, Warsaw, Poland, Chapman & Hall, June
1995.

[43] G.J. Holzmann, D. Peled, and M. Yannakakis, “On Nested Depth-
First Search,” Proc. Second SPIN Workshop, Rutgers Univ., New
Brunswick, N.J., DIMACS/32, Am. Math. Soc., Aug. 1996.

[44] G.J. Holzmann, “Designing Bug-Free Protocols with SPIN,” The
Computer Comm. J., to appear 1997.

[45] G.J. Holzmann, “State Compression in SPIN: Recursive Indexing
and Compression Training Runs,” Proc. Third SPIN Workshop,
Twente Univ., R. Langerak, ed., The Netherlands, Apr. 1997.

[46] H.E. Jensen, K. Larsen, and A. Skou, “Modeling and Analysis of a
Collision Avoidance Protocol Using SPIN and UPPAAL,” Proc.
Second SPIN Workshop, Rutgers Univ., New Brunswick, N.J., DI-
MACS/32, Am. Math. Soc., Aug. 1996.

[47] A. Joesang, “Security Protocol Verification Using SPIN,” Proc. First
SPIN Workshop, J.-Ch. Gregoire, ed., INRS Quebec, Canada, Oct.
1995.

[48] P. Kars, “The Application of PROMELA and SPIN in the BOS Proj-
ect,” Proc. Second SPIN Workshop, Rutgers Univ., New Brunswick,
N.J., DIMACS/32, Am. Math. Soc., Aug. 1996.

[49] R.P. Kurshan, Computer-Aided Verification of Coordinating Processes.
Princeton Univ. Press, 1994.

[50] F.J. Lin, “Two Applications of PROMELA/SPIN,” Proc. First SPIN
Workshop, J.-Ch. Gregoire, ed., INRS Quebec, Canada, Oct. 1995.

[51] S. Loeffler and A. Serhrouchni, “Protocol Design: From Specifica-
tion to Implementation,” Proc. Fifth Open Workshop for High Speed
Networks, Paris, Mar. 1996.

[52] “IEEE Std. 802-2-1985, ISO DIS 8802/2,” IEEE Standards for Local
Area Networks: Logical Link Control, Published by the IEEE
Standards Board, 345 E. 47th Street, New York, NY 10017, USA,
111 pp., ISBN 471-82748-7, 1984. Revised as 802-2-1989 in Aug.
1989.

[53] K.L. McMillan, Symbolic Model Checking. Boston: Kluwer Aca-
demic, 1993.

[54] E. Najm and F. Olsen, “Reactive EFSMs, Reactive PRO-
MELA/RSPIN,” Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS96), pp. 349-368, Passau, Germany, Lec-
ture Notes In Computer Science 1,055, Springer-Verlag, Mar. 1996.

[55] T. Nakatani, “Verification of a Group Address Registration Proto-
col using PROMELA and SPIN,” Proc. Third SPIN Workshop, R.
Langerak, ed., Twente Univ., The Netherlands, Apr. 1997.

[56] R.M. Needham and A.J. Herbert, The Cambridge Distributed Com-
puting System. London: Addison-Wesley, 1982.

HOLZMANN: THE MODEL CHECKER SPIN 17

J:\PRODUCTION\TSE\2-INPROD\MAY\104928.0\104928_1.DOC regularpaper97.dot S 19,968 05/29/97 4:13 PM 17 /

[57] D. Peled, “Combining Partial Order Reductions with On-The-Fly
Model-Checking,” Proc. Sixth Int’l Conf. Computer Aided Verifica-
tion (CAV94), pp. 377-390, Stanford, Calif., Lecture Notes In Com-
puter Science 818. Springer-Verlag, 1994.

[58] D. Peled, “On Projective and Separable Properties,” Colloquium on
Trees in Algebra and Programming, pp. 291-307, Edinburgh, Scot-
land, Lecture Notes In Computer Science 787. Springer-Verlag, 1994.

[59] R. Pike, D. Presotto, K. Thompson, and G.J. Holzmann, “Process
Sleep and Wakeup on a Shared-Memory Multiprocessor,” Proc.
the Spring EurOpen Conf., pp. 161-166, Tromso, Norway, 1991.

[60] A. Pnueli, “The Temporal Logic of Programs,” Proc. 18th IEEE
Symp. Foundations of Computer Science, Providence, R.I., pp. 46-57,
1977.

[61] J.P. Queille and J. Sifakis, “Specification and Verification of Con-
current Systems in Cesar,” Proc. Fifth Int’l. Symp. Programming, pp.
195-220, Lecture Notes In Computer Science 137. Springer-Verlag,
1981.

[62] B. Rahardjo, “SPIN as a Hardware Design Tool,” Proc. First SPIN
Workshop, J.-Ch. Gregoire, ed., INRS Quebec, Canada, Oct. 1995.

[63] M. Raynal, Distributed Algorithms and Protocols. New York: John
Wiley & Sons, 1992.

[64] L.M. Ruane, “Process Synchronization in the UTS Kernel,” Com-
puting Systems, Proc. Usenix Conf., vol. 3, no. 3, pp. 387-421, 1990.

[65] T.C. Ruys and R. Langerak, “Validation of Bosch’s Mobile Com-
munication Network Architecture with SPIN,” Proc. Third SPIN
Workshop, R. Langerak, ed., Twente Univ., The Netherlands, Apr.
1997.

[66] T.S. Chan and I. Gorton, “Formal Validation of a High Perform-
ance Error Control Protocol Using SPIN,” Software, Practice and Ex-
perience,” vol. 26, no. 1, pp. 105-124, Jan. 1996.

[67] S. Shukla, D.J. Rosenkrantz, and S.S. Ravi, “Simulation and Vali-
dation of Self-stabilizing Protocols,” Proc. Second SPIN Workshop,
Rutgers Univ., New Brunswick, N.J., DIMACS/32, Am. Math.
Soc., Aug. 1996.

[68] Proc. First SPINWorkshop, J.-Ch. Gregoire, ed., INRS Quebec, Can-
ada, Oct. 1995.

 Proc. Second SPIN Workshop, J.-Ch. Gregoire, G.J. Holzmann, and
D. Peled, eds., Rutgers Univ., New Brunswick, N.J., DIMACS/32,
Am. Math. Soc., Aug. 1996.

 Proc. Third SPIN Workshop, R. Langerak, ed., Twente Univ., The
Netherlands, Apr. 1997.

[69] M. Staskauskas, “Tales from the Front: Industrial Experience with
Formal Validation,” Proc. First SPIN Workshop, J.-Ch. Gregoire, ed.,
INRS Quebec, Canada, Oct. 1995.

[70] W.T. Strayer, B.J. Dempsey, and A.C. Weaver, XTP—The Xpress
Transfer Protocol. Reading, Mass.: Addison-Wesley, 1992.

[71] A. Tanenbaum, Computer Networks, second edition. Englewood
Cliffs, N.J.: Prentice Hall, 1989.

[72] R.E. Tarjan, “Depth First Search and Linear Graph Algorithms,”
SIAM J. Computing, vol. 1, no. 2, pp. 146-160, 1972.

[73] W. Thomas, “Automata on Infine Objects,” Handbook of Theoretical
Computer Science, J. Van Leeuwen, ed., pp. 133-187, Elsevier Sci-
ence, 1990.

[74] S. Tripakis and C. Courcoubetis, “Extending PROMELA and SPIN
for real-time,” Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS96), pp. 329-348, Passau, Germany, Lec-
ture Notes In Computer Science 1,055. Springer-Verlag, Mar. 1996.

[75] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi,
and G. Back, “Formal Methods: A Practical Tool for OS Imple-
menters,” Proc. HotOS-VI, Sixth IEEE Workshop Hot Topics in Oper-
ating Systems, Cape Cod, Mass., May 1997.

[76] R. Nalumasu and G. Gopalakrishnan, “Explicit Enumeration
Based on Verification Made Memory Efficient,” Proc. Conf. Com-
puter Hardware Description Languages (CHDL’95), pp. 617-622,
Chiba, Japan, 1995.

[77] M.Y. Vardi and P. Wolper, “An Automata-Theoretic Approach to
Automatic Program Verification,” Proc. First IEEE Symp. Logic in
Computer Science, pp. 322-331, 1986.

[78] M.Y. Vardi and P. Wolper, “Reasoning About Infinite Computa-
tions,” Information and Computation, vol. 115, pp. 1-37, 1994, ap-
peared as a conference paper in 1983.

[79] W. Visser, “Memory Efficient Storage in SPIN,” Proc. Second SPIN
Workshop, Rutgers Univ., New Brunswick, N.J., DIMACS/32, Am.
Math. Soc., Aug. 1996.

[80] A.S. Wenban, J.W. O’Leary, and G.M. Brown, “Codesign of
Communication Protocols,” Computer, vol. 26, no. 12, pp. 46-52,
Dec. 1993.

[81] C.H. West, “General Technique for Communications Protocol
Validation,” IBM J. Research and Development, vol. 22, no. 3, pp.
393-404, 1978.

[82] P. Wolper, “Expressing Interesting Properties of Programs in
Propositional Temporal Logic,” Proc. 13th ACM Symp. Principles of
Programming Languages, pp. 148-193, St. Petersburg, Fla., Jan. 1986.

Gerard J. Holzmann received an MSc degree in
electrical engineering in 1976 and a PhD degree in
technical sciences in 1979 from the University of
Technology in Delft, The Netherlands. He joined
the Computing Sciences Research Center at Bell
Laboratories, Murray Hill, New Jersey, in 1980,
where today he is a distinguished member of
technical staff (DMTS) in the Computing Principles
Research Department. In 1980, Holzmann wrote
one of the first automated protocol verification
systems, called PAN Since then, he has written

several other on-the-fly verification systems for a variety of applica-
tions. His latest system, SPIN, is considered to be one of the most effi-
cient and most widely used LTL model checking systems Dr. Holz-
mann has written books on digital image editing, on the history of
communications, and on protocol verification. He serves as an editor
for the journal, Formal Methods in Systems Design (Kluwer).

