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Abstract

Although modern parallel and distributed computing systems provide easy access to large
amounts of computing power, it is not always easy for non-expert users to harness these large
systems effectively. A large workload composed in what seems to be the obvious way by a
naive user may accidentally abuse shared resources and achieve very poor performance. To
address this problem, we propose that production systems should provide end users with high-
level abstractions that allow for the easy expression and efficient execution of data intensive
workloads. We present one example of an abstraction – All-Pairs – that fits the needs of several
data-intensive scientific applications. We demonstrate that an optimized All-Pairs abstraction
is both easier to use than the underlying system, and achieves performance orders of magnitude
better than the obvious but naive approach, and twice as fast as a hand-optimized conventional
approach.

1 Introduction

Many scientists have large problems that can make use of distributed computing, however most
also are not distributed computing experts, and thus they can’t be expected to get everything right.
This is especially true considering the large number of factors involved in large distributed systems
and the software that harnesses these resources. Inadvertent poor choices can result in outright
failures, poor performance, inefficient use of resources, or abuse of the infrastructure.

Providing an abstraction for a class of problems is one approach to avoiding the pitfalls of
distributed computing. The abstraction for a problem gives the user an interface to define their
problem in terms of data and computation requirements, while hiding the details of how the prob-
lem will be realized in the system. A well-designed system will consider the range of complications
not apparent to a novice to make choices that avoid disastrous decisions. The goal is not to strip
power from smart users, but rather to make distributed computing accessible to non-experts.

We have implemented one such abstraction – All-Pairs – for a class of problems found in
several scientific fields. This implementation has several broad steps. First, we model the workflow
so that we may predict execution based on grid and workload parameters, such as the number of
hosts. We distribute the data, via spanning tree, to the compute nodes, being as flexible as possible
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as to which nodes are chosen. We dispatch batch jobs that are structured based on the model to
provide good results. Once the batch jobs have completed, we collect the output into a canonical
form for the results matrix, and delete the data left on the compute nodes.

We examine the two algorithms for serving the workload’s data requirement – demand paging
and active storage. Active storage delivers higher throughput and efficiency for several large work-
loads on a shared distributed system. We evaluate these two algorithms on All-Pairs problems
in biometrics and data mining on a 500-CPU shared computing system. The turnaround times
for these workloads can be up to a factor of two faster than for demand paging, and orders of
magnitude faster than the non-experts’ choices.

2 The All-Pairs Problem

The All-Pairs problem is easily stated:

All-Pairs( set A, set B, function F ) returns matrix M:
Compare all elements of set A to all elements of set B via function F,
yielding matrix M where M[i,j] = F(A[i],B[j]).

Variations of the All-Pairs problem occur in many branches of science and engineering, where
the goal is either to understand the behavior of a newly created function F on sets A and B, or to
learn the covariance of sets A and B on a standard inner product F. We are working with two user
communities that make use of All-Pairs computations: biometrics and data mining.

Biometrics is the study of identifying humans from measurements of the body, such as photos
of the face, recordings of the voice, or measurements of body structure. A recognition algorithm
may be thought of as a function that accepts e.g. two face images as input and outputs a number
between zero and one reflecting the similarity of the faces.

Suppose that a researcher invents a new algorithm for face recognition, and writes the code for
a comparison function. To evaluate this new algorithm, the accepted procedure in biometrics is to
acquire a known set of images and compare all of them to each other using the function, yielding
a similarity matrix. Because it is known which set images are from the same person, the matrix
represents the accuracy of the function and can be compared quantitatively to other algorithms.

A typical All-Pairs problem in this domain consists of comparing 4010 1.25MB images from
the Face Recognition Grand Challenge [17] all to each other, using functions that range from 1-20
seconds of compute time, depending on the algorithm in use. Future needs include the All-Pairs
comparison of 60,000 iris images of similar size.

Data Mining is the study of extracting meaning from large data sets. One part of this is reacting
to bias or other noise within a set. In order to improve at doing this, the researchers must determine
which classifiers work on which types of noise. To do this, they use a distribution representative
of the data set as one input to the function, and a type of noise (also defined as a distribution) as
the other. The function returns a set of results for each classifier, allowing researchers to determine
which classifier is best for that type of noise on that distribution of the validation set.

A typical All-Pairs problem in this domain consists of comparing 250 700 KB files, each of
which either contains a validation set distribution or a bias distribution; each individual function
instance in this application takes .25 seconds to rank the classifiers they are interested in examining.
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Figure 1: The All-Pairs Problem

(A) An All-Pairs problems compares all elements of sets A and B together using function F, yield-
ing a matrix of results. (B) The performance of All-Pairs problems on a single machine, when
attempted by a non-expert user, and when using an optimized All-Pairs abstraction.

Note that some problems that appear to be All-Pairs may be algorithmically reducible to
a smaller problem via techniques such as data clustering (Google [5]), or early filtering (Dia-
mond [13]). In these three cases, the user’s intent is not All-Pairs, but sorting or searching, and
thus other kinds of optimizations apply. In the All-Pairs problems that we consider, it is actually
necessary to obtain all of the output values. For example, in the biometric application, it is neces-
sary to verify that like images yield a good score and unlike images yield a bad score. The problem
is brute force, and the challenge lies in providing interfaces to execute it effectively.

3 Why is All-Pairs Challenging?

Solving an All-Pairs seems simple at first glance. The typical user constructs a standalone program
F that accepts two files as input, and performs one comparison. After testing F on his or her
workstation, the user connects to the campus batch computing center, and runs a script like this:

foreach $i in A
foreach $j in B

submit_job F $i $j

From the perspective of a non-expert user, this seems like a perfectly rational composition
of a large workload. Unfortunately, it will likely result in very poor performance for the user, and
worse, may result in the abuse of shared computing resources at the campus center. Figure 1 shows
a real example of the performance achieved by a user that attempted exactly this procedure at our
institution, in which 250 CPUs yielded worse than serial performance.

If these workloads were to be completed on a dedicated cluster owned by the researcher and
isolated on a single switched network, conservation and efficient use of resources might only be
a performance consideration. However, this is not the case; large scientific workloads often re-
quire resources shared among many people, such as a desktop cycle-scavenging system, a campus
computing center, or a wide area computing grid. Improperly configured workloads that abuse
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computation and storage resources, attached networks, or even the resource management software
will cause trouble with other users and administrators. These issues require special consideration
beyond simply performance.

Let us consider some of the obstacles to efficient execution. These problems should be no
surprise to the distributed computing expert, but are far from obvious to end users.

Dispatch Latency. The cost to dispatching a job within a conventional batch system (not to
mention a large scale grid) is surprisingly high. Dispatching a job from a queue to a remote CPU
requires many network operations to authenticate the user and negotiate access to the resource,
synchronous disk operations at both sides to log the transaction, data transfers to move the exe-
cutable and other details, not to mention the unpredictable delays associated with contention for
each of these resources. When a wide area system is under heavy load, dispatch latency can easily
be measured in minutes. For batch jobs that intend to run for hours, this is of little concern. But,
for many short running jobs, this can be a serious performance problem. Even if we assume that a
system has a relatively fast dispatch latency of one second, it would be foolish to run jobs lasting
one second: one job would complete before the next can be dispatched, resulting in only one CPU
being kept busy. Clearly, there is an incentive to keep jobs large in order to hide the worst case
dispatch latencies and keep CPUs busy.

Failure Probability. On the other hand, there is an incentive not to make individual jobs too
long. Any kind of computer system has the possibility of hardware failure, but a shared computing
environment also has the possibility that a job can be preempted for a higher priority, usually
resulting in a rollback to the beginning of the job on another CPU. Short runs provide a sort of
checkpointing, as a small result that is completed need not be regenerated. Long runs also magnify
heterogeneity in the pool. For instance, a job that should take 10 seconds on a typical machine
but takes 30 on the slowest isn’t a problem if batched in small sets. The other machines will just
cycle through their sets faster. But, if jobs are chosen such that they run for hours even on the
fastest machine, then there is a much higher probability of outright failure, or at least a long delay
waiting for the final job to complete on the slowest. Thus, there are advantages to short runs,
however they increase overhead and thus should be mitigated whenever possible. An abstraction
has to determine where the borders are between too short, just right, and too long, noting that these
depend on numerous factors of the job, the grid, and the particular execution.

Number of Compute Nodes. It is easy to assume that more compute nodes is automatically
better. This is not always true. In any kind of parallel or distributed problem, each additional
compute node presents some overhead in exchange for extra parallelism. All-Pairs is particularly
bad, because the data is not partitionable: each node needs all of the data in order to compute any
significant subset of the problem. Data must be transferred to that node by some means, which
places extra load on the data access system, whether it is a shared filesystem or a data transfer
service. More parallelism means more concurrently running jobs for both the engine and the batch
system to manage, and a greater likelihood of a node failing, or worse, concurrent failures of several
nodes, which consume the attention (and increase the dispatch latency) of the queuing system.

Data Distribution. After choosing the proper number of servers, we must then ask how to get
the data to each computation. A traditional cluster makes use of a central file server, as this makes
it easy for programs to access data on demand. However, it is much easier to scale the CPUs of a
cluster than it is to scale the capacity of the file server. If the same input data will be re-used many
times, then it makes sense to simply store the inputs on each local disk, getting better performance
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Figure 2: Cluster Architectures Compared
When using a conventional computing cluster, the user partitions the workload into jobs, a batch
queue distributes jobs to CPUs, where they access data from a central file server on demand.
When using an abstraction like All-Pairs, the user states the high level structure of the workload,
the abstraction engine partitions both the computation and the data access, transfers data to disks
in the cluster, and then dispatches batch jobs to execute on the data in place.

and scalability. Many dedicated clusters provide fixed local data for common applications (e.g.
genomic databases for BLAST [2]). However, in a shared computing environment, there are many
different kinds of applications and competition for local disk space, so the system must be capable
of adjusting the system to serve new workloads as they are submitted. Doing this requires sig-
nificant network traffic, which if poorly planned can make distributed solving worse than solving
locally.

Hidden Resource Limitations. Distributed systems are full of unexpected resource limitations
that can trip up the unwary user. The major resources of processing, memory, and storage are all
managed by high level systems, reported to system administrators, and well known to end users.
However, systems also have more prosaic resources. Examples are the maximum number of open
files in a kernel, the number of open TCP connections in a network translation device, the number
of licenses available for an application, or the maximum number of jobs allowed in a batch queue.
In addition to navigating the well-known resources, an execution engine must also be capable of
recognizing and adjusting to secondary resource limitations.

Semantics of Failure. In any kind of distributed system, failures are not only common, but
also hard to define. It isn’t always clear what constitutes failure, whether the failure is permanent
or temporary, and whether a localized failure will affect other running pieces of the workload. If
the engine managing the workflow doesn’t know the structure of the problem, the partitioning,
and the specifics about the job that failed, it will be almost impossible to recover cleanly. This
is problematic, because expanding system size dramatically increases our chances of running into
failures; no set of any significant number of machines has all of them online all the time.

It should be clear that our concern in this work is not how to find the optimal parallelization of
a workload under ideal conditions. Rather, our goal is to design robust abstractions that result in
reasonable performance, even under some variation in the environment.
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4 An All-Pairs Implementation

To avoid the problems listed above, we propose that heavy users of shared computing systems
should be given an abstraction that accepts a specification of the problem to be executed, and an
engine that chooses how to implement the specification within the available resources. In particu-
lar, an abstraction must convey the data needs of a workload to the execution engine.

Figure 2 shows the difference between using a conventional computing cluster and computing
with an abstraction. In a conventional cluster, the user specifies what jobs to run by name. Each
job is assigned a CPU, and does I/O calls on demand with a shared file system. The system has no
idea what data a job will access until runtime. When using an abstraction like All-Pairs, the user
specifies both the data and computation needs, allowing the system to intelligently partition and
distribute the data, then dispatch the computation.

We have constructed a prototype All-Pairs engine that runs on top of a conventional batch
system and exploits the local storage connected to each CPU. This executes in four stages:
(1) Model the system. (2) Distribute the data. (3) Dispatch batch jobs. (4) Clean up the system.

Stage 1: Model the System. In a conventional system, it is difficult to predict the performance
of a workload, because it depends on factors invisible to the system, such as the detailed I/O
behavior of each job, and contention for the network. Both of these factors are minimized when
using an abstraction that exploits initial efficient distribution followed by local storage instead of
run time network access.

The engine measures the input data to determine the size s of each input element and the
number of elements n and m in each set. (For simplicity, we assume here that the sets have the
same size elements.) The provided function may be tested on a small set of data to determine the
typical runtime t of each function call. Several fixed parameters are coded into the abstraction
by the system operators: the bandwidth B of the network and the dispatch latency D of the batch
software. Finally, the abstraction must choose the number of function calls c to group into each
batch job, and the number of hosts h to harness.

The time to perform one transfer is simply the total amount of data divided by the bandwidth.
Distribution by a spanning tree is O(log2(h)), so the total time to transfer data is:

Tdata =
(n + m)s

B
log2(h)

The total number of batch jobs is nm/c, the runtime for each batch job is D + ct, and the total
number of hosts is h, so the total time needed to compute on the staged data is:

Tcompute =
nm

c
(D + ct)

h

However, because the batch scheduler can only dispatch one job every D seconds, each job
start will be staggered by that amount, and the last host will complete D(h − 1) seconds after the
first host to complete. Thus, the total estimated turnaround time is:

Tturnaround =
(n + m)s

B
log2(h) +

nm

c
(D + ct)h + D(h − 1)

Now, we may choose the free variables c and h to minimize the turnaround time. We employ
a simple hill-climbing optimizer that starts from an initial value of c and h and chooses adjacent
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values until a minimum T is reached. Some constraints on c and h are necessary. Clearly, h cannot
be greater than the total number of batch jobs or the available hosts. To bound the cost of eviction
in long running jobs, c is further constrained to ensure that no batch job runs longer than one hour.
This is also helpful to enable a greater degree of scheduling flexibility in a shared system where
preemption is undesirable.

The reader may note that we choose the word minimize rather than optimize. No model captures
a system perfectly. In this case, we do not take into account performance variations in functions,
or the hazards of network transfers. Instead, our goal is to avoid pathologically bad cases.

Table 1 shows sample values for h and c picked by the model for several sample problems,
assuming that 400 is the maximum possible value for h. In each case, we modify one parameter
(shown in bold) to demonstrate that it is not always best to use a fixed number of hosts.

n, m t s B D h c
4000 1 10 100 10 400 2000
4000 1 10 1 10 138 2000
1000 1 10 100 10 303 3000
1000 1 1000 100 10 34 3000
100 1 10 100 10 31 300
100 100 10 100 10 315 25

Table 1: h and c Choices for Selected Configurations

Stage 2: Distribute the Data. For a large computation workload running in parallel, finding
a place for the computation is only one of the considerations. Large data sets are usually not
replicated to every compute node, so we must either prestage the data on these nodes or serve
the data to them on demand. Figure 3 shows our technique for distributing the input data. A file
distributor component is responsible for pushing all data out to a selection of nodes by a series
of directed transfers forming a spanning tree with transfers done in parallel. The algorithm is a
greedy work list. As each transfer completes, the target node becomes a source for a new transfer,
until all are complete.

However, in a shared computing environment, these data transfers are never guaranteed to suc-
ceed. A transfer might fail outright if the target node is disconnected, misconfigured, has different
access controls or is out of free space. A transfer might be significantly delayed due to competing
traffic for the shared network, or unexpected loads on the target system that occupy the CPU, vir-
tual memory, and filesystem. Delays are particularly troublesome, because we must choose some
timeout for each transfer operation, but cannot tell whether a problem will be briefly resolved or
delay forever. A better solution is to set timeouts to a short value, request more transfers than
needed, and stop when then target value is reached.

Figure 3 shows results for distribution of a 50 MB file to 200 nodes of our shared computing
system. We show two particularly bad (but not uncommon) examples. A sequential transfer to 200
nodes takes linear time, but only succeeds on 185 nodes within a fixed timeout of 20 seconds per
transfer. A spanning tree transfer to 200 nodes completes much faster, but only succeeds on 156
nodes, with the same timeout. But, a spanning tree transfer instructed to accept the first 200 of
275 possible transfers completes even faster with the same timeout. A “first N of M” technique
yields better throughput and better efficiency in the case of a highly available pool, and allows
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Figure 3: File Distribution via Spanning Tree
An efficient way to distribute data to many nodes of a system is to build a spanning tree. In the

example on the right, a file distributor initiates transfers as follows: (1) A transfers to B, (2) AB
transfer to CD, (3) ABCD transfer to EFGH. The graph on the right compares the performance

transferring data to 200 hosts using sequential transfers and a spanning tree. In a shared system,
failures are highly likely, so better performance is achieved by accepting the first 200 of 275 hosts.

more leeway than in sub-ideal environments.
Stage 3: Dispatch batch jobs. After transferring the input data to a selection of nodes, the

All-Pairs engine then constructs batch submit scripts for each of the grouped jobs, and queues them
in the batch system, with instructions to run on nodes where the data is available. Although the
batch system has primarily responsibility at this stage, there are two ways in which the higher level
abstraction provides added functionality.

An abstraction can monitor the environment and determine whether local resources are over-
loaded. An important example of this is the robustness of batch queues. As noted above, it may
not be a good idea to queue 10,000 batch jobs at once, even if that much work is necessary. In this
case, the abstraction can limit the number of jobs in the queue at a time to 2h, which allows for
all hosts to be harnessed without overloading the queue. In addition, if submit job should fail
under heavy load, the engine can back off and resubmit.

Another facet of management that the abstraction’s structure gives access to is estimating com-
pletion time. If the time per function instance is approximately correct, we have a general idea
from the model how long something should take to run. This guide, combined with comparisons
versus other similarly-sized jobs, give the abstraction the ability to determine when jobs are being
unusually slow (indicative of an error on the underlying worker node, or with the grid itself). From
here, the engine can submit duplicate jobs, or just kill and resubmit. In this way, the abstraction
and the model can prevent delays that might impact the workload’s turnaround.

Stage 4: Collect results and clean up. As the batch system completes jobs, the abstraction
engine must collect the results and assemble them into an appropriate structure, typically a single
file listing all results in a canonical order. This presents another opportunity to add fault-tolerance:
if the output of any function does not match a template provided by the user, the job can be re-
submitted and the error corrected before showing results to the user.

When a workload has completed, the engine is responsible for deleting all data placed in stage
2. This is critical for executing in a shared environment, as artifacts left on shared resources tend
to be a disincentive for the owners’ continued sharing of those resources.

8



5 Evaluation

Environment. To evaluate the concept of using abstractions for data intensive computing, we have
constructed a prototype All-Pairs engine and employed it with biometric and data mining applica-
tions in a shared computing environment at the University of Notre Dame. We operate a shared
computing system consisting of about 500 CPUs connected to 300 disks. We use Condor [20] to
manage the CPUs and Tactical Storage [19] to manage and access all of the local disks.

This is a highly shared computing environment consisting of a mix of research clusters, per-
sonal workstations, student lab workstations, and classroom display systems, all connected by
shared networks that serve many more machines for general Internet access. Figure 4 also shows
that it is highly heterogeneous. New machines are added to the system and old machines are re-
moved on a daily basis. As a result, a small number of machines have a very large amount of
free disk space, while a large number of machines have a few GB free. CPU speed ranges from
500-6000 MIPS, and is not strongly correlated with disk space.

Configurations. We evaluate two implementations of the All-Pairs abstraction. The first we
call active storage, which is exactly the implementation described above. In this mode, the data is
prestaged to local filesystems on each compute node. The computation references the local copy
of the data, avoiding a long network trip for each access, and distributes the I/O load among the
resources. As a tradeoff, the data must be prestaged to the compute nodes, and the resources must
meet the disk requirements of the data set to be considered for inclusion in the computation pool.
As the data sizes become larger, fewer CPUs become available.

We compare this to demand paging, which is the traditional cluster architecture with a central
filesystem. In this mode, when a batch job issues a system call, the data is pulled on demand into
the client’s memory. This allows execution on nodes with limited disk space, since only two data
set members must be available at any given time, and those will be accessed over the network,
rather than on the local disk. In this mode, we hand-optimize the size of each batch job and other
parameters to achieve the best comparison possible.

Metrics. Evaluating the performance of a large workload running in a shared computing sys-
tem has several challenges. In addition to the heterogeneity of resources, there is also significant
time variance in the system. In a shared computing environment, interactive users have first priority
for CPU cycles. A number of batch users may compete for the remaining cycles in unpredictable
ways. In our environment, anywhere between 200 and 400 CPUs were available at any given
time. Figure 5(A) shows an example of this. The timeline of two workloads of size 2500x2500
is compared, one employing demand paging, and the other active storage. In this case, the overall
performance difference is clearly dramatic: active storage is faster, even using fewer resources.
However, the difference is a little tricky to quantify, because the number of CPUs varies over time,
and there is a long tail of jobs that complete slowly, as shown in Figure 5(B).

To accommodate the variance, we present two results. The first is simply the turnaround time
of the entire workload, which is of most interest to the end user. Because of the unavoidable
variances, small differences in turnaround time should not be considered significant (although we
do show very large differences for large problem sizes.) A more robust metric is efficiency, which
we compute as the total number of cells in the result (i.e. the number of function evaluations),
divided by the total CPU time (i.e. the area under the curve in Figure 5(A)). Higher efficiencies
represent better use of the available resources.
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Figure 4: Resource Variance in a Shared Computing System
A shared computing system has a high degree of heterogeneity in available resources. 4(A) shows
the distribution of free disk space across our system, ranging from a few MB to hundreds of GB
per disk. 4(B) shows the weak relationship between CPU speed and available space. As a result,
the selection of storage for a workload may have a significant effect on the available computation
power, and vice versa.

Results. Figure 6 shows a comparison between the active storage and demand paging imple-
mentations for the biometric workload described above in the list of applicable problems. For the
4010x4010 standard biometric workload, the completion time is faster for active storage by a factor
of two, and its efficiency is much higher as well. Figure 7 shows the performance of the data min-
ing application. For the largest problem size, 1000x1000, this application also shows a factor of
two better turnaround time and more than that in efficiency for the active storage implementation.

Finally, we consider an application with a very high data requirement – over 20 MB of data
per 1 second of computation on that data. Although this application is synthetic, chosen to have
ten times the biometric data rate, it is relevant as processor speed is increasing faster than disk or
network speed, so applications will continue to be increasingly data hungry. Figure 8 shows for
this third workload another example of active storage performing better than demand paging on all
non-trivial data sizes.

For small problem sizes on each of these three applications, the completion times are similar
for the two data distribution algorithms. The central server is able to serve the requests from the
limited number of compute nodes for data sufficiently to match the cost of the prestaging plus the
local access for the active storage implementation.

For larger problem sizes, however, the demand paging algorithm is not as efficient because the
server cannot handle the load of hundreds of compute nodes and the network is overloaded with
sustained requirements to keep all the compute nodes running at full speed. Also, the data set size
passes the memory of the server, and because all the compute nodes will be in different stages, the
server will thrash pieces of the data set in and out of memory to serve competing jobs. For active
storage, however, the load factor is only 1 and there is no thrashing. Thus, the initial cost of data
prestaging is made up for by efficient access to the data over the course of thousands to millions
of comparisons. The completion times diverge at approximately the same point where the active
storage efficiency surpasses the demand paging efficiency.
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Figure 5: Time Variance in a Shared Computing System
Evaluating workloads in a shared computing system is troublesome, because of the variance
of available resources over time. 5(A) shows the CPUs assigned to two variants of the same
2500x2500 All-Pairs problem run in demand paging and active storage modes. 5(B) shows the
distribution of job run times for each workload. In this case, the active storage implementation is
significantly better, but a quantitative evaluation is complicated by the variance in number of CPUs
and the long tail of runtimes that occurs in a distributed system. To accommodate this variance,
we also compute the efficiency metric described in the text.

In each of the graphs, the actual turnaround time for the active storage algorithm is longer
than the modeled time. The model does not consider suspensions and evictions on batch sys-
tems, so the existence of these in actual systems causes higher turnaround times than predicted.
Additionally, average execution times may not match the predicted execution time when there is
heterogeneity in the system so many machines will complete a single function instance slower
than the benchmarked (or user-given) time. Finally, the model assumes that h compute nodes are
always available, which is not always the case due to disk availability and competition from other
users.

6 Related Work

We have used the example of the All-Pairs abstraction to show how a high level interface to a dis-
tributed system improves both performance and usability dramatically. All-Pairs is not a universal
abstraction; there exist other abstractions that satisfy other kinds of applications, however, a system
will only have robust performance if the available abstraction maps naturally to the application.

For example, Bag-of-Tasks is a simple and widely used abstraction found in many systems,
of which Linda [1], Condor [14], and Seti@Home [18] are just a few well-known examples. In
this abstraction, the user simply states a set of unordered computation tasks and allows the sys-
tem to assign them to processors. This permits the system to retry failures [4] and attempt other
performance enhancements. [8]. Bulk-Synchronous-Parallel (BSP) [7] is a variation on this theme.

Bag-of-Tasks is a powerful abstraction for computation intensive tasks, but ill-suited for All-
Pairs problems. If we attempt to map an All-Pairs problem into a Bag-of-Tasks abstraction by e.g.
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Figure 6: Performance of a Biometric All-Pairs Workload
The biometric face comparison function takes 1s to compare two 1.25MB images.
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Figure 7: Performance of a Data Mining All-Pairs Workload
The data mining function takes .25 seconds to compare two 700KB items.
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Figure 8: Performance of a Synthetic All-Pairs Workload
This function takes 1s for two 12MB data items, 10 times the data rate of the biometric workload.
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making each comparison into a task to be scheduled, we end up with all of the problems described
in the introduction. Bag-of-Tasks is insufficient for a data-intensive problem.

Map-Reduce [9] is closer to All-Pairs in that it encapsulates both the data and computation
needs of a workload. This abstraction allows the user to apply a map operator to a set of name-
value pairs to generate several intermediate sets, then apply a reduce operator to summarize the
intermediates into one or more final sets. Map-Reduce allows the user to specify a very large
computation in a simple manner, while exploiting system knowledge of data locality.

We may ask the same question about All-Pairs and Map-Reduce: Can Map-Reduce solve an
All-Pairs problem? The answer is: Not efficiently. We might attempt to do this by executing
AllPairs(A, B, F ) as Map(F, S) where S = ((A1, B1), (A1, B2)...). This would result in a large
workload where each individual job refers to one element from both sets, with no particular effort
in advance to distribute data appropriately and co-location programs with the needed data. Again,
when the workload does not match the available abstraction, poor performance results.

Clusters can also be used to construct more traditional abstractions, albeit at much larger scales.
For example, data intensive clusters can be equipped with abstractions for querying multidimen-
sional arrays [6], storing hashtables [12] and B-trees [16], searching images [13], and sorting
record-oriented data [3].

The field of grid computing has produced a variety of abstractions for executing large work-
loads. Computation intensive tasks are typically represented by a directed acyclic graph (DAG) of
tasks. A system such as Pegasus [10] converts an abstract DAG into a concrete DAG by locating
the various data dependencies and inserting operations to stage input and output data. This DAG
is then given to an execution service such as Condor’s DAGMan [20] for execution. All-Pairs
might be considered a special case of a large DAG with a regular grid structure. Alternatively, an
All-Pairs job might be treated as a single atomic node in a DAG with a specialized implementation.

Other abstractions place a greater focus on the management of data. Chimera [11] presents
the abstraction of virtual data in which the user requests a member of a large data set which
may already exist in local storage, be staged from a remote archive, or be created on demand by
running a computation. Swift [21] and GridDB [15] build on this idea by providing languages for
describing the relationships between complex data sets.

7 Future Work

Several avenues of work remain open.
Very Large Data Sets. The All-Pairs engine described above requires that at least one of

the data sets fits in its entirety on each compute node. This limits the number of compute nodes,
perhaps to zero, available to a problem for large data sets. If we can only distribute partial data sets
to the compute nodes, they are not equal in capability. Thus, the data prestaging must be done with
more care, and there must be more structure in the abstraction to monitor which resources have
which data. This is required to correctly direct the batch system’s scheduling.

Data Persistence. It is common for a single data set to be the subject of many different work-
loads in the same community. If the same data set will be used many times, why transfer and
delete it for each workload? Instead, we could use the cluster with embedded storage as both a
data repository and computing system. In this scenario, the challenge becomes managing com-
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peting data needs. Every user will want their data on all nodes, and the system must enforce a
resource sharing policy by increasing and decreasing the replication of each data set.

8 Conclusions

The problems described above are indicative of the ease for non-expert users to make naive choices
that inadvertently result in poor performance and abuse of the shared environment. We proposed
that an abstraction lets the user specify only what he knows about his workload: the input sets and
the function. This optimized abstraction adjusts for grid and workload parameters to execute the
workload efficiently. We have shown an implementation of one such abstraction, All-Pairs. Using
an active storage technique to serve data to the computation, the All-Pairs implementation avoids
pathological cases and can significantly outperform hand-optimized demand paging attempts as
well. Abstractions such as All-Pairs can make grid computing more accessible to non-expert users,
while preventing the shared consequences of mistakes that non-experts might otherwise make.
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